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1. Introduction

Chinese mathematicians Jiang et al. in the article [10] introduced the notion of multiresolution analysis (MRA)

on local fields. For the fields F (s) of positive characteristic p they proved some properties and gave an algorithm

for constructing wavelets for a known scaling function. Using these results they constructed ”Haar MRA” and

corresponding ”Haar wavelets”. The problem of constructing orthogonal MRA on the field F (1) was studied in

detail in the works [6–8, 12, 14, 15].

In [11] a necessary condition and sufficient conditions for wavelet frame on local fields were given. Behera

and Jahan [2] constructed the wavelet packets associated with MRA on local fields of positive characteristic.

In the article [1] necessary and sufficient conditions for a function φ ∈ L2(F (s)) under which it is a scaling

function for MRA were obtained. These conditions are as follows:∑
k∈N0

|φ̂(ξ + u(k))|2 = 1 (1)

for a.e. ξ in unit ball D ,

lim
j→∞

|φ̂(pjξ)| = 1 for a.e. ξ ∈ F (s), (2)

and there exists an integral periodic function m0 ∈ L2(D) such that

φ̂(ξ) = m0(pξ)φ̂(pξ) for a.e. ξ ∈ F (s), (3)

where {u(k)} is the set of shifts and p is a prime element. Behera and Jahan [3] proved also that if the translates

of the scaling functions of two multiresolution analysis are biorthogonal, then the associated wavelet families

are also biorthogonal. The same authors [4] proved a characterization of wavelets on local fields of positive
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characteristic based on results on affine and quasi-affine frames. Therefore, to construct MRA on a local field

F (s) we need to construct an integral periodic mask m0 with conditions (1–3). To solve this problem, in articles

[1–3, 10, 11], the prime element methods developed in [16] were used. In these articles only Haar wavelets were

obtained. In the article by Lukomskii and Vodolazov [13], another method to construct integral periodic masks

and corresponding scaling step functions that generate non-Haar orthogonal MRA were developed.

However, in the article [13], only the simple case of mask m0 being elementary was considered, i.e. m0(χ)

is constant on cosets (F
(s)+
−1 )⊥ and m0(χ) takes only two values, 0 and 1. In this article, we get rid of these

restrictions and specify the method of constructing the scaling function only with the condition that |φ̂| is a

step function. We reduce this problem to the study of some dynamical systems and prove that its trajectory

has a fixed point.

2. Basic concepts

Let p be a prime number, s ∈ N , GF (ps) – finite field. Local field F (s) of positive characteristic p is isomorphic

(Kovalski–Pontryagin theorem [9]) to the set of formal power series

a =
∞∑
i=k

ait
i, k ∈ Z, ai = (a

(0)
i , a

(1)
i , . . . , a

(s−1)
i ) ∈ GF (ps).

Addition and multiplication in the field F (s) are defined as the sum and product of such series, i.e. if

a =

∞∑
i=k

ait
i, b =

∞∑
i=k

bit
i,

then

a+̇b =

∞∑
i=k

(ai+̇bi)t
i, ai+̇bi = (ai + bi) mod p,

ab =
∞∑

l=2k

tl
∑

i,j:i+j=l

(aibj).

Topology in F (s) is defined by the base of neighborhoods of zero

F (s)
n = {a =

∞∑
j=n

ajt
j |aj ∈ GF (ps)}.

If

a =
∞∑
j=n

ajt
j , an ̸= 0,

then by definition ∥a∥ = ( 1
ps )

n , which implies

F (s)
n = {x ∈ F (s) : ∥x∥ ≤ (

1

ps
)n}.
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Thus, we may consider local field F (s) of positive characteristic p as the field of sequences infinite in

both directions
a = (. . . ,0n−1,an, . . . ,a0,a1, . . . ), aj ∈ GF (ps),

which have only a finite number of elements aj with negative j nonequal to zero, and the operations of addition

and multiplication are defined by equalities

a+̇b = ((ai+̇bi))i∈Z,

ab = (
∑

i,j:i+j=l

(aibj))l∈Z, (4)

where “+̇” and “ · ” are respectively addition and multiplication in GF (ps). Thus,

∥a∥ = ∥(. . . ,0n−1,an,an+1, . . . )∥ = (
1

ps
)n, if an ̸= 0,

F (s)
n = {a = (aj)j∈Z : aj ∈ GF (ps); aj = 0, ∀j < n}.

