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Abstract: In this paper, we generalize a value distribution result and use it to prove a normality criterion using partial

sharing of small functions. Further in the sequel, various known normality criteria are improved and generalized on the

domain D := {z : |z| < R, 0 < R ≤ ∞} .
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1. Introduction and main results

We assume that the reader is familiar with the theory of normal families of meromorphic functions on a domain

D ⊆ C ; one may refer to [5] for more information.

The idea of the sharing of values was introduced in the study of normality of families of meromorphic

functions for the first time by Schwick [6] in 1989.

Two nonconstant meromorphic functions f and g are said to share a value ω ∈ C IM (ignoring

multiplicities) if f and g have the same ω -points counted with ignoring multiplicities. If multiplicities of

ω -points of f and g are counted, then f and g are said to share the value ω CM. For deeper insight into the

sharing of values by meromorphic functions, one may refer to [8].

In this paper all meromorphic functions are considered on D := {z : |z| < R, 0 < R ≤ ∞} excepting

Theorem A and Theorem 1.1, where the domain is the whole complex plane. A meromorphic function ω(z) is

said to be a small function of a meromorphic function f(z) if T (r, ω) = o (T (r, f)) as r −→ R. Further, we say

that a meromorphic function f shares a small function ω partially with a meromorphic function g if

E(ω, f) = {z ∈ C : f(z)− ω(z) = 0} ⊆ E(ω, g) = {z ∈ C : g(z)− ω(z) = 0},

where E(ω, ϕ) denotes the set of zeros of ϕ− ω counted with ignoring multiplicities.

The function of the form M [f ] = fn0(f ′)n1 · · · (f (k))nk is called a differential monomial of f of degree

d = n0 + n1 + · · ·+ nk , where n0, n1, · · · , nk are nonnegative integers.

In the present discussion, we have used the idea of partial sharing of small functions in the study of nor-

mality of families of meromorphic functions. One can verify that a good amount of results on normal families
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proved by using the sharing of values can be proved under a weaker hypothesis of partial sharing of values or

small functions.

Lahiri and Dewan [4] proved the following result:

Theorem A Let f be a transcendental meromorphic function and F = (f)n0(f (k))n1 , where n0(≥ 2), and n1

and k are positive integers such that n0(n0 − 1) + (1 + k)(n0n1 − n0 − n1) > 0. Then[
1− 1 + k

n0 + k
− n0(1 + k)

(n0 + k){n0 + (1 + k)n1}

]
T (r, F ) ≤ N

(
r,

1

F − ω

)
+ S(r, F )

for any small function ω( ̸≡ 0,∞) of f .

It is natural to ask whether Theorem A remains valid for a general class of monomials. In this direction,

we have proved that it does hold for a larger class of monomials. Precisely, we have:

Theorem 1.1 Let f be a transcendental meromorphic function. Let

F = fn0(f ′)n1 · · · (f (k))nk , (1.1)

where k, n0, n1, · · · , nk are nonnegative integers with k ≥ 1, n0 ≥ 2 , and nk ≥ 1 such that

n0(n0 − 1) +
k∑

j=1

(j + 1)(n0nj − nj − n0) + (k − 1)n0 > 0. (1.2)

Then 1− 1 + k(k+1)
2

n0 +
k(k+1)

2

−
n0

(
1 + k(k+1)

2

)
{n0 +

k(k+1)
2 }{n0 +

∑k
j=1(j + 1)nj}

+ o(1)

T (r, F )

≤ N

(
r,

1

F − ω

)
+ S(r, F ) (1.3)

for any small function ω( ̸≡ 0,∞) of f.

Note that the sum in (1.2) runs over the orders of derivatives present in F.

Note: When f has no poles then Theorem 1.1 holds without condition (1.2).

As an application of Theorem 1.1, we prove a normality criterion using the idea of partial sharing of

small functions.

Theorem 1.2 Let F be a family of meromorphic functions such that each f ∈ F has only zeros of multiplicity

at least k ≥ 2. Let n0, n1, · · · , nk be nonnegative integers with n0 ≥ 2, nk ≥ 1 such that

n0(n0 − 1) +
k∑

j=1

(j + 1)(n0nj − n0 − nj) + (k − 1)n0 > 0.

Let ω(z) be a small function of each f ∈ F having no zeros and poles at the origin. If there exists f̃ ∈ F such

that M [f ] share ω partially with M [f̃ ], for every f ∈ F , then F is a normal family.
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Consequently, we can prove:

Theorem 1.3 Let F be a family of meromorphic functions such that each f ∈ F has only zeros of multiplicity

at least k ≥ 2. Let n0, n1, · · · , nk be nonnegative integers with n0 ≥ 2, nk ≥ 1 such that

n0(n0 − 1) +
k∑

j=1

(j + 1)(n0nj − n0 − nj) + (k − 1)n0 > 0.

