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Abstract: We investigate suborbital graphs for an imprimitive action of the Atkin–Lehner group on a maximal subset

of extended rational numbers on which a transitive action is also satisfied. Obtaining edge and some circuit conditions,

we examine some combinatorial properties of these graphs.
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1. Introduction

The idea of a suborbital graph has been used mainly by finite group theorists. In [11], Jones et al. showed that

this idea is also useful in the study of the modular group that is a finitely generated Fuchsian group and show

that the well-known Farey graph is an example of a suborbital graph.

Then similar studies were done for related finitely generated groups.The reader is referred to [2–5,8,9,11–

16] for some relevant previous work on suborbital graphs. Firstly, in [3], it was proved that the elliptic elements

in Γ0(n) correspond to circuits in the subgraph Fu,n of the same order and vice versa. This fact is important

because it means that suborbital graphs might have a potential to clarify signature problems taking into account

the order of elliptic elements are one of the invariants of signature. Note that it was seen that this relation is

just provided unilaterally in [14]. Elliptic elements do not necessarily correspond to circuits of the same order.

On the other hand, it is worth noting that these graphs give some number theoretical results about continued

fractions and Fibonacci numbers as in [4,8,17].

In the present study, we will continue to investigate the combinatorial properties of these graphs for the

Atkin–Lehner group as an important object that is studied concerning Monster groups extensively. In the final

section we state that main graph Gu,n is not a disjoint union of isomorphic copies of subgraphs different from

those up to now.

2. Preliminaries

Let PSL(2,R) denote the group of all linear fractional transformations

T : z → az + b

cz + d
,where a, b, c, and d are real and ad− bc = 1.
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In terms of matrix representation, the elements of PSL(2,R) correspond to the matrices

±
(

a b
c d

)
; a, b, c, d ∈ R and ad− bc = 1.

This is the automorphism group of the upper half plane H := {z ∈ C : Im(z) > 0} . Γ, the modular

group, is the subgroup of PSL(2,R) such that a, b, c, and d are integers. Γ0(n) is the subgroup of Γ with n|c .
In [7], the normalizer Nor(Γ0(n)) of Γ0(n) in PSL(2,R) consists exactly of matrices

(
ae b/h

cn/h de

)
,

where e ∥ n
h2 and h is the largest divisor of 24 for which h2|n with understandings

that the determinant e of the matrix is positive, and that r ∥ s means that r|s and (r, s/r) = 1 (r is called an

exact divisor of s).

The Atkin–Lehner group AL(Γ0(n)) is denoted by the set of transformation

(
ae b
cn de

)
,

where e||n . Obviously, AL(Γ0(n)) is a subgroup of Nor(Γ0(n)). The elements of AL(Γ0(n)) are called the

Atkin–Lehner transformations. AL(Γ0(n)) is a Fuchsian group whose fundamental domain has finite area, and

so it has a signature consisting of the geometric invariants

(g;m1, ...,mr; s),

where g is the genus of the compactified quotient space, m1, ...,mr are the periods of the elliptic elements, and

s is the parabolic class number.

3. The action of AL(Γ0(n)) on Q̂(AL)

3.1. Transitive action

In this section, we describe transitive and imprimitive action of AL(Γ0(n)). Hence we can apply Sim’s theory

to obtain suborbital graphs in the next section. The action of AL(Γ0(n)) on Q̂ := Q ∪ {∞} , the extended

rationals, is defined by (
ae b
cn de

)
:
x

y
→ aex+ by

cnx+ dey

ordinarily. It is noted that while x and y are coprime aex+ by and cnx+ dey do not have to be coprime.

Definition 3.1 Q̂(AL) :=
{

a
b : (b, n)||n

}
is a subset of Q̂ .

Theorem 3.1 Q̂(AL) is the maximal set on which AL(Γ0(n)) group acts transitively.
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Proof Let us calculate the orbit of 1
0 = ∞ under the action of AL(Γ0(n)).(
ae b
cn de

)(
1
0

)
=

ae

cn
=

a

cne
.

It is easily seen that a and cne are coprime and
(
cne , n

)
= n

e ∥n.

Conversely suppose that a1

b1
∈ Q̂ and bn := (b1, n)∥n . Then there exists b0 ∈ Z such that b1 = b0bn .

Therefore, since
(
n, n2

b2n

)
= 1, there exist a′, b′, c′, d′ ∈ Z such that

(
a′ n

bn
b′

c′n d′ n
bn

)
∈ AL(Γ0(n)).

Consequently, Q̂(AL) =
{

a
b : (b, n)||n

}
2

3.2. Imprimitive action

Let us give a general discussion of primitivity of permutation groups. Let (G,∆) be a transitive permutation

group, consisting of a group G acting on a set ∆ transitively. An equivalence relation ≈ on ∆ is called

G-invariant if, whenever

α, β ∈ ∆ satisfy α ≈ β , then g(α) ≈ g(β) for all g ∈ G .

