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Abstract: We consider in this paper the following system of difference equations with maximum
x(n+ 1) = max{f1(n, x(n)), g1(n, y(n))}

, n = 0, 1, 2, . . . ,
y(n+ 1) = max{f2(n, x(n)), g2(n, y(n))}

where fi, gi , i = 1, 2, are real-valued functions with periodic coefficients. We use the Banach fixed point theorem to get

a sufficient condition under which this system admits a unique periodic solution. Moreover, we show that this periodic

solution attracts all the solutions of the current system. Some examples are also given to illustrate our results.

Key words: Max-type difference equations, nonautonomous difference equations, periodic solutions, Banach fixed point

theorem, global attractivity

1. Introduction and preliminaries

It is a famous problem that focuses on the treatment of periodic solutions of nonautonomous difference equations

with periodic coefficients. This type of equation has arisen by the observance of periodic phenomena in discrete

models, especially in mathematical ecology and population dynamics. Studying the existence of periodic

solutions of such equations is recently of great interest. Many mathematicians have done research on this

topic and the majority of them have used in their analysis fixed point theorems such as Krasnoselskii’s theorem

and the theorem of Schauder (see, e.g., [1, 2, 6, 7, 9, 10, 15, 16]). However, for the question of the global

attractivity of these periodic solutions, in fact, there are no general or basic results to use and there are only a

few articles published on this problem. One can see for example [5, 8].

Max-type difference equations and their systems have also been around for many years and their studies

have attracted the attention of several researchers; we refer the reader to [3, 11–14] and the references cited

therein.

The present work is a combination of these two areas of research in the domain of difference equations.

We consider the following functional nonautonomous max-type system: x(n+ 1) = max{f1(n, x(n)), g1(n, y(n))}
, n = 0, 1, 2, . . . ,

y(n+ 1) = max{f2(n, x(n)), g2(n, y(n))}
(1)
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where the initial values x(0), y(0) are real numbers, the functions

fi, gi : N× R → R, for i = 1, 2,

are ω -periodic in n and ω ≥ 1 is an integer, R is the set of real numbers and N is the set of nonnegative

integers.

Throughout this paper we denote {0, 1, 2, . . . , ω − 1} by [0, ω − 1], and for (x, y) = {(x(n), y(n))}n∈N a

sequence in R2 , we define the maximum norm

∥(x, y)∥ = max
n∈[0,ω−1]

|(x(n), y(n))|0,

where |.|0 denotes the infinity norm in R2 , i.e. |(x(n), y(n))|0 = max{|x(n)|, |y(n)|} .
In addition, we assume that the functions fi, gi , i = 1, 2, are contraction mappings, that is, there exist

constants Li,Ki ∈ [0, 1), i = 1, 2, such that for all u, v ∈ R , n ∈ [0, ω − 1],

|fi(n, u)− fi(n, v)| ≤ Li|u− v| and |gi(n, u)− gi(n, v)| ≤ Ki|u− v|. (2)

We will show that under this condition System (1) has a unique periodic solution with period ω that

attracts all the solutions of this system.

Recall that a solution {(x(n), y(n))}n≥0 of System (1) is called periodic with period ω (or ω -periodic) if there

exists an integer ω ≥ 1 such that

x(n+ ω) = x(n) and y(n+ ω) = y(n), for all n ≥ 0.

We say that a solution {(x(n), y(n))}n≥0 of System (1) is eventually periodic with period ω if there exists an

integer N ≥ 0 such that {(x(n), y(n))}n≥N is periodic with period ω , that is,

x(n+ ω) = x(n) and y(n+ ω) = y(n), for all n ≥ N.

The following lemma describes when a solution of System (1) converges to a periodic solution. One can

consult [4].