Let ω(z) be a small function of each f ∈ F having no zeros and poles at the origin. If M [f ] and M [g] share

ω , for each pair f, g ∈ F , then F is a normal family.

Corollary 1.4 Let F be a family of meromorphic functions such that each f ∈ F has only zeros of multiplicity

at least k ≥ 2. Let n0, n1, · · · , nk be nonnegative integers with n0 ≥ 2, nk ≥ 1 such that

n0(n0 − 1) +

k∑
j=1

(j + 1)(n0nj − n0 − nj) + (k − 1)n0 > 0.

Let ω(z) be a small function of each f ∈ F having no zeros and poles at the origin. If M [f ]− ω has no zero,

for every f ∈ F , then F is a normal family.

Further, one can see that Theorem 4.1 of Hu and Meng [3] may be generalized to a class of monomials as follows:

Theorem 1.5 Let k ∈ N and F be a family of nonconstant meromorphic functions such that each f ∈ F has

only zeros of multiplicity at least k. Let n0, n1, · · · , nk be nonnegative integers with n0 ≥ 2, nk ≥ 1 such that

n0(n0 − 1) +
k∑

j=1

(j + 1)(n0nj − n0 − nj) + (k − 1)n0 > 0.

Let ω(z) be a small function of each f ∈ F having no zeros and poles at the origin. If, for each f ∈
F , (M [f ]− ω) (z) = 0 implies |f (k)(z)| ≤ A, for some A > 0, then F is a normal family.

2. Proof of main results

Proof of Theorem 1.1: Since n0 is positive, by [7] (Theorem 1, p. 792), f and F have the same order of

growth and hence T (r, ω) = S(r, F ) as r −→ ∞. Precisely, ω is a small function of f iff ω is a small function

of F .
Now, by the second fundamental theorem of Nevanlinna, for three small functions (see [2], p. 47), we have:

[1 + o(1)]T (r, F ) ≤ N(r, F ) +N

(
r,

1

F

)
+N

(
r,

1

F − ω

)
+ S(r, F ). (2.1)

406



CHARAK and SHARMA/Turk J Math

Next, we have

N

(
r,

1

F

)
≤ N

(
r,

1

f

)
+

k∑
j=1

N0

(
r,

1

f (j)

)

≤ N

(
r,

1

f

)
+

k∑
j=1

j

[
N

(
r,

1

f

)
+N(r, f)

]
+ S(r, f)

= N

(
r,

1

f

)
+

k(k + 1)

2

[
N

(
r,

1

f

)
+N(r, f)

]
+ S(r, f),

where N0

(
r, 1

f(j)

)
is the number of those zeros of f (j) in |z| ≤ r that are not the zeros of f .

That is,

N

(
r,

1

F

)
≤
[
1 +

k(k + 1)

2

]
N

(
r,

1

f

)
+

k(k + 1)

2
N(r, f) + S(r, f). (2.2)

Also, we can see that

N

(
r,

1

F

)
−N

(
r,

1

F

)
≥

(k + 1)n0 +
k∑

j=1

nj − 1

N (k+1

(
r,

1

f

)
+ (n0 − 1)Nk)

(
r,

1

f

)
, (2.3)

where N (k+1

(
r, 1

f

)
and Nk)

(
r, 1

f

)
are the counting functions ignoring multiplicities of those zeros of f

whose multiplicity is ≥ k + 1 and ≤ k , respectively.

Now from (2.2) and (2.3), we get

N

(
r,

1

F

)
≤
[
1 +

k(k + 1)

2

]
N (k+1

(
r,

1

f

)

+

[
1 + k(k+1)

2

]
n0 − 1

N (r, 1
F

)
−N

(
r,

1

F

)
−

(k + 1)n0 +

k∑
j=1

nj − 1

N (k+1

(
r,

1

f

)
+

k(k + 1)

2
N(r, f) + S(r, f).

That is,

1 +
(
1 + k(k+1)

2

)
n0 − 1

N

(
r,

1

F

)
≤
(
1 +

k(k + 1)

2

)(
1−

(k + 1)n0 +
∑k

j=1 nj − 1

n0 − 1

)
N (k+1

(
r,

1

f

)

+
1 + k(k+1)

2

n0 − 1
N

(
r,

1

F

)
+

k(k + 1)

2
N(r, f) + S(r, f).
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Since N(r, f) = N(r, F ) and S(r, f) = S(r, F ), we have

N

(
r,

1

F

)
≤

1 + k(k+1)
2

n0 +
k(k+1)

2

N

(
r,

1

F

)
+

(k(k+1)
2 )(n0 − 1)

n0 +
k(k+1)

2

N(r, f) + S(r, f)

=
1 + k(k+1)

2

n0 +
k(k+1)

2

N

(
r,

1

F

)
+

(k(k+1)
2 )(n0 − 1)

n0 +
k(k+1)

2

N(r, F ) + S(r, F ).