Let us consider F (s)+ – the additive group of the field F (s) . Neighborhoods F
(s)
n are compact subgroups

of the group F (s)+ ; we will denote them as F
(s)+
n . They have the following properties:

1) · · · ⊂ F
(s)+
1 ⊂ F

(s)+
0 ⊂ F

(s)+
−1 . . .

2)F
(s)+
n /F

(s)+
n+1

∼= GF (ps)+ and ♯(F
(s)+
n /F

(s)+
n+1 ) = ps .

This implies that if s = 1 then F (1)+ is a Vilenkin group with the stationary generating sequence pn = p .

The inverse is also true: one can define multiplication in any Vilenkin group (G, +̇) with stationary generating

sequence pn = p using equality (4). Supplied with such operation (G, +̇, ·) becomes a field isomorphic to F (1) ,

where e = (. . . , 0, 0−1, 10, 01, . . . ) is a neutral element with respect to multiplication.

It was noted in [17] that the field F (s) can be described as a linear space over GF (ps). Using this

description one may define the multiplication of element a ∈ F (s) on element λ ∈ GF (ps) coordinatewise, i.e.

λa = (. . .0n−1, λan, λan+1, . . . ), and the modulus of λ ∈ GF (ps) can be defined as

|λ| =
{

1, λ ̸= 0,

0, λ = 0.

It was also proved there that the system gk ∈ F
(s)
k \ F (s)

k+1 is a basis in F (s) , i.e. any element a ∈ F (s)

can be represented as:

a =
∑
k∈Z

λkgk, λk ∈ GF (ps).

From now on we will consider gk = (...,0k−1, (1
(0), 0(1), ..., 0(s−1))k,0k+1, ...). In this case λk = ak .

Let us define the sets

H
(ν)
0 = {h ∈ F (s) : h = a−1g−1+̇a−2g−2+̇ . . . +̇a−νg−ν},
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where ν is a fixed natural number:

H0 = {h ∈ F (s) : h = a−1g−1+̇a−2g−2+̇ . . . +̇a−νg−ν , ν ∈ N}.

The set H0 is the set of shifts in F (s) . It is an analogue of the set of nonnegative integers.

We will denote the collection of all characters of F (s)+ as X . The set X generates a commutative group

with respect to the multiplication of characters: (χ ∗ ϕ)(a) = χ(a) · ϕ(a). The inverse element is defined as

χ−1(a) = χ(a), and the neutral element is e(a) ≡ 1.

Following [17] we define characters rn of the group F (s)+ in the following way. Let x = (. . . ,0k−1,xk,

xk+1, . . . ), xj = (x
(0)
j , x

(1)
j , . . . , x

(s−1)
j ) ∈ GF (ps). The element xj can be written in the form xj =

(xjs+0, xjs+1, . . . , xjs+(s−1)). In this case

x = (. . . , 0, ..., 0, xks+0, xks+1, . . . , xks+s−1, x(k+1)s+0, x(k+1)s+1, . . . , x(k+1)s+s−1, . . . )

and the collection of all such sequences x is a Vilenkin group. Thus, the equality rn(x) = rks+l(x) = e
2πi
p (xks+l)

defines the Rademacher function of F (s)+ and every character χ ∈ X can be described in the following way:

χ =
∏
n∈Z

ran
n , an = 0, p− 1. (5)

Equality (5) can be rewritten as

χ =
∏
k∈Z

r
a
(0)
k

ks+0r
a
(1)
k

ks+1 . . . r
a
(s−1)
k

ks+s−1 (6)

and let us define

rak

k := r
a
(0)
k

ks+0r
a
(1)
k

ks+1 . . . r
a
(s−1)
k

ks+s−1,

where ak = (a
(0)
k , a

(1)
k , . . . , a

(s−1)
k ) ∈ GF (ps). Then (6) takes the form

χ =
∏
k∈Z

rak

k . (7)

We will refer to r
(1,0,...,0)
k = rk as the Rademacher functions. By definition we set

(rak

k )bk = rakbk

k , χb = (
∏

rak

k )b =
∏

rakb
k , ak,bk,b ∈ GF (ps).

The definition of the Rademacher function implies that if x = ((x
(0)
k , x

(1)
k , . . . x

(s−1)
k ))k∈Z and u =

(u(0), u(1), . . . , u(s−1)) ∈ GF (ps), then

(ruk ,x) =

s−1∏
l=0

e
2πi
p u(l)x

(l)
k .

