On orthogonal systems of shifts of scaling function on local fields of positive characteristic

Gleb Sergeevich BERDNIKOV, Iuliia Sergeevna KRUSS*, Sergey Fedorovich LUKOMSKII
Department of Mathematical Analysis, Saratov State University, Saratov, Russia

| Received: 03.04 .2015 | Accepted/Published Online: 19.04 .2016 | \bullet | Final Version: 03.04 .2017 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

We present a new method for constructing an orthogonal step scaling function on local fields of positive characteristic, which generates multiresolution analysis.

Key words: Local field, scaling function, multiresolution analysis

1. Introduction

Chinese mathematicians Jiang et al. in the article [10] introduced the notion of multiresolution analysis (MRA) on local fields. For the fields $F^{(s)}$ of positive characteristic p they proved some properties and gave an algorithm for constructing wavelets for a known scaling function. Using these results they constructed "Haar MRA" and corresponding "Haar wavelets". The problem of constructing orthogonal MRA on the field $F^{(1)}$ was studied in detail in the works $[6-8,12,14,15]$.

In [11] a necessary condition and sufficient conditions for wavelet frame on local fields were given. Behera and Jahan [2] constructed the wavelet packets associated with MRA on local fields of positive characteristic. In the article [1] necessary and sufficient conditions for a function $\varphi \in L^{2}\left(F^{(s)}\right)$ under which it is a scaling function for MRA were obtained. These conditions are as follows:

$$
\begin{equation*}
\sum_{k \in \mathbb{N}_{0}}|\hat{\varphi}(\xi+u(k))|^{2}=1 \tag{1}
\end{equation*}
$$

for a.e. ξ in unit ball \mathcal{D},

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left|\hat{\varphi}\left(\mathfrak{p}^{j} \xi\right)\right|=1 \text { for a.e. } \xi \in F^{(s)} \tag{2}
\end{equation*}
$$

and there exists an integral periodic function $m_{0} \in L^{2}(\mathcal{D})$ such that

$$
\begin{equation*}
\hat{\varphi}(\xi)=m_{0}(\mathfrak{p} \xi) \hat{\varphi}(\mathfrak{p} \xi) \text { for a.e. } \xi \in F^{(s)} \tag{3}
\end{equation*}
$$

where $\{u(k)\}$ is the set of shifts and \mathfrak{p} is a prime element. Behera and Jahan [3] proved also that if the translates of the scaling functions of two multiresolution analysis are biorthogonal, then the associated wavelet families are also biorthogonal. The same authors [4] proved a characterization of wavelets on local fields of positive

[^0]characteristic based on results on affine and quasi-affine frames. Therefore, to construct MRA on a local field $F^{(s)}$ we need to construct an integral periodic mask m_{0} with conditions (1-3). To solve this problem, in articles $[1-3,10,11]$, the prime element methods developed in [16] were used. In these articles only Haar wavelets were obtained. In the article by Lukomskii and Vodolazov [13], another method to construct integral periodic masks and corresponding scaling step functions that generate non-Haar orthogonal MRA were developed.

However, in the article [13], only the simple case of mask m_{0} being elementary was considered, i.e. $m_{0}(\chi)$ is constant on cosets $\left(F_{-1}^{(s)+}\right)^{\perp}$ and $m_{0}(\chi)$ takes only two values, 0 and 1 . In this article, we get rid of these restrictions and specify the method of constructing the scaling function only with the condition that $|\hat{\varphi}|$ is a step function. We reduce this problem to the study of some dynamical systems and prove that its trajectory has a fixed point.

2. Basic concepts

Let p be a prime number, $s \in \mathbb{N}, G F\left(p^{s}\right)$ - finite field. Local field $F^{(s)}$ of positive characteristic p is isomorphic (Kovalski-Pontryagin theorem [9]) to the set of formal power series

$$
a=\sum_{i=k}^{\infty} \mathbf{a}_{i} t^{i}, k \in \mathbb{Z}, \quad \mathbf{a}_{i}=\left(a_{i}^{(0)}, a_{i}^{(1)}, \ldots, a_{i}^{(s-1)}\right) \in G F\left(p^{s}\right)
$$