Lemma 1 Let {(x(n), y(n))}n≥0 be a solution of System (1). Suppose that there exist real numbers l0, l1, . . . , lω−1

and k0, k1, . . . , kω−1 , such that

lim
n→∞

x(ωn+ j) = lj , lim
n→∞

y(ωn+ j) = kj , for all j = 0, 1, . . . , ω − 1

and let {(x̃(n), ỹ(n))}n≥0 be the ω -periodic sequence of real numbers such that for every integer j with

0 ≤ j ≤ ω − 1 , we have

x̃(ωn+ j) = lj , ỹ(ωn+ j) = kj , for all n = 0, 1, . . . .

Then the following statements are true:

• {(x̃(n), ỹ(n))}n≥0 is a ω -periodic solution of System (1),

• lim
n→∞

(x(ωn+ j), y(ωn+ j)) = (x̃(j), ỹ(j)), for j = 0, 1, . . . , ω − 1 .
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Now we state Banach fixed-point theorem (also known as the contraction mapping principle), which

enables us to prove the existence of a periodic solution of System (1).

Theorem 1 Let X be a nonempty complete metric space with a contraction mapping T : X → X . Then T has

a unique fixed point z in X .

2. Main results

We start by studying the existence of periodic solutions of System (1) by using Banach fixed-point theorem. To

this end, let X be the set of all ω -periodic sequences in R2 , which is a Banach space with the maximum norm

defined in the previous section. Thus, we need to construct a contraction mapping T on X , and to do this let

us use c , a real number, such that

0 < c ≤ 1−max1≤i≤2{Li,Ki}
2

,

where Li,Ki , i = 1, 2, are given by (2). Rewrite the first equation of System (1) as

x(n+ 1) = cx(n) + max{f1(n, x(n)), g1(n, y(n))} − cx(n)

= cx(n) + max{f1(n, x(n))− cx(n), g1(n, y(n))− cx(n)}

and similarly

y(n+ 1) = cy(n) + max{f2(n, x(n))− cy(n), g2(n, y(n))− cy(n)}.

We define two mappings, T1 and T2 , as follows:

(T1(x, y))(n) = max{f1(n, x(n))− cx(n), g1(n, y(n))− cx(n)}

and
(T2(x, y))(n) = max{f2(n, x(n))− cy(n), g2(n, y(n))− cy(n)},

for all (x, y) ∈ X , n ∈ N .

Arguing as in [15], we get the following lemma, which is important for our study.

Lemma 2 Let (x, y) = {(x(n), y(n))}n≥0 ∈ X . Then (x, y) is a solution of System (1) if and only if

x(n) = (c−w − 1)−1
w∑
i=1

c−i(T1(x, y))(n+ i− 1)

and

y(n) = (c−w − 1)−1
w∑
i=1

c−i(T2(x, y))(n+ i− 1),

for all n ∈ [0, ω − 1] .

Proof Assume that (x, y) = {(x(n), y(n))}n≥0 is a ω -periodic solution of System (1). We will only do the

proof for the first equality. The second one can be shown in a similar way and it will be omitted. We have from

above
x(n+ 1) = cx(n) + (T1(x, y))(n),
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thus,

c−1x(n+ 1)− x(n) = c−1(T1(x, y))(n),

c−2x(n+ 2)− c−1x(n+ 1) = c−2(T1(x, y))(n+ 1),

. . .

c−ωx(n+ ω)− c1−ωx(n+ ω − 1) = c−ω(T1(x, y))(n+ ω − 1).

By summing these equations, we obtain

c−ωx(n+ ω)− x(n) =
w∑
i=1

c−i(T1(x, y))(n+ i− 1).

Since x(n+ ω) = x(n), we get the result.

The converse implication is easily obtained and the proof is completed. 2

Now we consider the map T defined on X as

(T (x, y))(n) = (c−w − 1)−1
w∑
i=1

c−i((T1(x, y))(n+ i− 1), (T2(x, y))(n+ i− 1)),

for all n ∈ [0, ω−1]. It is clear from the previous lemma that a fixed point of T is a periodic solution of System

(1).

Theorem 2 The mapping T : X → X is a contraction.