In [17] the following properties of characters were proved:

1) ru+̇v
k = rukr

v
k , u,v ∈ GF (ps).
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2) (rvk ,ugj) = 1, ∀k ̸= j , u,v ∈ GF (ps).

3) The set of characters of the field F (s) is a linear space (X, ∗, ·GF (ps)) over the finite field GF (ps)

with multiplication being an inner operation and the power u ∈ GF (ps) being an outer operation.

4) The sequence of Rademacher functions (rk) is a basis in the space (X, ∗, ·GF (ps)).

5) Any sequence of characters χk ∈ (F
(s)
k+1)

⊥ \ (F (s)
k )⊥ is also a basis in the space (X, ∗, ·GF (ps)), where

F
(s)
n

⊥
is the annihilator of F

(s)+
n .

The dilation operator A in local field F (s) can be defined as Ax :=
∑+∞

n=−∞ angn−1 , where x =∑+∞
n=−∞ angn ∈ F (s) . In the group of characters it is defined as (χA, x) = (χ,Ax).

3. Scaling function and MRA

We will consider a case of scaling function φ , which generates an orthogonal MRA, being a step function. The

set of step functions constant on cosets of a subgroup F
(s)
M with the support supp(φ) ⊂ F

(s)
−N will be denoted as

DM (F
(s)
−N ), M,N ∈ N . Similarly, D−N (F

(s)
M

⊥
) is a set of step functions, constant on the cosets of a subgroup

F
(s)
−N

⊥
with the support supp(φ) ⊂ F

(s)
M

⊥
. If φ ∈ DM (F

(s)
−N ) generates an orthogonal MRA, it satisfies the

refinement equation φ(x) =
∑

h∈H
(N+1)
0

βhφ(Ax−̇h), which can be rewritten in a frequency from

φ̂(χ) = m0(χ)φ̂(χA−1), (8)

where

m0(χ) =
1

ps

∑
h∈H

(N+1)
0

βh(χA−1, h) (9)

is the mask of equation (8).

For the step functions in the article [13] condition (3) and orthogonality condition (1) are rewritten in

the terms of Rademacher functions.

1) If φ̂(χ) ∈ D−N (F
(s)
M

⊥
) is a solution of refinement equation (8) and the system of shifts (φ(x−̇h))h∈H0

is orthonormal, then φ generates an orthogonal MRA.

2) If φ̂(χ) ∈ D−N (F
(s)
M

⊥
) , then the system of shifts (φ(x−̇h))h∈H0 will be orthonormal iff for any

a−N ,a−N+1, . . . ,a−1 ∈ GF (ps) ∑
a0,a1,...,aM−1∈GF (ps)

|φ̂(F (s)
−N

⊥
r
a−N

−N . . . ra0
0 . . . r

aM−1

M−1 )|
2 = 1. (10)

Thus, to construct an orthogonal MRA one must construct a function φ̂(χ) ∈ D−N (F
(s)
M

⊥
), which is a

solution of refinement equation (8) and which satisfies conditions (10). Satisfying both conditions is the main

difficulty of this problem.

As was already mentioned in the introduction, a method for construction of a scaling function that

generates non-Haar orthogonal MRA was specified in [13]. It is constructed by the means of some tree and

results in a function such that |φ̂| takes two values only: 0 and 1. A more general case will be presented in the

next section.
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4. Construction of orthogonal scaling function

Definition 4.1. Let F (s) be a local field of positive characteristic p , and N is a natural number. Then by

N -valid tree we mean a tree oriented from leaves to root and satisfying these conditions:

1)Every vertex is an element of GF (ps) , i.e has the form ai = (a
(0)
i , a

(1)
i , . . . , a

(s−1)
i ) , a

(j)
i = 0, p− 1 .

2)The root and all vertices of level N−1 are equal to the zero element of GF (ps) : 0 = (0(0), 0(1), . . . , 0(s−1)) .

3)Any path (ak → ak+1 → · · · → ak+N−1) of length N − 1 appears in the tree exactly one time.

Let us choose N -valid tree T and construct a scaling function using it.