Addition and multiplication in the field $F^{(s)}$ are defined as the sum and product of such series, i.e. if

$$
a=\sum_{i=k}^{\infty} \mathbf{a}_{i} t^{i}, b=\sum_{i=k}^{\infty} \mathbf{b}_{i} t^{i}
$$

then

$$
\begin{gathered}
a \dot{+} b=\sum_{i=k}^{\infty}\left(\mathbf{a}_{i} \dot{+} \mathbf{b}_{i}\right) t^{i}, \mathbf{a}_{i} \dot{+} \mathbf{b}_{i}=\left(\mathbf{a}_{i}+\mathbf{b}_{i}\right) \bmod p \\
a b=\sum_{l=2 k}^{\infty} t^{l} \sum_{i, j: i+j=l}\left(\mathbf{a}_{i} \mathbf{b}_{j}\right) .
\end{gathered}
$$

Topology in $F^{(s)}$ is defined by the base of neighborhoods of zero

$$
F_{n}^{(s)}=\left\{a=\sum_{j=n}^{\infty} \mathbf{a}_{j} t^{j} \mid \mathbf{a}_{j} \in G F\left(p^{s}\right)\right\}
$$

If

$$
a=\sum_{j=n}^{\infty} \mathbf{a}_{j} t^{j}, \mathbf{a}_{n} \neq \mathbf{0}
$$

then by definition $\|a\|=\left(\frac{1}{p^{s}}\right)^{n}$, which implies

$$
F_{n}^{(s)}=\left\{x \in F^{(s)}:\|x\| \leq\left(\frac{1}{p^{s}}\right)^{n}\right\}
$$

BERDNIKOV et al./Turk J Math

Thus, we may consider local field $F^{(s)}$ of positive characteristic p as the field of sequences infinite in both directions

$$
a=\left(\ldots, \mathbf{0}_{n-1}, \mathbf{a}_{n}, \ldots, \mathbf{a}_{0}, \mathbf{a}_{1}, \ldots\right), \mathbf{a}_{j} \in G F\left(p^{s}\right),
$$

which have only a finite number of elements \mathbf{a}_{j} with negative j nonequal to zero, and the operations of addition and multiplication are defined by equalities

$$
\begin{gather*}
a \dot{+} b=\left(\left(\mathbf{a}_{i} \dot{+} \mathbf{b}_{i}\right)\right)_{i \in \mathbb{Z}} \\
a b=\left(\sum_{i, j: i+j=l}\left(\mathbf{a}_{i} \mathbf{b}_{j}\right)\right)_{l \in \mathbb{Z}} \tag{4}
\end{gather*}
$$

where " + " and "." are respectively addition and multiplication in $G F\left(p^{s}\right)$. Thus,

$$
\begin{aligned}
& \|a\|=\left\|\left(\ldots, \mathbf{o}_{n-1}, \mathbf{a}_{n}, \mathbf{a}_{n+1}, \ldots\right)\right\|=\left(\frac{1}{p^{s}}\right)^{n}, \text { if } \mathbf{a}_{n} \neq \mathbf{0}, \\
& F_{n}^{(s)}=\left\{a=\left(\mathbf{a}_{j}\right)_{j \in \mathbb{Z}}: \mathbf{a}_{j} \in G F\left(p^{s}\right) ; \mathbf{a}_{j}=0, \forall j<n\right\} .
\end{aligned}
$$

Let us consider $F^{(s)+}$ - the additive group of the field $F^{(s)}$. Neighborhoods $F_{n}^{(s)}$ are compact subgroups of the group $F^{(s)+}$; we will denote them as $F_{n}^{(s)+}$. They have the following properties:

1) $\cdots \subset F_{1}^{(s)+} \subset F_{0}^{(s)+} \subset F_{-1}^{(s)+} \ldots$
2) $F_{n}^{(s)+} / F_{n+1}^{(s)+} \cong G F\left(p^{s}\right)^{+}$and $\sharp\left(F_{n}^{(s)+} / F_{n+1}^{(s)+}\right)=p^{s}$.

This implies that if $s=1$ then $F^{(1)+}$ is a Vilenkin group with the stationary generating sequence $p_{n}=p$. The inverse is also true: one can define multiplication in any Vilenkin group $(\mathfrak{G}, \dot{+})$ with stationary generating sequence $p_{n}=p$ using equality (4). Supplied with such operation $(\mathfrak{G}, \dot{+}, \cdot)$ becomes a field isomorphic to $F^{(1)}$, where $e=\left(\ldots, 0,0_{-1}, 1_{0}, 0_{1}, \ldots\right)$ is a neutral element with respect to multiplication.