The equivalence classes are called blocks, and the block containing α is denoted [α] .

We call (G,∆) imprimitive if ∆ admits some G -invariant equivalence relation different from

• the identity relation, α ≈ β iff α = β .

• the universal relation, α ≈ β for all α, β ∈ ∆.

Otherwise (G,∆) is called primitive. These two relations are supposed to be trivial relations.

Lemma 3.1 ([6]) Let (G,∆) be a transitive permutation group. (G,∆) is primitive if and only if Gα , the

stabilizer of α ∈ ∆ , is a maximal subgroup of G for each α ∈ ∆ .

From the above lemma we see that whenever, for some α , Gα ⪇ H ⪇ G , then Ω admits some G-

invariant equivalence relation other than the trivial cases. Because of the transitivity, every element of Ω has

the form g(α) for some g ∈ G . Thus one of the nontrivial G-invariant equivalence relations on Ω is given as

follows:

g(α) ≈ g′(α) if and only if g′ ∈ gH.

The number of blocks (equivalence classes) is the index |G : H| and the block containing α is just the

orbit H(α).

In this work we take AL∞(Γ0(n)), the stabilizer of ∞ under AL(Γ0(n)), G will be AL(Γ0(n)) and then,

since AL∞(Γ0(n)) =

⟨(
1 1
0 1

)⟩
,
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AL∞(Γ0(n)) < Γ0(n) < AL(Γ0(n)), n > 1.

In that case, we define the following AL(Γ0(n))− invariant equivalence relation ” ≈AL ” on Q̂(AL). Since

AL(Γ0(n)) acts transitively on Q̂(AL), every element of Q̂(AL) has the form g(∞) for some g ∈ AL(Γ0(n)).

Thus, it is easily seen that

g(∞) ≈AL g′(∞) ⇐⇒ g′ ∈ gΓ0(n)

gives an AL(Γ0(n))− invariant imprimitive equivalence relation.

Notation. sm denotes the integers s such that (s, n) = m . 2

Theorem 3.2 Let r
sm

, x
yk

∈ Q̂(AL) . Then r
sm

≈AL
x
yk

if and only if m = k , that is (s, n) = (y, n).

Proof Because of the transitivity, if r
sm

and x
yk

are the elements of Q̂(AL), then r
sm

= g(∞) and x
yk

= g′(∞)

for the elements g, g′ ∈ AL((Γ0(n))). We see that

r

sm
≈AL

x

yk
⇐⇒ g−1g′ ∈ Γ0(n)

Hence, the problem belongs to the same Γ0(n)-coset for two arbitrary Atkin–Lehner transformations, which

was solved (see [1,7]). The result is obvious. 2

Corollary 3.1 The number of blocks of the imprimitive action of AL(Γ0(n)) on the set ∈ Q̂(AL) is just 2r ,

where r is the number of distinct primes dividing n .

Corollary 3.2 Q̂(AL) is all Q̂ if and only if n is a square-free.

Example 3.1 Case n = 2 . In [11], blocks are given for the simplest case. Since |Γ : Γ0(2)| = 3 , the blocks

have the form

[0] =
{even

odd

}
, [1] =

{
odd

odd

}
, [∞] =

{
odd

even

}
.

In our case, Q̂(AL(Γ0(2))) is all Q̂ . Since |AL(Γ0(2)) : Γ0(2)| = 2 , the blocks have the form

[0] =

{
even

odd
,
odd

odd

}
, [∞] =

{
odd

even

}
.

Case n = 2 · 3 · 5 . By above corollary, Q̂(AL(Γ0(30))) is all Q̂ and the blocks are[
1

1

]
,

[
1

2

]
,

[
1

3

]
,

[
1

5

]
,

[
1

2 · 3

]
,

[
1

2 · 5

]
,

[
1

3 · 5

]
,

[
1

2 · 3 · 5

]
.

The last one is the block

[
1

0

]
= [∞] .

Corollary 3.3 The index |AL(Γ0(n)) : Γ0(n)| is equal to 2r , which is also the number of blocks.
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4. Suborbital graphs and edge conditions

AL(Γ0(n)) acts on Q̂(AL) × Q̂(AL) by g(α, β) = (g(α), g(β))(g ∈ AL(Γ0(n)), α, β ∈ Q̂(AL)). The orbits of

this action are called suborbitals of AL(Γ0(n)). From the suborbital O(α, β) containing (α, β) we can form

the suborbital graph G(α, β); its vertices are the elements of Q̂(AL), and there is a directed edge from k to l ,

denoted by k → l , if (k, l) ∈ O(α, β). Because of the elements, we draw this edge as a hyperbolic geodesic in

H .