Proof First, the periodicity properties of the functions fi, gi, i = 1, 2, guarantee that

(Ti(x, y))(n+ ω) = (Ti(x, y))(n), for i = 1, 2,

and thus

(T (x, y))(n+ ω) = (T (x, y))(n).

To show that T is a contraction, let (x, y), (z, t) ∈ X . We have

|(T1(x, y))(n)− (T1(z, t))(n)| = |max{f1(n, x(n))− cx(n), g1(n, y(n))− cx(n)} −

max{f1(n, z(n))− cz(n), g1(n, t(n))− cz(n)}|

We distinguish four cases:

Case 1. When

max{f1(n, x(n)), g1(n, y(n))} = f1(n, x(n))

and

max{f1(n, z(n)), g1(n, t(n))} = f1(n, z(n)).
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This yields

|(T1(x, y))(n)− (T1(z, t))(n)| = |f1(n, x(n))− cx(n)− f1(n, z(n)) + cz(n)|

≤ |f1(n, x(n))− f1(n, z(n))|+ c|x(n)− z(n)|

≤ (L1 + c)|x(n)− z(n)|

≤
(
max
1≤i≤2

{Li,Ki}+ c

)
max

n∈[0,ω−1]
{|x(n)− z(n)|, |y(n)− t(n)|}

≤
(
max
1≤i≤2

{Li,Ki}+ c

)
max

n∈[0,ω−1]
|(x(n), y(n))− (z(n), t(n))|0

=

(
max
1≤i≤2

{Li,Ki}+ c

)
∥(x, y)− (z, t)∥.

Case 2. When

max{f1(n, x(n)), g1(n, y(n))} = f1(n, x(n))

and

max{f1(n, z(n)), g1(n, t(n))} = g1(n, t(n)).

Here, we get

|(T1(x, y))(n)− (T1(z, t))(n)| = |f1(n, x(n))− cx(n)− g1(n, t(n)) + cz(n)|.

In this case we distinguish again two cases, when

f1(n, x(n))− cx(n) ≥ g1(n, t(n))− cz(n)

and when

f1(n, x(n))− cx(n) ≤ g1(n, t(n))− cz(n).

Thus, either

|(T1(x, y))(n)− (T1(z, t))(n)| = f1(n, x(n))− cx(n)− g1(n, t(n)) + cz(n)

≤ f1(n, x(n))− cx(n)− f1(n, z(n)) + cz(n)

≤ |f1(n, x(n))− f1(n, z(n))|+ c|x(n)− z(n)|

≤ (L1 + c)|x(n)− z(n)|

≤
(
max
1≤i≤2

{Li,Ki}+ c

)
∥(x, y)− (z, t)∥,
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or

|(T1(x, y))(n)− (T1(z, t))(n)| = g1(n, t(n))− cz(n)− f1(n, x(n)) + cx(n)

≤ g1(n, t(n))− cz(n)− g1(n, y(n)) + cx(n)

≤ |g1(n, t(n))− g1(n, y(n))|+ c|x(n)− z(n)|

≤ K1|t(n)− y(n)|+ c|x(n)− z(n)|

≤ (K1 + c) max
n∈[0,ω−1]

{|x(n)− z(n)|, |y(n)− t(n)|}

≤
(
max
1≤i≤2

{Li,Ki}+ c

)
max

n∈[0,ω−1]
|(x(n), y(n))− (z(n), t(n))|0

=

(
max
1≤i≤2

{Li,Ki}+ c

)
∥(x, y)− (z, t)∥.

Case 3. When
max{f1(n, x(n)), g1(n, y(n))} = g1(n, y(n))

and
max{f1(n, z(n)), g1(n, t(n))} = f1(n, z(n)).

It follows that

|(T1(x, y))(n)− (T1(z, t))(n)| = |g1(n, y(n))− cx(n)− f1(n, z(n)) + cz(n)|.

We examine also here two cases, when

g1(n, y(n))− cx(n) ≥ f1(n, z(n))− cz(n)

and when
g1(n, y(n))− cx(n) ≤ f1(n, z(n))− cz(n).