It was noted in [17] that the field $F^{(s)}$ can be described as a linear space over $G F\left(p^{s}\right)$. Using this description one may define the multiplication of element $a \in F^{(s)}$ on element $\bar{\lambda} \in G F\left(p^{s}\right)$ coordinatewise, i.e. $\bar{\lambda} a=\left(\ldots \mathbf{0}_{n-1}, \bar{\lambda} \mathbf{a}_{n}, \bar{\lambda} \mathbf{a}_{n+1}, \ldots\right)$, and the modulus of $\bar{\lambda} \in G F\left(p^{s}\right)$ can be defined as

$$
|\bar{\lambda}|= \begin{cases}1, & \bar{\lambda} \neq \mathbf{0}, \\ 0, & \bar{\lambda}=\mathbf{0} .\end{cases}
$$

It was also proved there that the system $g_{k} \in F_{k}^{(s)} \backslash F_{k+1}^{(s)}$ is a basis in $F^{(s)}$, i.e. any element $a \in F^{(s)}$ can be represented as:

$$
a=\sum_{k \in \mathbb{Z}} \bar{\lambda}_{k} g_{k}, \bar{\lambda}_{k} \in G F\left(p^{s}\right) .
$$

From now on we will consider $g_{k}=\left(\ldots, \mathbf{0}_{k-1},\left(\left(^{(0)}, 0^{(1)}, \ldots, 0^{(s-1)}\right)_{k}, \mathbf{0}_{k+1}, \ldots\right)\right.$. In this case $\bar{\lambda}_{k}=\mathbf{a}_{k}$.
Let us define the sets

$$
H_{0}^{(\nu)}=\left\{h \in F^{(s)}: h=\mathbf{a}_{-1} g_{-1} \dot{+} \mathbf{a}_{-2} g_{-2} \dot{+} \ldots \dot{+} \mathbf{a}_{-\nu} g_{-\nu}\right\},
$$

where ν is a fixed natural number:

$$
H_{0}=\left\{h \in F^{(s)}: h=\mathbf{a}_{-1} g_{-1} \dot{+} \mathbf{a}_{-2} g_{-2} \dot{+} \ldots \dot{+} \mathbf{a}_{-\nu} g_{-\nu}, \nu \in \mathbb{N}\right\}
$$

The set H_{0} is the set of shifts in $F^{(s)}$. It is an analogue of the set of nonnegative integers.
We will denote the collection of all characters of $F^{(s)+}$ as X. The set X generates a commutative group with respect to the multiplication of characters: $(\chi * \phi)(a)=\chi(a) \cdot \phi(a)$. The inverse element is defined as $\chi^{-1}(a)=\overline{\chi(a)}$, and the neutral element is $e(a) \equiv 1$.

Following [17] we define characters r_{n} of the group $F^{(s)+}$ in the following way. Let $x=\left(\ldots, \mathbf{0}_{k-1}, \mathbf{x}_{k}\right.$, $\left.\mathbf{x}_{k+1}, \ldots\right), \mathbf{x}_{j}=\left(x_{j}^{(0)}, x_{j}^{(1)}, \ldots, x_{j}^{(s-1)}\right) \in G F\left(p^{s}\right)$. The element \mathbf{x}_{j} can be written in the form $\mathbf{x}_{j}=$ $\left(x_{j s+0}, x_{j s+1}, \ldots, x_{j s+(s-1)}\right)$. In this case

$$
x=\left(\ldots, 0, \ldots, 0, x_{k s+0}, x_{k s+1}, \ldots, x_{k s+s-1}, x_{(k+1) s+0}, x_{(k+1) s+1}, \ldots, x_{(k+1) s+s-1}, \ldots\right)
$$

and the collection of all such sequences x is a Vilenkin group. Thus, the equality $r_{n}(x)=r_{k s+l}(x)=e^{\frac{2 \pi i}{p}\left(x_{k s+l}\right)}$ defines the Rademacher function of $F^{(s)+}$ and every character $\chi \in X$ can be described in the following way:

$$
\begin{equation*}
\chi=\prod_{n \in \mathbb{Z}} r_{n}^{a_{n}}, \quad a_{n}=\overline{0, p-1} \tag{5}
\end{equation*}
$$