We now investigate these suborbital graphs. Since AL(Γ0(n)) acts transitively on Q̂(AL), each suborbital

O(α, β) contains a pair (∞, v) for some v ∈ Q̂(AL). Let v = u
m , m∥n . Then the suborbital O(∞, u

m ) will be

denoted by Ou,m and related suborbital graph by Gu,m .

Theorem 4.1 There is an edge
r

se
→ x

yf
∈ Gu,m ⇐⇒

(i) x ≡ r(n/e)umod

(
m

(n/e,m)

)
, yf ≡ use

n/e

(n/e,m)
mod

(
n/e

(n/e,m)
m

)
, ryf − xse =

m

(n/e,m)
or,

(ii) x ≡ −r(n/e)umod

(
m

(n/e,m)

)
, yf ≡ −use

n/e

(n/e,m)
mod

(
n/e

(n/e,m)
m

)
, ryf − xse = − m

(n/e,m)
.

Proof Let
r

se
→ x

yf
∈ Gu,m . Then some element

(
at b
cn dt

)
∈ AL(Γ0(N)) sends

1

0
to

r

se
and

u

m
to

x

yf
.(

at b
cn dt

)(
1
0

)
=

at

cn
=

a

cnt
. Since adt − bcnt = 1, a and cnt are coprime. Therefore

a

cnt
=

r

se

(
or

−r

−se

)
.

Thus a = r , nn
t = se . It can be easily seen that n

t = e . On the other hand,(
an

e b
cn dn

e

)(
u
m

)
=

an
e u+ bm

cnu+ dn
em

=
an

e u+ bm
n
e (ceu+ dm)

.

Since
(
an

e u+ bm, ceu+ dm
)
= 1 and

(
a

n
e

(n
e ,m) + b m

(n
e ,m) ,

n
e

)
= 1, then

a
n
e

(n
e ,m) + b m

(n
e ,m)

n
e

(n
e ,m) (ceu+ dm)

is a reduced fraction.

x = a
n
e

(ne ,m)
u + b

m

(ne ,m)
and yf =

n
e

(ne ,m)
(ceu + dm). Thus, x ≡ r(ne )umod

(
m

(ne ,m)

)
and yf ≡

use

n
e

(ne ,m)
mod

( n
e

(ne ,m)
m

)
. Furthermore,

(
r x
se yf

)
=


a a

n
e

(ne ,m)
u+ b

m

(ne ,m)

ce cu
n

(ne ,m)
u+

dn
em

(ne ,m)

 .

Taking the determinant, we get that

ryf − xse =
m

(ne ,m)
. This gives (a). If we take the minus sign, (b) can, likewise, be obtained.
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Conversely suppose that (a) holds; then there exists some integers b and d such that x = r(
n
e

(ne ,m)
)u+

b
m

(ne ,m)
, yf = seu(

n
e

(ne ,m)
)u+ d

n
e

(ne ,m)
m . Hence the element

(
rn
e x

se
n
e dn

e

)
is in AL((Γ0(n))), and sends

1

0
to

r

se
and

u

m
to

x

yf
as follows:

(
r b
se dn

e

)
1 (

n
e

(ne ,m)
)u

0 (
m

(ne ,m)
)

 =


r ru

n
e

(ne ,m)
u+ b

m

(ne ,m)

se seu
n

(ne ,m)
u+ d

n
e

(ne ,m)
m

 =

(
r x
se yf

)
.

From (a), the right side matrix has determinant 1; therefore

(
r b
se dn

e

)
is a desired transformation

belonging to AL(Γ0(n)). If (b) holds, we again get the proof. 2

Corollary 4.1 There is an edge
r

sm
→ x

ym
∈ Gu,m ⇐⇒

(i) x ≡ r n
mu mod (m) , ym ≡ 0mod (n) , rym − xsm = m or,

(ii) x ≡ −r n
mu mod (m) , ym ≡ 0mod (n) , rym − xsm = −m .

Corollary 4.2 If e = f = m = n , there is an edge
r

sn
→ x

yn
∈ Gu,n ⇐⇒

(i) x ≡ ru mod (m) , ym ≡ usn mod (n) , ryn − xsn = n or,

(ii) x ≡ −ru mod (m) , ym ≡ −usn mod (n) , ryn − xsn = n .

Proof In this case, desired elements in AL(Γ0(n)) come from the group Γ0(n), since
n
e = 1. 2

5. Circuits and triangles

Let us give some standard notations as definitions.

Definition 5.1 Let ν1, ν2, · · · → νk be different vertices in Gu,m .

(i) The configuration ν1 → ν2 → · · · → νk → ν1 is called a directed circuit or a closed path.

(ii) An anti-directed circuit will denote a configuration like the above with at least one arrow (not all) reversed.

