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Abstract: We investigate the approximation of analytic functions of several variables in polydiscs by the sequences of

linear k-positive operators in the Gadjiev sense.
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1. Introduction

The approximation of analytic functions of complex variables by linear k-positive operators was first tackled

in the work of Gadjiev [5]. He introduced k-positive operators and formulated theorems of Korovkin’s type

for these operators in the space of analytic functions on the unit disc. He proposed a method of proving such

theorems, applied further on in many other articles (e.g., [1,3,6–13,15,16]). Some of the results from [1,5–7]

were included in a monograph [2,14].

In his recent article [12], Gadjiev proved very general results on convergence of the sequences of linear

k-positive operators on a simply connected bounded domain within the space of analytic functions.

In this article we extend some of the result of Gadjiev to the approximation of analytic functions of

several complex variables by sequences of linear k-positive operators.

2. Preliminaries

Let N and Z+ be the respective sets of positive and nonnegative numbers and C be the space of complex

numbers. For n ∈ N let

Sn := {z = (z1, . . . , zn) ∈ Cn : |zi| < 1, i = 1, 2, · · · , n}

be a polydisc in Cn and A(Sn) be the space of analytic functions on Sn .

According to [12] let ki ∈ Z+ for i = 1, 2, · · · , n , such that the system of powers zk1
1 , zk2

2 , · · · , zkn
n forms

a basis of A(Sn) in the sense that any function f ∈ A(Sn) can be expanded into a series in base as follows.

k = (k1, k2, . . . , kn), k + 1 = (k1 + 1, k2 + 1, . . . , kn + 1), |k| = k1 + k2 + . . .+ kn,
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zk = zk1
1 · zk2

2 · · · zkn
n ; dz = dz1 · dz2 · · · dzn, and for any r, 0 < r < 1∫

|z|=r

· · ·
∫

f(z) dz =

∫
|z1|=r

· · ·
∫
|zn|=r

f(z1, z2, . . . , zn)dz1 · dz2 · · · dzn.

Then any function f ∈ A(Sn) can be expanded into a series

f(z) =
∞∑

|k|=0

fkz
k (2.1)

with

fk =
1

(2πi)n

∫
|z|=r

· · ·
∫

f(z) dz

zk+1
. (2.2)

Thus, for any linear operator T on A(Sn), we have

Tf(z) =
∞∑

|k|=0

zk
∞∑

|m|=0

Tk,mfm,

where Tk,m ∈ C for multiindex k and m .

Let A+ be the subspace of functions f ∈ A(Sn), having nonnegative Taylor coefficients.

Definition 2.1 Linear operator T : A(Sn) −→ A(Sn) will be called k-positive if TA+ ⊂ A+ .

We will study the convergence of the sequences of k-positive operators

TNf(z) =
∞∑

|k|=0

zk
∞∑

|m|=0

T
(N)
k,mfm (2.3)

where N is a natural parameter.

If TN is a k-positive operator for any N ∈ N , then
∑∞

|m|=0 T
(N)
k,mfm ≥ 0 for all f ∈ A+ and k . From

this we obtain T
(N)
k,m ≥ 0 for all k,m . Indeed, if T

(N)
k,m0

< 0 for any m0 = (m01,m02, . . . ,m0n), we take the

function f̃ ∈ A+ with the nonnegative coefficients

f̃m =

{
0 ; |m| ̸= |m0|
1 ; |m| = |m0|.

Then for the function f̃ we obtain
∑∞

|m|=0 T
(N)
k,m f̃m = T

(N)
k,m0

< 0, but this is a contradiction to the k-positivity

of TN . This gives T
(N)
k,m ≥ 0 as the necessary and sufficient condition for k-positivity of operators (2.3).

We will study the approximation properties of linear k-positive operators in the space A(Sn). In this

space, the concept of the norm can be introduced in different ways, but all these norms are equivalent and

therefore A(Sn) is a Frechet space (see [4]). We denote

∥f∥A(Sn),r = max{|f(z)| : z = (z1, · · · , zn), |zj | ≤ r, j = 1, 2, · · · , n}.
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Then, obviously, the sequence (fN (z)) of functions in A(Sn) tends to zero in A(Sn) if and only if for each

0 < r < 1

lim
N→∞

∥fN∥A(Sn),r = 0.

The following criterion of convergence is important (for the one-dimensional case, see [4]).