Thus, either

|(T1(x, y))(n)− (T1(z, t))(n)| = g1(n, y(n))− cx(n)− f1(n, z(n)) + cz(n)

≤ g1(n, y(n))− cx(n)− g1(n, t(n)) + cz(n)

≤ |g1(n, y(n))− g1(n, t(n))|+ c|x(n)− z(n)|

≤ K1|y(n)− t(n)|+ c|x(n)− z(n)|

≤ (K1 + c) max
n∈[0,ω−1]

{|x(n)− z(n)|, |y(n)− t(n)|}

=

(
max
1≤i≤2

{Li,Ki}+ c

)
∥(x, y)− (z, t)∥,

or

|(T1(x, y))(n)− (T1(z, t))(n)| = f1(n, z(n))− cz(n)− g1(n, y(n)) + cx(n)

≤ f1(n, z(n))− cz(n)− f1(n, x(n)) + cx(n)

≤ |f1(n, z(n))− f1(n, x(n))|+ c|x(n)− z(n)|

≤ (L1 + c)|x(n)− z(n)|

≤
(
max
1≤i≤2

{Li,Ki}+ c

)
∥(x, y)− (z, t)∥.
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Case 4. When
max{f1(n, x(n)), g1(n, y(n))} = g1(n, y(n))

and
max{f1(n, z(n)), g1(n, t(n))} = g1(n, t(n)),

i.e.

|(T1(x, y))(n)− (T1(z, t))(n)| = |g1(n, y(n))− cx(n)− g1(n, t(n)) + cz(n)|

≤ |g1(n, y(n))− g1(n, t(n))|+ c|x(n)− z(n)|

≤ K1|y(n)− t(n)|+ c|x(n)− z(n)|

≤ (K1 + c) max
n∈[0,ω−1]

{|x(n)− z(n)|, |y(n)− t(n)|}

≤
(
max
1≤i≤2

{Li,Ki}+ c

)
∥(x, y)− (z, t)∥.

Therefore, we conclude from the above cases that for all n ∈ [0, ω − 1],

|(T1(x, y))(n)− (T1(z, t))(n)| ≤
(
max
1≤i≤2

{Li,Ki}+ c

)
∥(x, y)− (z, t)∥.

Thus, for all n ∈ [0, ω − 1],∣∣∣∣∣(c−w − 1)−1
w∑
i=1

c−i[(T1(x, y))(n+ i− 1)− (T1(z, t))(n+ i− 1)]

∣∣∣∣∣
≤ |(c−w − 1)−1|

w∑
i=1

|c|−i|(T1(x, y))(n+ i− 1)− (T1(z, t))(n+ i− 1)|

≤ (c−w − 1)−1

(
w∑
i=1

c−i

)(
max
1≤i≤2

{Li,Ki}+ c

)
∥(x, y)− (z, t)∥

= (c−w − 1)−1 c
−w − 1

1− c

(
max
1≤i≤2

{Li,Ki}+ c

)
∥(x, y)− (z, t)∥

=
max1≤i≤2{Li,Ki}+ c

1− c
∥(x, y)− (z, t)∥.

Similarly we show that, for all n ∈ [0, ω − 1],∣∣∣∣∣(c−w − 1)−1
w∑
i=1

c−i[(T2(x, y))(n+ i− 1)− (T2(z, t))(n+ i− 1)]

∣∣∣∣∣ ≤ max1≤i≤2{Li,Ki}+ c

1− c
∥(x, y)− (z, t)∥.

Taking k =
max1≤i≤2{Li,Ki}+c

1−c , it follows that

∥T (x, y)− T (z, t)∥ ≤ k∥(x, y)− (z, t)∥,

since 0 < c ≤ 1−max1≤i≤2{Li,Ki}
2 , then k < 1, which completes the proof. 2

Consequently, by applying Banach fixed point theorem we get the following result.
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Theorem 3 System (1) has a unique ω -periodic solution {(x̃(n), ỹ(n))}n≥0 .

The following discussion deals with the global behavior of solutions of System (1).