(iii) If k = 2 , the circuit ν1 → ν2 → ν1 , is called a self-paired edge.

(iv) If k = 3 , the circuit, directed or not, is called a triangle.

Theorem 5.1 Let Fu,n be the subgraph of Gu,n whose vertices are the block

[
1

n

]
=

[
1

0

]
; then Fu,n contains
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(i) a self-paired edge if and only if u2 ≡ −1(modn) .

(ii) a directed triangle if and only if u2 ± u+ 1 ≡ 0(modn) .

Proof Theorem 5.11 in [11] and Corollary 4.3 give the result. 2

Unlike the results in [11], there is a different situation as below:

Corollary 5.1 If
r

se
→ x

yf
∈ Gu,m then the vertices

r

se
and

x

yf
might not be in the same block.

Proof Taking n = 2232 ,
1

22
→ 17

2332
∈ G1,22 but

1

22
and

17

2332
are not in the same block. It is clear that∣∣AL(Γ0(2

232)) : Γ0(2
232)

∣∣ = 4 and

Q̂(AL(Γ0(2
232))) =

[
1

1

]
∪
[
1

22

]
∪
[
1

32

]
∪
[

1

2232

]
.

It is easily seen that
1

22
∈
[
1

22

]
and

17

2332
∈
[

1

2232

]
. 2

Theorem 5.2 There is a self-paired edge whose vertices are in the same block in Gu,m if and only if m = n .

Proof By definition 5.1, let
r

sm
→ x

ym
→ r

sm
be a self-paired edge. Since m∥n , assume that n = km such

that (k,m) = 1. Without loss of generality, we suppose that s = αm, y = βm for some α, β ∈ Z . Since

(s, n) = m and (y, n) = m , then (α, k) = 1 and (β, k) = 1. By applying corollary 4.2 to the first edge, we get

k|β , which contradicts (β, k) = 1.

Hence, the case assuming m = n turns into the case in [11]. For example, all edges in G1,2 are self-paired.
2

Theorem 5.3 Gu,m is self-paired if and only if u2 ≡ −1(modm) .

Proof Gu,m is self-paired means that the pair (∞, u
m ) is sent to ( u

m ,∞) by AL((Γ0(n))). Since

(
at b
cn dt

)(
1
0

)
=

u

m
, then a = u, cnt = m . From the equation

(
ut b
cn dt

)(
u
m

)
=

1

0
, we see that

(
ut b
cn −ut

)
is a desired ele-

ment. Taking the determinant −u2 − bcm = 1, the result is obvious. 2

Theorem 5.4 There are no triangle vertices that are in same block in Gu,m .

Proof Suppose that Gu,m contains a triangle. Because of the transitive action, we may suppose that it has

the form ∞ → u → v → ∞ . By Corollary 4.2 we have that denominators of u and v must be equal to m

and that denominator of u must be equivalent to n . Thus, it must be m = n . However, there would be a

contradiction of the condition ryn − xsn = n from the second edge. 2

Theorem 5.5 If n is square-free, there is no triangle in Gu,m .

241
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Proof Without loss of generality, we give the proof for n = p1p2 where p1, p2 are coprime. In this case, the

number of blocks is 4. We can write the blocks as[
1

1

]
∪
[
1

p1

]
∪
[
1

p2

]
∪
[

1

p1p2

]
Since m∥n , without loss of generality, let m = p1 . Hence, the graph will be shown by Gu,p1 . Because of the

transitivity, we may assume that the triangle has the form ∞ → u → v → ∞ .

From now on, we use the symbols in Theorem 4.1. From the first edge, since the denominator of the first

vertex is equal to p1p2 , then e is equal to p1p2 . Hence, we get the denominator of the second vertex is equal

to p1 by the condition ryf − xse =
m

(n/e,m)
. Furthermore, the numerator of the second vertex is equal to

u+ kp1 for some integer k .

On the other hand, the third vertex may belong to the blocks[
1

1

]
,

[
1

p2

]
,

[
1

p1p2

]
because of the denominator of the second vertex. Otherwise, applying Theorem 4.1 to the second edge, it gives

a contradiction. Taking the second vertex as
u+ kp1

p1
, we apply Theorem 4.1 to the second edge. We see that

denominator of the third vertex is congruent to 0 modulo p1p2 . In this case, it gives a contradiction applying

Theorem 4.1 to the third edge. 2

It is well known that there are some elliptic elements of order 3 in the Atkin–Lehner group. At this point,

taking into account the relation elliptic elements in group and circuits in the related graph, it is reasonable to

conjecture that

Conjecture 5.1 Gu,m has a triangle if and only if n is not a square-free integer.
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[1] Akbaş M, Singerman D. The normalizer of Γ0(N) in PSL(2, R) . Glasgow Math J 1990; 32: 317-327.
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