Equality (5) can be rewritten as

$$
\begin{equation*}
\chi=\prod_{k \in \mathbb{Z}} r_{k s+0}^{a_{k}^{(0)}} r_{k s+1}^{a_{k}^{(1)}} \ldots r_{k s+s-1}^{a_{k}^{(s-1)}} \tag{6}
\end{equation*}
$$

and let us define

$$
\mathbf{r}_{k}^{\mathbf{a}_{k}}:=r_{k s+0}^{a_{k}^{(0)}} r_{k s+1}^{a_{k}^{(1)}} \ldots r_{k s+s-1}^{a_{k}^{(s-1)}}
$$

where $\mathbf{a}_{k}=\left(a_{k}^{(0)}, a_{k}^{(1)}, \ldots, a_{k}^{(s-1)}\right) \in G F\left(p^{s}\right)$. Then (6) takes the form

$$
\begin{equation*}
\chi=\prod_{k \in \mathbb{Z}} \mathbf{r}_{k}^{\mathbf{a}_{k}} \tag{7}
\end{equation*}
$$

We will refer to $\mathbf{r}_{k}^{(1,0, \ldots, 0)}=\mathbf{r}_{k}$ as the Rademacher functions. By definition we set

$$
\left(\mathbf{r}_{k}^{\mathbf{a}_{k}}\right)^{\mathbf{b}_{k}}=\mathbf{r}_{k}^{\mathbf{a}_{k} \mathbf{b}_{k}}, \quad \chi^{\mathbf{b}}=\left(\prod \mathbf{r}_{k}^{\mathbf{a}_{k}}\right)^{\mathbf{b}}=\prod \mathbf{r}_{k}^{\mathbf{a}_{k} \mathbf{b}}, \quad \mathbf{a}_{k}, \mathbf{b}_{k}, \mathbf{b} \in G F\left(p^{s}\right)
$$

The definition of the Rademacher function implies that if $\mathbf{x}=\left(\left(x_{k}^{(0)}, x_{k}^{(1)}, \ldots x_{k}^{(s-1)}\right)\right)_{k \in \mathbb{Z}}$ and $\mathbf{u}=$ $\left(u^{(0)}, u^{(1)}, \ldots, u^{(s-1)}\right) \in G F\left(p^{s}\right)$, then

$$
\left(\mathbf{r}_{k}^{\mathbf{u}}, \mathbf{x}\right)=\prod_{l=0}^{s-1} e^{\frac{2 \pi i}{p} u^{(l)} x_{k}^{(l)}}
$$

In [17] the following properties of characters were proved:

1) $\mathbf{r}_{k}^{\mathbf{u} \dot{\mathbf{v}}}=\mathbf{r}_{k}^{\mathbf{u}} \mathbf{r}_{k}^{\mathbf{v}}, \mathbf{u}, \mathbf{v} \in G F\left(p^{s}\right)$.

BERDNIKOV et al./Turk J Math

2) $\left(\mathbf{r}_{k}^{\mathbf{v}}, \mathbf{u} g_{j}\right)=1, \forall k \neq j, \mathbf{u}, \mathbf{v} \in G F\left(p^{s}\right)$.
3) The set of characters of the field $F^{(s)}$ is a linear space $\left(X, *, . G F\left(p^{s}\right)\right.$) over the finite field $G F\left(p^{s}\right)$ with multiplication being an inner operation and the power $\mathbf{u} \in G F\left(p^{s}\right)$ being an outer operation.
4) The sequence of Rademacher functions $\left(\mathbf{r}_{k}\right)$ is a basis in the space $\left(X, *, G F\left(p^{s}\right)\right)$.
5) Any sequence of characters $\chi_{k} \in\left(F_{k+1}^{(s)}\right)^{\perp} \backslash\left(F_{k}^{(s)}\right)^{\perp}$ is also a basis in the space $\left(X, *, G F\left(p^{s}\right)\right.$), where $F_{n}^{(s) \perp}$ is the annihilator of $F_{n}^{(s)+}$.

The dilation operator \mathcal{A} in local field $F^{(s)}$ can be defined as $\mathcal{A} x:=\sum_{n=-\infty}^{+\infty} \mathbf{a}_{n} g_{n-1}$, where $x=$ $\sum_{n=-\infty}^{+\infty} \mathbf{a}_{n} g_{n} \in F^{(s)}$. In the group of characters it is defined as $(\chi \mathcal{A}, x)=(\chi, \mathcal{A} x)$.