Theorem 4 Every solution of System (1) converges to the unique ω -periodic solution {(x̃(n), ỹ(n))}n≥0 .

Proof Let {(x(n), y(n))}n≥0 be an arbitrary solution of System (1). We define the sequences

z(n) = x(n)− x̃(n), t(n) = y(n)− ỹ(n), n ≥ 0.

Clearly, we have {(x(n), y(n))}n≥0 converges to {(x̃(n), ỹ(n))}n≥0 if and only if {(z(n), t(n))}n≥0 converges to

(0, 0) as n −→ ∞ . Thus, it is sufficient to show that

lim
n→∞

z(n) = lim
n→∞

t(n) = 0.

The sequence {(z(n), t(n))}n≥0 satisfies the two equations:

z(n+ 1) = max{f1(n, z(n) + x̃(n)), g1(n, t(n) + ỹ(n))} −max{f1(n, x̃(n)), g1(n, ỹ(n))} (3)

and
t(n+ 1) = max{f2(n, z(n) + x̃(n)), g2(n, t(n) + ỹ(n))} −max{f2(n, x̃(n)), g2(n, ỹ(n))}. (4)

At this point we will show that for all n ≥ 0,

|z(n+ 1)| ≤ L1|z(n)| or |z(n+ 1)| ≤ K1|t(n)|, (5)

and in a similar way we can also prove that for all n ≥ 0,

|t(n+ 1)| ≤ L2|z(n)| or |t(n+ 1)| ≤ K2|t(n)|. (6)

From (3), we distinguish four cases:

Case 1. When
max{f1(n, z(n) + x̃(n)), g1(n, t(n) + ỹ(n))} = f1(n, z(n) + x̃(n))

and
max{f1(n, x̃(n)), g1(n, ỹ(n))} = f1(n, x̃(n)).

Thus, (2) implies

|z(n+ 1)| = |f1(n, z(n) + x̃(n))− f1(n, x̃(n))| ≤ L1|z(n)|.

Case 2. When
max{f1(n, z(n) + x̃(n)), g1(n, t(n) + ỹ(n))} = f1(n, z(n) + x̃(n))

and
max{f1(n, x̃(n)), g1(n, ỹ(n))} = g1(n, ỹ(n)),

i.e.
z(n+ 1) = f1(n, z(n) + x̃(n))− g1(n, ỹ(n)).

In this case we also have two cases: z(n+ 1) ≥ 0 and z(n+ 1) < 0. Therefore, if z(n+ 1) ≥ 0, then we have

z(n+ 1) = f1(n, z(n) + x̃(n))− g1(n, ỹ(n)) ≤ f1(n, z(n) + x̃(n))− f1(n, x̃(n));
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hence
|z(n+ 1)| ≤ |f1(n, z(n) + x̃(n))− f1(n, x̃(n))| ≤ L1|z(n)|.

Now, if z(n+ 1) < 0, then we have

−z(n+ 1) = g1(n, ỹ(n))− f1(n, z(n) + x̃(n)) ≤ g1(n, ỹ(n))− g1(n, t(n) + ỹ(n));

thus
|z(n+ 1)| ≤ |g1(n, ỹ(n))− g1(n, t(n) + ỹ(n))| ≤ K1|t(n)|.

Case 3. When
max{f1(n, z(n) + x̃(n)), g1(n, t(n) + ỹ(n))} = g1(n, t(n) + ỹ(n))

and
max{f1(n, x̃(n)), g1(n, ỹ(n))} = f1(n, x̃(n)),

i.e.
z(n+ 1) = g1(n, t(n) + ỹ(n))− f1(n, x̃(n)).

We also have two cases here: z(n+ 1) ≥ 0 and z(n+ 1) < 0. If z(n+ 1) ≥ 0, then

z(n+ 1) = g1(n, t(n) + ỹ(n))− f1(n, x̃(n)) ≤ g1(n, t(n) + ỹ(n))− g1(n, ỹ(n)),

and so
|z(n+ 1)| ≤ |g1(n, t(n) + ỹ(n))− g1(n, ỹ(n))| ≤ K1|t(n)|.