Lemma 2.2 Let (fN (z)) be the sequence of functions in A(Sn) such that

fN (z) =
∞∑

|k|=0

fN,kz
k, lim sup

|k|→∞
|fN,k|

1
|k| = 1.

Then fN (z) tends to zero in A(Sn) as N → ∞ if and only if there exist sequences of positive numbers εN and

δN tending to zero as N → ∞ such that

|fN,k| < εN (1 + δN )|k|. (2.4)

Proof If (2.4) holds then for any r < 1

max
|zj |≤r

|fN (z)| < εN

∞∑
|k|=0

r|k|(1 + δN )|k| = εN (
1

1− r(1 + δN )
)n,

since for any given r < 1 we can take δN < 1
r − 1, which is possible because δN → 0 by the conditions of the

lemma. Therefore, fN (z) → 0 as N → ∞ in A(Sn).

Now, taking a null sequence δN such that εN = max|z|= 1
1+δN

|fN (z)| → 0 as N → ∞ , we have

fN,k =
1

(2πi)n

∫
|z|= 1

1+δN

· · ·
∫

fN (z)

zk+1
dz.

Then

|fN,k| ≤ εN
(2π)k

∫
|z|= 1

1+δN

· · ·
∫

|dz1| · |dz2| · · · |dzn|
|z1|k1+1 · |z2|k2+1 · · · |zn|kn+1

=
εN

(2π)k
(1 + δN )|k|+n 1

(1 + δN )n
< εN (1 + δN )|k|

and the proof is complete. 2

3. Main theorems

In this section we give three theorems on approximation of analytic functions belonging to A(Sn) by the

sequences of linear k-positive operators.

Definition 3.1 Ag(Sn) be the subspace of functions f(z) ∈ A(Sn) , for which

|fk| ≤ Mg|k|, k = (k1, k2, . . . , kn) (3.1)

where fk are the Taylor coefficients of function f andM is a constant, depending on f only and gr ≥ 1

increasing sequences for r ∈ Z+ , such that lim sup
r→∞

r
√
gr = 1.
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Let, for any r ∈ N ,

△g(r) := min{√gr+1 −
√
gr;

√
gr −

√
gr−1}. (3.2)

Obviously △2
g(r) < gr .

Now we assume that the condition

lim
r→∞

(
√
gr −

√
gr−1)

1
r = 1 (3.3)

holds and consider the functions

gν(z) =
∞∑

|k|=0

g
ν
2

|k|z
k (3.4)

and

µν,j(z) =
∞∑

|k|=0

kνj z
k, j = 1, 2, . . . , n. (3.5)

Theorem 3.2 Let gν(z) and µν,j(z) be the functions defined in (3.4) and (3.5) and TN be the sequences of

linear k-positive operators acting from A(Sn) to A(Sn) . If

lim
N→∞

∥TNgν(z)− gν(z)∥A(Sn),r = 0, ν = 0, 1, 2, (3.6)

lim
N→∞

∥TNµν,j(z)− µν,j(z)∥A(Sn),r = 0, ν = 1, 2; j = 1, 2, . . . , n, (3.7)

then
lim

N→∞
∥TNf(z)− f(z)∥A(Sn),r = 0

for each function f ∈ Ag(Sn) .

Proof Let f ∈ A(Sn). Then by the definition of norm in A(Sn), for each r < 1

∥TNf(z)− f(z)∥A(Sn),r ≤
∞∑

|k|=0

r|k|
∞∑

|m|=0

T
(N)
k,m |fm − fk|

+
∞∑

|k|=0

r|k||fk| |
∞∑

|m|=0

T
(N)
k,m − 1| = I ′N + I ′′N . (3.8)

From condition (3.6) with ν = 0 and Lemma 2.2 it follows that

|
∞∑

|m|=0

T
(N)
k,m − 1| < εN (1 + δN )|k|

and therefore I ′′N → 0 as N → ∞ .

Consider I ′N . Since f ∈ Ag(Sn) we can write by (3.1) and the properties of gr the estimate

|fm − fk| ≤ 2Mg|m|g|k| ≤ 4Mg|k|((
√
g|m| −

√
g|k|)

2 + g|k|)

≤ 4Mg2|k|(
(
√
g|m| −

√
g|k|)

2

△2
g(|k|)

+ 1)
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where △2
g is defined in (3.2). Therefore, if |m| ̸= |k| we can write

|fm − fk| ≤ 8Mg2|k|
(
√
g|m| −

√
g|k|)

2

△2
g(|k|)

.