3. Scaling function and MRA

We will consider a case of scaling function φ, which generates an orthogonal MRA, being a step function. The set of step functions constant on cosets of a subgroup $F_{M}^{(s)}$ with the support $\operatorname{supp}(\varphi) \subset F_{-N}^{(s)}$ will be denoted as $\mathfrak{D}_{M}\left(F_{-N}^{(s)}\right), M, N \in \mathbb{N}$. Similarly, $\mathfrak{D}_{-N}\left(F_{M}^{(s)}{ }^{\perp}\right)$ is a set of step functions, constant on the cosets of a subgroup $F_{-N}^{(s)}{ }^{\perp}$ with the support $\operatorname{supp}(\varphi) \subset{F_{M}^{(s)}}^{\perp}$. If $\varphi \in \mathfrak{D}_{M}\left(F_{-N}^{(s)}\right)$ generates an orthogonal MRA, it satisfies the refinement equation $\varphi(x)=\sum_{h \in H_{0}^{(N+1)}} \beta_{h} \varphi(\mathcal{A} x \dot{-} h)$, which can be rewritten in a frequency from

$$
\begin{equation*}
\hat{\varphi}(\chi)=m_{0}(\chi) \hat{\varphi}\left(\chi \mathcal{A}^{-1}\right) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{0}(\chi)=\frac{1}{p^{s}} \sum_{h \in H_{0}^{(N+1)}} \beta_{h} \overline{\left(\chi \mathcal{A}^{-1}, h\right)} \tag{9}
\end{equation*}
$$

is the mask of equation (8).
For the step functions in the article [13] condition (3) and orthogonality condition (1) are rewritten in the terms of Rademacher functions.

1) If $\hat{\varphi}(\chi) \in \mathfrak{D}_{-N}\left({F_{M}^{(s)}}^{\perp}\right)$ is a solution of refinement equation (8) and the system of shifts $(\varphi(x \dot{-} h))_{h \in H_{0}}$ is orthonormal, then φ generates an orthogonal MRA.
2) If $\hat{\varphi}(\chi) \in \mathfrak{D}_{-N}\left(F_{M}^{(s)^{\perp}}\right)$, then the system of shifts $(\varphi(x \dot{-} h))_{h \in H_{0}}$ will be orthonormal iff for any $\mathbf{a}_{-N}, \mathbf{a}_{-N+1}, \ldots, \mathbf{a}_{-1} \in G F\left(p^{s}\right)$

$$
\begin{equation*}
\sum_{\mathbf{a}_{0}, \mathbf{a}_{1}, \ldots, \mathbf{a}_{M-1} \in G F\left(p^{s}\right)}\left|\hat{\varphi}\left(F_{-N}^{(s)}{ }^{\perp} \mathbf{r}_{-N}^{\mathbf{a}_{-N}} \ldots \mathbf{r}_{0}^{\mathbf{a}_{0}} \ldots \mathbf{r}_{M-1}^{\mathbf{a}_{M-1}}\right)\right|^{2}=1 \tag{10}
\end{equation*}
$$

Thus, to construct an orthogonal MRA one must construct a function $\hat{\varphi}(\chi) \in \mathfrak{D}_{-N}\left(F_{M}^{(s)}{ }^{\perp}\right)$, which is a solution of refinement equation (8) and which satisfies conditions (10). Satisfying both conditions is the main difficulty of this problem.

As was already mentioned in the introduction, a method for construction of a scaling function that generates non-Haar orthogonal MRA was specified in [13]. It is constructed by the means of some tree and results in a function such that $|\hat{\varphi}|$ takes two values only: 0 and 1 . A more general case will be presented in the next section.

4. Construction of orthogonal scaling function

Definition 4.1. Let $F^{(s)}$ be a local field of positive characteristic p, and N is a natural number. Then by N-valid tree we mean a tree oriented from leaves to root and satisfying these conditions:

1) Every vertex is an element of $G F\left(p^{s}\right)$, i.e has the form $\mathbf{a}_{i}=\left(a_{i}^{(0)}, a_{i}^{(1)}, \ldots, a_{i}^{(s-1)}\right), a_{i}^{(j)}=\overline{0, p-1}$.
2)The root and all vertices of level $N-1$ are equal to the zero element of $G F\left(p^{s}\right): \mathbf{0}=\left(0^{(0)}, 0^{(1)}, \ldots, 0^{(s-1)}\right)$.
3)Any path $\left(\mathbf{a}_{k} \rightarrow \mathbf{a}_{k+1} \rightarrow \cdots \rightarrow \mathbf{a}_{k+N-1}\right)$ of length $N-1$ appears in the tree exactly one time.

Let us choose N-valid tree T and construct a scaling function using it.