Therefore, (2.1) yields

[1 + o(1)]T (r, F ) ≤ N

(
r,

1

F − ω

)
+

1 + k(k+1)
2

n0 +
k(k+1)

2

N

(
r,

1

F

)
+

n0(1 +
k(k+1)

2 )

n0 +
k(k+1)

2

N(r, F ) + S(r, F ). (2.4)

Also, if f has a pole of multiplicity p, then F has a pole of multiplicity

n0p+ n1(p+ 1) + · · ·+ nk(p+ k) ≥ n0 + 2n1 + · · ·+ (k + 1)nk = n0 +

k∑
j=1

(j + 1)nj ,

and, therefore,

N(r, F ) ≥

n0 +
k∑

j=1

(j + 1)nj

N(r, F ). (2.5)

Finally, from (2.4) and (2.5), we find that [1 + o(1)]T (r, F ) ≤ N

(
r,

1

F − ω

)
+

1 + k(k+1)
2

n0 +
k(k+1)

2

N

(
r,

1

F

)

+
n0

(
1 + k(k+1)

2

)
(
n0 +

k(k+1)
2

)(
n0 +

∑k
j=1(j + 1)nj

)N(r, F ) + S(r, F ).

That is,

1− 1 + k(k+1)
2

n0 +
k(k+1)

2

−
n0

(
1 + k(k+1)

2

)
(
n0 +

k(k+1)
2

)(
n0 +

∑k
j=1(j + 1)nj

) + o(1)

T (r, F )

≤ N

(
r,

1

F − ω

)
+ S(r, F ).

2

For the proof of Theorem 1.2, besides Theorem 1.1, we also need the following lemma, which is a

straightforward generalization of Lemma 3 in [1].

Lemma 2.1 Let f be a nonconstant rational function with only zeros of multiplicity at least k , where k ≥ 2.

Let n0, n1, n2, · · · , nk be nonnegative integers with n0 ≥ 2 and nk ≥ 1. Let ω ̸= 0 be a finite complex number.

Then M [f ]− ω has at least two distinct zeros.
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Proof of Theorem 1.2: Since normality is a local property, we may assume that D = D. Suppose F is not

normal in D . In particular, suppose that F is not normal at z = 0. Then, by Zalcman’s lemma (see [9]), there

exist a sequence {fn} of functions in F , a sequence {zn} of complex numbers in D with zn −→ 0 as n −→ ∞,

and a sequence {ρn} of positive real numbers with ρn −→ 0 as n −→ ∞ such that the sequence {gn} defined

by

gn(z) = ρ−αfn(zn + ρnz); 0 ≤ α < k,

converges locally uniformly to a nonconstant meromorphic function g(z) in C with respect to the spherical

metric. Moreover, g(z) is of order at most 2. By Hurwitz’s theorem, the zeros of g(z) have multiplicity at least

k.

Let α =

∑k
j=1 jnj∑k
j=0 nj

< k. Then

M [gn](z) = (gn(z))
no (g′n(z))

n1 · · ·
(
g(k)n (z)

)nk

= ρ−αn0
n (fn(zn + ρnz))

n0 ρ−αn1+n1
n (f ′

n(zn + ρnz))
n1 · · · ρ−αnk+knk

n

(
f (k)
n (zn + ρnz)

)nk

= ρ−α
∑k

j=0 nj+
∑k

j=1 jnj (fn(zn + ρnz))
n0 (f ′

n(zn + ρnz))
n1 · · ·

(
f (k)
n (zn + ρnz)

)nk

= M [fn](zn + ρnz).

On every compact subset of C that contains no poles of g , we have

M [fn](zn + ρnz)− ω(zn + ρnz) = M [gn](z)− ω(zn + ρnz) −→ M [g](z)− ω0

spherically uniformly, where ω0 = ω(0).

Since g is a nonconstant meromorphic function of order at most 2 and ω0 ̸= 0,∞, it immediately follows that

M [g] ̸≡ ω0. Using Theorem 1.1 and Lemma 2.1, M [g] − ω0 has at least two distinct zeros, say w0 and v0 .

Choose r > 0 such that the open disks D(w0, r) = {z : |z − w0| < r} and D(v0, r) = {z : |z − v0| < r} are

disjoint and their union contains no zeros of M [g]− ω0 different from w0 and v0 respectively. Then, by Hur-

witz’s theorem, we see that for sufficiently large n, there exist points wn ∈ D(w0, r) and vn ∈ D(v0, r) such that

(M [fn]− ω) (zn + ρnwn) = 0,

and
(M [fn]− ω) (zn + ρnvn) = 0.