If z(n+ 1) < 0, then

−z(n+ 1) = f1(n, x̃(n))− g1(n, t(n) + ỹ(n)) ≤ f1(n, x̃(n))− f1(n, z(n) + x̃(n)),

which implies that

|z(n+ 1)| ≤ |f1(n, x̃(n))− f1(n, z(n) + x̃(n))| ≤ L1|z(n)|.

Case 4. When
max{f1(n, z(n) + x̃(n)), g1(n, t(n) + ỹ(n))} = g1(n, t(n) + ỹ(n))

and
max{f1(n, x̃(n)), g1(n, ỹ(n))} = g1(n, ỹ(n)),

we obtain
|z(n+ 1)| = |g1(n, t(n) + ỹ(n))− g1(n, ỹ(n))| ≤ K1|t(n)|.

Next we show by induction that for all n ∈ N there exist sequences (an), (bn), (cn), (dn), (αn), (βn),

(γn), and (λn) of natural numbers such that

an + bn + cn + dn = αn + βn + γn + λn = n, for all n ≥ 0,

with

|z(n)| ≤ Lan
1 Lbn

2 Kcn
1 Kdn

2 ξ (7)

and

|t(n)| ≤ Lαn
1 Lβn

2 Kγn

1 Kλn
2 ρ, (8)
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where ξ, ρ ∈ {z(0), t(0)} . It is clear that the result holds for n = 0. Now, for n ≥ 1, we suppose that the

assumptions hold for n and we prove that they are also true for n+ 1. We have from (5) two cases:

Either,

|z(n+ 1)| ≤ L1|z(n)| ≤ Lan+1
1 Lbn

2 Kcn
1 Kdn

2 ξ.

By putting an+1 = an + 1, bn+1 = bn , cn+1 = bn , dn+1 = bn , we have

an+1 + bn+1 + cn+1 + dn+1 = an + 1 + bn + cn + dn = n+ 1

and

|z(n+ 1)| ≤ L
an+1

1 L
bn+1

2 K
cn+1

1 K
dn+1

2 ξ

as desired. Or,

|z(n+ 1)| ≤ K1|t(n)| ≤ Lαn
1 Lβn

2 Kγn+1
1 Kλn

2 ρ.

By putting an+1 = αn , bn+1 = βn , cn+1 = γn + 1, dn+1 = λn , we have then

an+1 + bn+1 + cn+1 + dn+1 = αn + βn + γn + 1 + λn = n+ 1

and for ξ = ρ , we get

|z(n+ 1)| ≤ L
an+1

1 L
bn+1

2 K
cn+1

1 K
dn+1

2 ξ.

In a similar way we complete the proof for t(n+ 1) by using (6).

Observe that, as n → +∞ , there must be at least one of the sequences (an), (bn), (cn), and (dn)

that approaches +∞ , and for at least one of the sequences (αn), (βn), (γn), and (λn) the limit is also +∞ .

Therefore, from (7) and (8) we see that z(n) → 0 and t(n) → 0 as n → ∞ and the proof is complete. 2

3. Examples

In this section, we present some examples to show the usefulness of the results obtained in the previous section.

Example 1 Consider the system of difference equations
x(n+ 1) = max

{
An

Bn+x(n) , e
−λny(n)

}
, n = 0, 1, 2, . . . ,

y(n+ 1) = max
{
e−σnx(n), Cn

Dn+y(n)

} (9)

where (An) , (Bn) , (Cn) , (Dn) , (λn) , and (σn) are positive periodic sequences with period ω , where

max
n∈[0,ω−1]