1) We will use this tree T to construct new tree \tilde{T}. Every vertex of the tree \tilde{T} is a vector of N elements each being an element of $G F\left(p^{s}\right): \mathbf{A}=\left(\mathbf{a}_{N}, \mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}\right)$. Such vertices are constructed in the following way: if a tree T has a path of length $N-1$ starting from \mathbf{a}_{N}

$$
\mathbf{a}_{N} \rightarrow \mathbf{a}_{N-1} \rightarrow \cdots \rightarrow \mathbf{a}_{1}
$$

then in \tilde{T} we will have a vertex with the value equal to the array of N elements ($\mathbf{a}_{N}, \mathbf{a}_{N-1}, \ldots \ldots, \mathbf{a}_{1}$). Due to condition 3) of N-validity of tree T each such array corresponds to the unique vertex of the new tree \tilde{T}. Thus, the root of \tilde{T} is an N-dimensional vector with all elements equal to the zero of $G F\left(p^{s}\right) \mathbf{O}=(\mathbf{0}, \mathbf{0}, \ldots, \mathbf{0})$. Vertices of level 1 in tree \tilde{T} are N-dimensional vectors, which have all their elements, except the first one, equal to the zero of $G F\left(p^{s}\right):\left(\mathbf{a}_{i}, \mathbf{0}, \ldots, \mathbf{0}\right)$, where \mathbf{a}_{i} is some vertex of level N in tree T. Vertices of level 2 in tree \tilde{T} are N-dimensional vectors: $\left(\mathbf{a}_{i_{2}}, \mathbf{a}_{i_{1}}, \mathbf{0}, \ldots, \mathbf{0}\right)$, where $\mathbf{a}_{i_{2}}$ and $\mathbf{a}_{i_{1}}$ are some vertices of levels $N+1$ and N of tree T respectively, which are connected. We should note that in this example $\mathbf{a}_{i_{1}} \neq \mathbf{0}$, but $\mathbf{a}_{i_{2}}$ may be a zero element of $G F\left(p^{s}\right)$. Thus, in \tilde{T} connected vertices have the form $\left(\mathbf{a}_{i_{N}}, \mathbf{a}_{i_{N-1}}, \ldots, \mathbf{a}_{i_{1}}\right) \rightarrow\left(\mathbf{a}_{i_{N-1}}, \ldots, \mathbf{a}_{i_{1}}, \mathbf{a}_{i_{0}}\right)$. However, not all vertices satisfying this condition will be connected. Arcs are taken from the original tree T. If we denote $\operatorname{height}(T)=H, \operatorname{height}(\tilde{T})=\tilde{H}$, then obviously $\tilde{H}=H-N+1$.
2) Now we will construct a directed graph Γ using \tilde{T}. We connect each vertex $\mathbf{A}_{N}=\left(\mathbf{a}_{N}, \mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}\right)$ of \tilde{T} to each vertex of lesser level of the form $\left(\mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}, \mathbf{a}_{0}\right)$, i.e. having the first $(N-1)$ elements equal to the last $(N-1)$ elements of vertex \mathbf{A}_{N}. The vertices, to which \mathbf{A}_{N} is connected, we will denote by $\left(\mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}, \tilde{\mathbf{a}}_{0}\right)$, i.e. $\mathbf{a}_{0} \in\left\{\tilde{\mathbf{a}}_{0}\right\}$ iff the vertex \mathbf{A}_{N} is connected to $\left(\mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}, \mathbf{a}_{0}\right)$ in digraph Γ.
3) Let us denote

$$
\lambda_{\mathbf{a}_{-N}, \mathbf{a}_{-N+1}, \ldots, \mathbf{a}_{-1}, \mathbf{a}_{0}}=\left|m_{0}\left(F^{(s)_{-N}^{\perp}} \mathbf{r}_{-N}^{\mathbf{a}_{-N}} \mathbf{r}_{-N+1}^{\mathbf{a}_{-N+1}} \ldots \mathbf{r}_{-1}^{\mathbf{a}_{-1}} \mathbf{r}_{0}^{\mathbf{a}_{0}}\right)\right|^{2}
$$

i.e. $\lambda_{\mathbf{a}_{-N}, \mathbf{a}_{-N+1}, \ldots, \mathbf{a}_{-1}, \mathbf{a}_{0}}$ is an $(N+1)$-dimensional array, enumerated by the elements of $G F\left(p^{s}\right)$.