If |m| = |k| and m ̸= k then there exists at least one number j , for which (mj − kj)
2 > 1. Therefore, if

|m| = |k| ,

|fm − fk| ≤ 2Mg|m|g|k| < 2Mg2|k|

n∑
j=1

(mj − kj)
2.

The last two inequalities for |fm − fk| gives us that for all k and m

|fm − fk| ≤ 8Mg2|k|{
(
√
g|m| −

√
g|k|)

2

△2
g(|k|)

+

n∑
j=1

(mj − kj)
2}. (3.9)

Using (3.9) in the definition of I ′N in (3.8) we can write

I ′N ≤ 8M

∞∑
|k|=0

r|k|{
g2|k|

△2
g(|k|)

∞∑
|m|=0

T
(N)
k,m (

√
g|m| −

√
g|k|)

2

+

n∑
j=1

∞∑
|m|=0

T
(N)
k,m (mj − kj)

2}.

The conditions (3.6) and Lemma 2.2 give

∞∑
|m|=0

(
√
g|k| −

√
g|m|)

2T
(N)
k,m ≤ 4εN (1 + δN )|k|g|k|

and the conditions (3.6) in ν = 0 and (3.7) in view of Lemma 2.2 give

n∑
j=1

∞∑
|m|=0

(mj − kj)
2T

(N)
k,m ≤ εN (1 + δN )|k|n(1 + |k|)2.

Therefore,

I ′N < 32MεN

∞∑
|k|=0

r|k|(1 + δN )|k|{
g3|k|

△2
g(|k|)

+ n · (1 + |k|)2},

and from the properties on g|k| , it follows that I ′N → 0 as N → ∞ . The proof is complete. 2

Now we give a second theorem on approximation of functions in the subspace Ag(Sn) by k-positive

operators under the condition that g|k| ≥ 1 for all k .
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Consider the following test functions. Let

p0(z) =
∞∑

|k|=0

g|k|z
k,

p1,j(z) =
∞∑

|k|=0

kjg|k|z
k, j = 1, 2, · · · , nm

p2,j(z) =
∞∑

|k|=0

k2j g|k|z
k, j = 1, 2, · · · , n.

Theorem 3.3 If the sequence TN of linear k-positive operators from A(Sn) to A(Sn) satisfies the conditions

lim
N→∞

∥TNp0(z)− p0(z)∥A(Sn),r = 0

and
lim

N→∞
∥TNpν,j(z)− pν,j(z)∥A(Sn),r = 0, ν = 1, 2; j = 1, 2, . . . , n, (3.10)

then for each function f ∈ Ag(Sn)

lim
N→∞

∥TNf(z)− f(z)∥A(Sn),r = 0.

Proof By condition (3.10) and Lemma 2.2

|
∞∑

|m|=0

g|m|T
(N)
k,m − g|k|| < εN (1 + δN )|k| (3.11)

|
∞∑

|m|=0

mjg|m|T
(N)
k,m − kjg|k|| < εN (1 + δN )|k|

|
∞∑

|m|=0

m2
jg|m|T

(N)
k,m − k2j g|k|| < εN (1 + δN )|k|.

Then we can write
∞∑

|m|=0

n∑
j=1

(mj − kj)
2g|m|T

(N)
k,m < εN (1 + δN )|k|n(1 + |k|)2. (3.12)

Since gk ≥ 1, for all m and k and
∑n

j=1(mj − kj)
2 > 1 we can write

|fm − fk| ≤ 2g|m|g|k|

n∑
j=1

(mj − kj)
2. (3.13)

Now, as in the proof of Theorem 2.2, we can write inequality (3.8).

∥TNf(z)− f(z)∥A(Sn),r ≤
∞∑

|k|=0

r|k|
∞∑

|m|=0

T
(N)
k,m |fm − fk|g|m|

+
∞∑

|k|=0

r|k||fk| |
∞∑

|m|=0

g|m|T
(N)
k,m − g|k||.
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Using (3.11) for the estimate of the second term in the right-hand side and (3.13)–(3.12) for the first term, we

obtain

∥TNf(z)− f(z)∥A(Sn),r ≤ εNn
∞∑

|k|=0

r|k|(1 + δN )|k|(1 + |k|)2

+ εN

∞∑
|k|=0

r|k||fk|(1 + δN )|k|

and therefore
lim

N→∞
∥TNf(z)− f(z)∥A(Sn),r = 0

for each function f ∈ Ag(Sn).