{
An

B2
n

,
Cn

D2
n

, σn, λn

}
< 1,

and the initial values x(0), y(0) are nonnegative real numbers. Clearly, this system is in the form (1) with

f1(n, u) =
An

Bn+u , f2(n, u) = e−σnu , g1(n, u) = e−λnu , and g2(n, u) =
Cn

Dn+u . These functions are continuous

in u and we have

∂f1
∂u

(n, u) = − An

(Bn + u)2
,
∂f2
∂u

(n, u) = −σne
−σnu,

∂g1
∂u

(n, u) = −λne
−λnu,

∂g2
∂u

(n, u) = − Cn

(Dn + u)2
.
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Observe that ∣∣∣∣∂f1∂u
(n, u)

∣∣∣∣ ≤ An

B2
n

,

∣∣∣∣∂f2∂u
(n, u)

∣∣∣∣ ≤ σn,

∣∣∣∣∂g1∂u
(n, u)

∣∣∣∣ ≤ λn,

∣∣∣∣∂g2∂u
(n, u)

∣∣∣∣ ≤ Cn

D2
n

.

Hence, by using the mean value theorem, we can prove that

|f1(n, u)− f1(n, v)| ≤ max
n∈[0,ω−1]

{
An

B2
n

}
|u− v|, |f2(n, u)− f2(n, v)| ≤ max

n∈[0,ω−1]
{σn}|u− v|

and

|g1(n, u)− g1(n, v)| ≤ max
n∈[0,ω−1]

{λn}|u− v|, |g2(n, u)− g2(n, v)| ≤ max
n∈[0,ω−1]

{
Cn

D2
n

}
|u− v|.

Thus, from Theorems (3) and (4) it follows that System (9) has a unique ω -periodic solution that attracts all

the solutions of this system.

Example 2 Consider the system of difference equations x(n+ 1) = max{αn cos(x(n)), βn sin(y(n))}
, n = 0, 1, 2, . . . ,

y(n+ 1) = max{γn sin(x(n)), λn cos(y(n))}
(10)

where (αn) , (βn) , (γn) , and (λn) are ω -periodic sequences of nonnegative numbers, where

max
n∈[0,ω−1]

{αn, βn, γn, λn} < 1,

and the initial values x(0), y(0) are real numbers. It is clear that this system is in the form (1) with f1(n, u) =

αn cosu , f2(n, u) = γn sinu , g1(n, u) = βn sinu , and g2(n, u) = λn cosu . Observing that∣∣∣∣∂f1∂u
(n, u)

∣∣∣∣ ≤ αn,

∣∣∣∣∂f2∂u
(n, u)

∣∣∣∣ ≤ γn,

∣∣∣∣∂g1∂u
(n, u)

∣∣∣∣ ≤ βn,

∣∣∣∣∂g2∂u
(n, u)

∣∣∣∣ ≤ λn.

Hence, by the mean value theorem we get

|f1(n, u)− f1(n, v)| ≤ max
n∈[0,ω−1]

{αn}|u− v|, |f2(n, u)− f2(n, v)| ≤ max
n∈[0,ω−1]

{γn}|u− v|

and
|g1(n, u)− g1(n, v)| ≤ max

n∈[0,ω−1]
{βn}|u− v|, |g2(n, u)− g2(n, v)| ≤ max

n∈[0,ω−1]
{λn}|u− v|.

Then System (10) has a unique ω -periodic solution that attracts all the solutions of this system.

Example 3 Consider the system of difference equations x(n+ 1) = max{αn, βny(n)}
, n = 0, 1, 2, . . . ,

y(n+ 1) = max{γnx(n), λn}
(11)

where (αn) , (βn) , (γn) , and (λn) are ω -periodic sequences in [0, 1) , and the initial values x(0), y(0) are real

numbers.
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Suppose in addition that

βnλn−1 ≤ αn, γnαn−1 ≤ λn, for all n ≥ 1. (12)

One can easily see that System (11) satisfies the hypothesis in our main results and so it follows that this system

has a unique periodic solution with period ω . Furthermore, every solution {(x(n), y(n))}n≥0 of System (11)

converges to this periodic solution.