If the vertex $\left(\mathbf{a}_{N}, \mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}\right)$ of graph Γ is connected to the vertices $\left(\mathbf{a}_{N-1}, \mathbf{a}_{N-2} \ldots, \mathbf{a}_{1}, \tilde{\mathbf{a}}_{0}\right)$ then we define the values of the mask in the way satisfying the condition

$$
\begin{equation*}
\sum_{\tilde{\mathbf{a}}_{0}} \lambda_{\mathbf{a}_{-N}, \mathbf{a}_{-N+1}, \ldots, \mathbf{a}_{-1}, \tilde{\mathbf{a}}_{0}}=1 \text { and } \lambda_{\mathbf{a}_{-N}, \mathbf{a}_{-N+1}, \ldots, \mathbf{a}_{-1}, \mathbf{a}_{0}}=0 \text { for any } \mathbf{a}_{0} \notin\left\{\tilde{\mathbf{a}}_{0}\right\} \tag{11}
\end{equation*}
$$

Also, let us define $m_{0}\left(F_{-N}^{(s)}{ }^{\perp}\right)=1$, which implies $\lambda_{\mathbf{0}, \mathbf{0}, \ldots, \mathbf{0}}=1$.
To present the main result we will need some extra notation. First, we must note that the orthonormality condition (10) for the system of shifts of $\varphi(x)$ can be rewritten as follows: for any $\mathbf{a}_{-N}, \mathbf{a}_{-N+1}, \ldots, \mathbf{a}_{-1} \in$
$G F\left(p^{s}\right)$

$$
\begin{gather*}
1=\sum_{\mathbf{a}_{0}, \mathbf{a}_{1}, \ldots, \mathbf{a}_{M-1} \in G F\left(p^{s}\right)}\left|\hat{\varphi}\left(F_{-N}^{(s)}{ }^{\perp} \mathbf{r}_{-N}^{\mathbf{a}_{-N}} \ldots \mathbf{r}_{-1}^{\mathbf{a}_{-1}} \mathbf{r}_{0}^{\mathbf{a}_{0}} \ldots \mathbf{r}_{M-1}^{\mathbf{a}_{M-1}}\right)\right|^{2}= \\
\sum_{\mathbf{a}_{0} \in G F\left(p^{s}\right)} \lambda_{\mathbf{a}_{-N}, \mathbf{a}_{-N+1}, \ldots, \mathbf{a}_{0}} \sum_{\mathbf{a}_{1} \in G F\left(p^{s}\right)} \lambda_{\mathbf{a}_{-N+1}, \mathbf{a}_{-N+2}, \ldots, \mathbf{a}_{1} \ldots} \ldots \sum_{\mathbf{a}_{M-2} \in G F\left(p^{s}\right)} \lambda_{\mathbf{a}_{M-N-2}, \mathbf{a}_{M-N-1}, \ldots, \mathbf{a}_{M-2}} \\
\ldots \sum_{\mathbf{a}_{M-1} \in G F\left(p^{s}\right)} \lambda_{\mathbf{a}_{M-N-1}, \mathbf{a}_{M-N}, \ldots, \mathbf{a}_{M-1}} \lambda_{\mathbf{a}_{M-N}, \mathbf{a}_{M-N+1}, \ldots, \mathbf{a}_{M-1}, \mathbf{0} \ldots \lambda_{\mathbf{a}_{M-1}, \mathbf{0}, \ldots, \mathbf{0}} .}
\end{gather*}
$$

Let us then define a sequence of N-dimensional arrays $A^{(n)}=\left(a_{\mathbf{i}_{1}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{N}}^{(n)}\right)_{\mathbf{i}_{1}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{N} \in G F\left(p^{s}\right)}$ recurrently by giving the relations of their components:

$$
\begin{gather*}
a_{\mathbf{i}_{1}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{N}}^{(0)}=\lambda_{\mathbf{i}_{1}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{N}, \mathbf{0}} \lambda_{\mathbf{i}_{2}, \mathbf{i}_{3}, \ldots, \mathbf{i}_{N}, \mathbf{0}, \mathbf{0}} \ldots \lambda_{\mathbf{i}_{N}, \mathbf{0}, \ldots, \mathbf{0}} \tag{13}\\
a_{\mathbf{i}_{1}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{N}}^{(n)}=\sum_{\mathbf{j} \in G F\left(p^{s}\right)} \lambda_{\mathbf{i}_{1}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{N}, \mathbf{j}} a_{\mathbf{i}_{2}, \mathbf{i}_{3}, \ldots, \mathbf{i}_{N}, \mathbf{j}}^{(n-1)} \tag{14}
\end{gather*}
$$