1) We will use this tree T to construct new tree T̃ . Every vertex of the tree T̃ is a vector of N elements

each being an element of GF (ps): A = (aN ,aN−1, . . . ,a1). Such vertices are constructed in the following way:

if a tree T has a path of length N − 1 starting from aN

aN → aN−1 → · · · → a1,

then in T̃ we will have a vertex with the value equal to the array of N elements (aN ,aN−1, . . . . . . ,a1). Due to

condition 3) of N -validity of tree T each such array corresponds to the unique vertex of the new tree T̃ . Thus,

the root of T̃ is an N -dimensional vector with all elements equal to the zero of GF (ps) O = (0,0, . . . ,0).

Vertices of level 1 in tree T̃ are N -dimensional vectors, which have all their elements, except the first one, equal

to the zero of GF (ps): (ai,0, . . . ,0), where ai is some vertex of level N in tree T . Vertices of level 2 in tree T̃

are N -dimensional vectors: (ai2 ,ai1 ,0, . . . ,0), where ai2 and ai1 are some vertices of levels N + 1 and N of

tree T respectively, which are connected. We should note that in this example ai1 ̸= 0 , but ai2 may be a zero

element of GF (ps). Thus, in T̃ connected vertices have the form (aiN ,aiN−1
, . . . ,ai1) → (aiN−1

, . . . ,ai1 ,ai0).

However, not all vertices satisfying this condition will be connected. Arcs are taken from the original tree T .

If we denote height(T ) = H, height(T̃ ) = H̃ , then obviously H̃ = H −N + 1.

2) Now we will construct a directed graph Γ using T̃ . We connect each vertex AN = (aN ,aN−1, . . . ,a1)

of T̃ to each vertex of lesser level of the form (aN−1, . . . ,a1,a0), i.e. having the first (N − 1) elements equal

to the last (N − 1) elements of vertex AN . The vertices, to which AN is connected, we will denote by

(aN−1, . . . ,a1, ã0), i.e. a0 ∈ {ã0} iff the vertex AN is connected to (aN−1, . . . ,a1,a0) in digraph Γ.

3) Let us denote

λa−N ,a−N+1,...,a−1,a0 = |m0(F
(s)⊥

−Nr
a−N

−N r
a−N+1

−N+1 . . . r
a−1

−1 ra0
0 )|2,

i.e. λa−N ,a−N+1,...,a−1,a0 is an (N + 1)-dimensional array, enumerated by the elements of GF (ps).

If the vertex (aN ,aN−1, . . . ,a1) of graph Γ is connected to the vertices (aN−1,aN−2 . . . ,a1, ã0) then

we define the values of the mask in the way satisfying the condition∑
ã0

λa−N ,a−N+1,...,a−1,ã0 = 1 and λa−N ,a−N+1,...,a−1,a0 = 0 for any a0 /∈ {ã0}. (11)

Also, let us define m0(F
(s)
−N

⊥
) = 1, which implies λ0,0,...,0 = 1.

To present the main result we will need some extra notation. First, we must note that the orthonormality

condition (10) for the system of shifts of φ(x) can be rewritten as follows: for any a−N ,a−N+1, . . . ,a−1 ∈
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GF (ps)

1 =
∑

a0,a1,...,aM−1∈GF (ps)

|φ̂(F (s)
−N

⊥
r
a−N

−N . . . r
a−1

−1 ra0
0 . . . r

aM−1

M−1 )|
2 =

∑
a0∈GF (ps)

λa−N ,a−N+1,...,a0

∑
a1∈GF (ps)

λa−N+1,a−N+2,...,a1 . . .

· · ·
∑

aM−2∈GF (ps)

λaM−N−2,aM−N−1,...,aM−2

∑
aM−1∈GF (ps)

λaM−N−1,aM−N ,...,aM−1
λaM−N ,aM−N+1,...,aM−1,0 . . . λaM−1,0,...,0. (12)

Let us then define a sequence of N -dimensional arrays A(n) = (a
(n)
i1,i2,...,iN

)i1,i2,...,iN∈GF (ps) recurrently

by giving the relations of their components:

a
(0)
i1,i2,...,iN

= λi1,i2,...,iN ,0λi2,i3,...,iN ,0,0 . . . λiN ,0,...,0, (13)

a
(n)
i1,i2,...,iN

=
∑

j∈GF (ps)

λi1,i2,...,iN ,ja
(n−1)
i2,i3,...,iN ,j. (14)

We will say that the element a
(s)
i1,i2,...,iN

corresponds to vertex (i1, i2, . . . , iN ).