Since, by hypothesis, M [fn] share ω partially with M [f̃ ] , for every n, it follows that(
M [f̃ ]− ω

)
(zn + ρnwn) = 0,

and (
M [f̃ ]− ω

)
(zn + ρnvn) = 0.

By letting n −→ ∞, and noting that zn + ρnwn −→ 0, zn + ρnvn −→ 0, we find that(
M [f̃ ]− ω

)
(0) = 0.
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Since the zeros of M [f̃ ] − ω have no accumulation point, zn + ρnwn = 0 and zn + ρnvn = 0 for sufficiently

large n . That is, D(w0, r) ∩D(v0, r) ̸= ϕ, a contradiction. 2

Proof of Theorem 1.5: As established in the proof of Theorem 1.2, we similarly find that M [g] ̸≡ ω0. By

Theorem 1.1 and Lemma 2.6 in [10], M [g]− ω0 has at least one zero, w0, say. By Hurwitz’s theorem, there is

a sequence of complex numbers {wn} such that wn −→ w0 as n −→ ∞, and

(M [fn]− ω) (zn + ρnwn) = 0.

Again, since k > α,

|g(k)n (wn)| = ρk−α
n |f (k)

n (zn + ρnwn)|

≤ ρ(k−α)
n A

= Aρ
k−

∑k
j=1 jnj∑k
j−0

nj

n −→ 0 as n −→ ∞.

Therefore, g(k)(w0) = limn−→∞ g
(k)
n (wn) = 0

⇒ M [g](w0) = 0 ̸= ω0, which is a contradiction. 2

3. Conclusions

Though our results do generalize and improve the results of Hu and Meng [3] and Ding et al. [1] when the

domain D is {z : |z| < R, 0, R ≤ ∞} , there seems no way of proving our results on an arbitrary domain since

the idea of a small function on an arbitrary domain is not available, as far as we know. However, by making

certain modifications in the proofs of results of Hu and Meng [3] and Ding et al. [1], one can easily extend and

improve these results on an arbitrary domain with a shared value being a nonzero complex value. Precisely,

one obtains:

Theorem 3.1 Let F be a family of nonconstant meromorphic functions on a domain D with all zeros of each

f ∈ F having multiplicity at least k , where k ≥ 2 . Let ω ̸= 0 be a finite complex number and n0, n1, · · · , nk

be nonnegative integers with n0 ≥ 2 and n1 + n2 · · · + nk ≥ 1. If there exists f̃ ∈ F such that M [f ] share ω

partially with M [f̃ ] for every f ∈ F , then F is normal on D .

The condition that f has only zeros of multiplicity at least k in Theorem 3.1 is sharp. For example,

consider the open unit disk D , an integer k ≥ 2, a nonzero complex number ω , and the family

F = {fm(z) = mzk−1;m = 1, 2, 3, · · · }.

Obviously, each fm ∈ F has only a zero of multiplicity k − 1, and for distinct positive integers m and l we

find that f2
mf

(k)
m and f2

l f
(k)
l share ω IM and F is not normal at z = 0.

Also, ω ̸= 0 in Theorem 3.1 is essential. For example, let F = {fm} , where fm(z) = 1
emz+1 ; m = 1, 2, · · ·

and z ∈ D . Choosing k = 2, n = 2, n1 = 1, and n2 = 0, we have

M [fm] = f2
mf ′

m = − memz

(emz + 1)4
̸= 0.

Thus, for any f, g ∈ F , M [f ] and M [g] share 0 IM, but we see that F is not normal in D .
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Theorem 3.2 Let F be a family of nonconstant holomorphic functions on a domain D with all zeros of each

f ∈ F having multiplicity at least k , where k ≥ 2 . Let ω ̸= 0 be a finite complex number and n0, n1, · · · , nk

be nonnegative integers with n0 ≥ 1 and n1 + n2 · · · + nk ≥ 1. If there exists f̃ ∈ F such that M [f ] share ω

partially with M [f̃ ] for every f ∈ F , then F is normal on D .

As an illustration of Theorem 3.2, we have the following example:

Example 3.3 Consider F = {fm(z) = me
z
m : m ∈ N}, defined on C. Take k = 2, n = 1, n1 = 0, and n2 = 1.

Then

M [fm] = fmf ′′
m = e

2z
m ,

and M [fm] = 1 iff
2z

m
= 2kπi, k ∈ Z iff z = mkπi

for

m = 1; z = 0,±πi,±2πi,±3πi, · · ·

m = 2; z = 0,±2πi,±4πi,±6πi, · · ·

m = 3; z = 0,±3πi,±6πi,±9πi, · · ·

and so on.
Thus, for each m ≥ 2 , M [fm] share 1 partially with M [f1] . Since fm −→ ∞ uniformly on each compact subset

of C, it follows that F is normal in C .
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