Now we want to find the explicit form of this ω -periodic solution. We have the following property:

Lemma 3 Every solution of System (11) that satisfies

γn0x(n0) ≤ λn0 , βn0y(n0) ≤ αn0 , for some n0 ≥ 0, (13)

is eventually periodic with period ω and we have

{(x(n), y(n))}n≥n0+1 = {(αn−1, λn−1)}n≥n0+1. (14)

Proof We prove (14) by induction. The case when n = n0 + 1 is obvious from Assumption (13). Now we

take n > n0 + 1 and we suppose that (14) holds for n . Clearly, we have

xn+1 = max{αn, βny(n)} = max{αn, βnλn−1} = αn

and
yn+1 = max{γnx(n), λn} = max{γnαn−1, λn} = λn.

Therefore, (14) is also true for n+ 1 and thus the result. 2

Consequently, the sequence {(x(n), y(n))}n≥0 , where

x(0) = αω−1, y(0) = λω−1 and x(n) = αn−1, y(n) = λn−1, for all n ≥ 1,

is the unique ω -periodic solution of System (11).

To confirm this result let us consider a numerical example as follows:

Let ω = 3 , and the sequences

αn =

 0.6, if n = 3k,
0.9, if n = 3k + 1,
0.8, if n = 3k + 2,

βn =

 0.55, if n = 3k,
0.4, if n = 3k + 1,
0.35, if n = 3k + 2,

and

γn =

 0.5, if n = 3k,
0.62, if n = 3k + 1,
0.85, if n = 3k + 2,

λn =

 0.75, if n = 3k,
0.85, if n = 3k + 1,
0.96, if n = 3k + 2,

with n, k ∈ N . Observe that

βn ≤ αn, γn ≤ λn, for all n ≥ 0,

which implies that (12) is satisfied. Then the unique periodic solution with period three is

{(x̃(n), ỹ(n))}n≥0 = {(0.8, 0.96), (0.6, 0.75), (0.9, 0.85), (0.8, 0.96), (0.6, 0.75), (0.9, 0.85), . . .} .

We consider here two arbitrary solutions of the system. If we take (x(0), y(0)) = (19.6.103, 5.103) , Table 1

shows the convergence of the solution {(x(n), y(n))}n≥0 to the periodic solution {(x̃(n), ỹ(n))}n≥0 . Similarly,

for (x(0), y(0)) = (10, 56) , the convergence of the solution is presented in Table 2.
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Table 1.

n x(n)− x̃(n) y(n)− ỹ(n)
0 19599.2 4999.04
1 2749.40 9799.25
2 3919.10 1704.1500
3 595.950000 3331.0400
4 1832.000000 297.6250000
5 118.4500000 1135.362000
6 396.8742000 100.4875000
7 55.19612500 198.0871000
8 78.63484000 33.74359750
9 11.30775912 66.64461400
10 36.58253770 5.303879560
11 1.521551824 22.20317337
12 7.268610680 1.098319050
13 0.532075478 3.284305340
14 0.713722136 0.
15 0. 0.411663816
16 0.1544150988 0.
17 0. 0.
18 0. 0.
19 0. 0.

Table 2.

n x(n)− x̃(n) y(n)− ỹ(n)
0 9.2 55.04
1 30.20 4.25
2 1.10 18.2460
3 5.883600 0.7400
4 0.335000 2.5918000
5 0.43672000 0.
6 0. 0.176212000
7 0.0249166000 0.
8 0. 0.
9 0. 0.
10 0. 0.

4. Conclusion

This paper is concerned with the behavior of solutions of a functional first-order nonautonomous max-type

system of difference equations. More precisely, we have shown that if the real-valued functions that define our

system are contraction mappings, then this last has a periodic solution that attracts all the other solutions.

Firstly, the contraction property enabled us to use Banach fixed point theorem to show the existence and

uniqueness of a periodic solution. Secondly, the attractivity of this periodic solution was investigated. In

addition, to illustrate these results, three examples were provided.

Finally, we note that the results obtained here about the proposed system also hold for both of the

min-type analogue system and the mixed ones by following the same procedures of the proofs with simple

modifications.
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