The proof is complete. 2

Consider now a special case.

Definition 3.4 The subspace Ã(Sn) is the set of analytic functions in polydisc Sn for which

|fk| ≤ M(1 + |k|),

where M is a constant depending on f only.

Let f ∈ Ã(Sn). Then for |m| > |k|

|fm − fk| ≤ M(2 + |m|+ |k|)

≤ 2M(1 + (|m| − |k|) + |k|)

≤ 4M(1 + |k|)(|m| − |k|)2.

If |m| < |k| then
|fm − fk| ≤ 2M(1 + |k|) ≤ 2M(1 + |k|)(|m| − |k|)2.

Finally, if |m| = |k| and m ̸= k then

|fm − fk| ≤ 2M(1 + |k|)
n∑

j=1

(mj − kj)
2.

Thus, the Taylor coefficients fk of any function f ∈ Ã(Sn) satisfy the inequality

|fm − fk| ≤ 4M(1 + |k|){(|m| − |k|)2 +
n∑

j=1

(mj − kj)
2} (3.14)

for all m and k . Using this inequality we can prove the approximation theorem in the space Ã(Sn).

Let

φt(z) =

∞∑
|k|=0

ktzt, |t| ≤ 2 (3.15)

where kt = kt11 kt22 · · · ktnn .
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Theorem 3.5 Let TN be the sequence of linear k-positive operators from A(Sn) to A(Sn) . Then the conditions

lim
N→∞

∥TNφt(z)− φt(z)∥A(Sn),r = 0, |t| ≤ 2 (3.16)

are necessary and sufficient such that

lim
N→∞

∥TNf(z)− f(z)∥A(Sn),r = 0

for any function f ∈ Ã(Sn) .

Proof As in the proof of Theorem 2.2 and Theorem 2.3, we can write the inequality

∥TNf(z)− f(z)∥A(Sn),r ≤
∞∑

|k|=0

r|k|
∞∑

|m|=0

T
(N)
k,m |fm − fk|

+
∞∑

|k|=0

r|k||fk| |
∞∑

|m|=0

T
(N)
k,m − 1| = ȷ′N + ȷ′′N . (3.17)

Taking in (3.16) t = 0 and using (3.15) we see that by Lemma 2.2

|
∞∑

|m|=0

T
(N)
k,m − 1| < εN (1 + δN )|k|

and therefore limN→∞ ȷ′′N = 0, and it is sufficient to estimate only the first term in (3.17). Using (3.14) we

obtain

ȷ′N ≤ 4M
∞∑

|k|=0

r|k|(1 + |k|)
∞∑

|m|=0

{(|m| − |k|)2 +
n∑

j=1

(mj − kj)
2}T (N)

k,m .

Obviously

∞∑
|m|=0

(|m| − |k|)2T (N)
k,m = [

∞∑
|m|=0

|m|2T (N)
k,m − |k|2]

+ 2|k|[|k| −
∞∑

|m|=0

|m|T (N)
k,m ] + |k|2[

∞∑
|m|=0

T
(N)
k,m − 1].

Using the equality

|m|2 = m2
1 +m2

2 + · · ·m2
n + 2m1m2 + · · ·+ 2mn−1mn

we see that

∞∑
|m|=0

|m|2T (N)
k,m =

∞∑
|m|=0

m2
1T

(N)
k,m + · · ·+

∞∑
|m|=0

m2
nT

(N)
k,m

+ 2
∞∑

|m|=0

m1m2T
(N)
k,m + · · ·+ 2

∞∑
|m|=0

mn−1mnT
(N)
k,m .
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Taking in (3.15) successively

t1 = 2, tj = 0 if j ̸= 1

t2 = 2, tj = 0 if j ̸= 2

...

tn = 2, tj = 0 if j ̸= n

and then

t1 = t2 = 1, and tj = 0, j ̸= 1, 2

t2 = t3 = 1, and tj = 0, j ̸= 2, 3

...

tn−1 = tn = 1, and tj = 0, j ̸= n− 1, n

we complete the proof using conditions (3.16) and Lemma 2.2. 2
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