In new notation the sum∑
aM−1∈GF (ps)

λaM−N−1,aM−N ,...,aM−1λaM−N ,aM−N+1,...,aM−1,0 . . . λaM−1,0,...,0

from (12) defines elements of the array A(1) . The sum∑
aM−2∈GF (ps)

λaM−N−2,aM−N−1,...,aM−2

∑
aM−1∈GF (ps)

λaM−N−1,aM−N ,...,aM−1λaM−N ,aM−N+1,...,aM−1,0 . . . λaM−1,0,...,0

defines the elements of the array A(2) , and so on. The whole sum specified in (12) defines elements of array

A(M) . Using new notation, orthonormality condition (12) can be reformulated in the following way: the system

of shifts of the function φ(x) ∈ DM (F
(s)
−N ) is orthonormal if and only if for any i1, i2, . . . , iN : a

(M)
i1,i2,...,iN

= 1,

in other words, iff an array A(M) has all its elements equal to 1.

Lemma 4.1. The components of A(0) corresponding to vertices of level l ≤ N in the tree T̃ are equal to 1.

Proof First, let us notice that any vertex of T̃ of level l ≤ N has the form (al,al−1, . . . ,a1,0, . . . ,0), a1 ̸= 0 .

Indeed, if a vertex has level l in T̃ , then the first element of the vector - the vertex of T - is of level l+N − 1

in T and is the beginning of the following path directed to root: (al → al−1 → · · · → a1 → 0 → · · · → 0),

where a1 is a vertex of level N and is nonzero by the N -validity condition.
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We will prove the lemma by induction on l . Let l = 0. Thus, we consider the root of T̃ . The root has

the form (0,0, . . . ,0). By construction λ0,0,...,0 = 1. Its corresponding element of array A(0) is a
(0)
0,0,...,0 . Let

us substitute i1, i2, . . . , iN = 0 into (13). We obtain

a
(0)
0,0,...,0 = λ0,0,...,0λ0,0,...,0 . . . λ0,0,...,0 = 1.

Now we prove that if any vertex of level l = k − 1 < N satisfies the condition a
(0)
ak−1,ak−2,...,a1,0,...,0

= 1,

then such a condition is also satisfied by any vertex of level l = k ≤ N of the tree T̃ . Using (13) and substituting

i1 = ak−1, i2 = ak−2, . . . , ik−1 = a1 ̸= 0, ik = 0, . . . , iN = 0, we rewrite the induction hypothesis:

a
(0)
ak−1,ak−2,...,a1,0,...,0

= λak−1,ak−2,...,a1,0,...,0λak−2,ak−3,...,a1,0,...,0 . . . λa1,0,...,0λ0,0,...,0 . . .

. . . λ0,0,...,0 = λak−1,ak−2,...,a1,0,...,0λak−2,ak−3,...,a1,0,...,0 . . . λa1,0,...,0 = 1.

Here we omit λ0,0,...,0 = 1. Now, let

Ak = (ak,ak−1, . . . ,a1,0, . . . ,0), a1 ̸= 0

be a vertex of level k of T̃ .

Let this vertex be connected to the vertex Ak−1 = (ak−1, . . . ,a1,0, . . . ,0) of level k − 1 in T̃ . Then it

can be shown that the vertex Ak is only connected to the vertex Ak−1 in digraph Γ also.

First, let us prove that in graph Γ the vertex Ak is not connected to any other vertex, which has level

k−1 in T̃ . We will prove the fact by contradiction. Assume that Bk−1 = (bk−1, . . . ,b1 ̸= 0,0, . . . ,0) is another

vertex that has level k − 1 in T̃ and that Ak is connected to Ak−1 and Bk−1 in graph Γ. By construction,

if Ak is connected to Bk−1 then for any i = 1, k − 1, ai = bi , which implies vertices Ak−1 and Bk−1 being

identical, which contradicts the uniqueness of the vertices in T̃ and Γ. Thus, there is only one vertex, which is

of level (k − 1) in T̃ and to which Ak is connected in graph Γ.

Secondly, we prove that in Γ the vertex Ak is not connected to any vertex that has level strictly less

than k − 1 in tree T̃ . Let n > 1, Bk−n = (bk−n, . . . ,b1,0, . . . ,0) be an arbitrary vertex of level (k − n) in

T̃ . By construction of Γ, for the vertex Ak to be connected to Bk−n it is necessary for the equality a1 = 0

to hold, which is impossible by assumption a1 ̸= 0 . Thus, we proved that the vertex Ak is connected only to

Ak−1 in Γ.

By construction that means that λak,...,a1,0,...,0 = 1. Thus, substituting i1 = ak, i2 = ak−1, . . . , ik =

a1, ik+1 = 0, . . . , iN = 0 into (13) and using the induction hypothesis we obtain

a
(0)
ak,...,a1,0,...,0

= λak,...,a1,0,...,0λak−1,...,a1,0,...,0 . . . λa1,0,...,0 =

λak,...,a1,0,...,0a
(0)
ak−1,...,a1,0,...,0

= 1.

The lemma is proved. 2

Lemma 4.2. Let us consider N -valid tree T and tree T̃ and digraph Γ constructed using it. Let the values of

m0(χ) be defined as specified in equalities (8). Let also (A(n))∞n=0 be a sequence of arrays defined by equalities
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(13) and (14). Then the array A(n) has its elements corresponding to the vertices of level l ≤ N + n in tree T̃

equal to 1.

Proof We will prove the lemma by induction. The validity of the base for n = 0 follows from the previous

lemma. Now we prove that if in A(n−1) elements corresponding to vertices of level less than or equal to N+n−1

are equal to one, then in A(n) elements corresponding to vertices of level less than or equal to N + n are equal

to one. Let AN = (aN ,aN−1, . . . ,a1) be a vertex of level l ≤ N + n in T̃ . In graph Γ it is connected

to all vertices of lower level, which we denote as (aN−1, . . . ,a1, ã0); moreover,
∑̃
a0

λaN ,aN−1,...,a1,ã0 = 1 and

λaN ,aN−1,...,a1,a0 = 0 ∀a0 /∈ {ã0}.

Also, it should be mentioned that since vertices (aN−1, . . . ,a1, ã0) of T̃ have their level not higher than

l − 1 ≤ N + n− 1, then, by the induction hypothesis

a
(n−1)
aN−1,...,a1,ã0

= 1, ∀ã0 ∈ {ã0}. Then

a(n)aN ,aN−1...,a1
=

∑
a0∈GF (ps)

λaN ,aN−1,...,a1,a0a
(n−1)
aN−1,...,a1,a0

=

∑
ã0∈{ã0}

λaN ,aN−1,...,a1,ã0a
(n−1)
aN−1,...,a1,ã0

=
∑

ã0∈{ã0}

λaN ,aN−1,...,a1,ã0 = 1,

which proves the lemma.

These lemmas directly imply the following theorem. 2

Theorem 4.3. Let the tree T̃ and digraph Γ be constructed using N -valid tree T . Let the values of m0(χ) be

defined as specified by equalities (11). Let H̃ = height(T̃ ). Then the equality

φ̂(χ) =

∞∏
k=0

m0(χA−k) ∈ D−N (F
(s)
M

⊥
)

defines an orthogonal scaling function φ(x) ∈ DM (F
(s)
−N ) , and M ≤ H̃ −N .

Remark. We would like to remind [5] that a discrete dynamical system consists of a nonempty set X and

a map f : X → X . For n ∈ N , the nth iterate of f is the n -fold composition fn = f ◦ · · · ◦ f , and f0 is

considered an identity map. A point x ∈ X is called a fixed point if f(x) = x . Starting at the initial conditions

x0 at the 0th iteration, we can apply the function n times to determine the state xn = fn(x0). The sequence

(xn)
+∞
n=0 is called a trajectory.

Let us denote the collection of functions fN : {0, 1, ..., p − 1}N → [0, 1] as ΦN and choose a function

Λ ∈ ΦN+1 . Function Λ may be viewed as (N+1)-dimensional array Λ = (λi1,i2,...,iN ,iN+1). Then the equalities

(14) define discrete dynamic system Λ : ΦN → ΦN , and the equality (13) defines the initial state. Theorem

4.3 specifies a class of discrete dynamical systems Λ with initial state A(0) , which have a fixed point in their

trajectory with initial point (13).

Theorem 4.3 for s = 1, N = 1 was proved by Kruss, for s = 1, N ∈ N – by Berdnikov, and for any

s,N ∈ N – by Kruss. The idea to consider the local field of positive characteristic as the vector space was

proposed by Lukomskii.
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