We will say that the element $a_{\mathbf{i}_{1}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{N}}^{(s)}$ corresponds to vertex $\left(\mathbf{i}_{1}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{N}\right)$.
In new notation the sum

$$
\sum_{\mathbf{a}_{M-1} \in G F\left(p^{s}\right)} \lambda_{\mathbf{a}_{M-N-1}, \mathbf{a}_{M-N}, \ldots, \mathbf{a}_{M-1}} \lambda_{\mathbf{a}_{M-N}, \mathbf{a}_{M-N+1}, \ldots, \mathbf{a}_{M-1}, \mathbf{0}} \ldots \lambda_{\mathbf{a}_{M-1}, \mathbf{0}, \ldots, \mathbf{0}}
$$

from (12) defines elements of the array $A^{(1)}$. The sum

$$
\begin{gathered}
\sum_{\mathbf{a}_{M-2} \in G F\left(p^{s}\right)} \lambda_{\mathbf{a}_{M-N-2}, \mathbf{a}_{M-N-1}, \ldots, \mathbf{a}_{M-2}} \\
\sum_{\mathbf{a}_{M-1} \in G F\left(p^{s}\right)} \lambda_{\mathbf{a}_{M-N-1}, \mathbf{a}_{M-N}, \ldots, \mathbf{a}_{M-1}} \lambda_{\mathbf{a}_{M-N}, \mathbf{a}_{M-N+1}, \ldots, \mathbf{a}_{M-1}, \mathbf{0}} \ldots \lambda_{\mathbf{a}_{M-1}, \mathbf{0}, \ldots, \mathbf{0}}
\end{gathered}
$$

defines the elements of the array $A^{(2)}$, and so on. The whole sum specified in (12) defines elements of array $A^{(M)}$. Using new notation, orthonormality condition (12) can be reformulated in the following way: the system of shifts of the function $\varphi(x) \in \mathfrak{D}_{M}\left(F_{-N}^{(s)}\right)$ is orthonormal if and only if for any $\mathbf{i}_{1}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{N}: a_{\mathbf{i}_{1}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{N}}^{(M)}=1$, in other words, iff an array $A^{(M)}$ has all its elements equal to 1 .

Lemma 4.1. The components of $A^{(0)}$ corresponding to vertices of level $l \leq N$ in the tree \tilde{T} are equal to 1 .
Proof First, let us notice that any vertex of \tilde{T} of level $l \leq N$ has the form $\left(\mathbf{a}_{l}, \mathbf{a}_{l-1}, \ldots, \mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}\right), \quad \mathbf{a}_{1} \neq \mathbf{0}$. Indeed, if a vertex has level l in \tilde{T}, then the first element of the vector - the vertex of T - is of level $l+N-1$ in T and is the beginning of the following path directed to root: $\left(\mathbf{a}_{l} \rightarrow \mathbf{a}_{l-1} \rightarrow \cdots \rightarrow \mathbf{a}_{1} \rightarrow \mathbf{0} \rightarrow \cdots \rightarrow \mathbf{0}\right)$, where \mathbf{a}_{1} is a vertex of level N and is nonzero by the N-validity condition.

We will prove the lemma by induction on l. Let $l=0$. Thus, we consider the root of \tilde{T}. The root has the form $(\mathbf{0}, \mathbf{0}, \ldots, \mathbf{0})$. By construction $\lambda_{\mathbf{0}, \mathbf{0}, \ldots, \mathbf{0}}=1$. Its corresponding element of array $A^{(0)}$ is $a_{\mathbf{0}, \mathbf{0}, \ldots, \mathbf{0}}^{(0)}$. Let us substitute $\mathbf{i}_{1}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{N}=\mathbf{0}$ into (13). We obtain

$$
a_{\mathbf{0}, \mathbf{0}, \ldots, \mathbf{0}}^{(0)}=\lambda_{\mathbf{0}, \mathbf{0}, \ldots, \mathbf{0}} \lambda_{\mathbf{0}, \mathbf{0}, \ldots, \mathbf{0}} \ldots \lambda_{\mathbf{0}, \mathbf{0}, \ldots, \mathbf{0}}=1
$$

Now we prove that if any vertex of level $l=k-1<N$ satisfies the condition $a_{\mathbf{a}_{k-1}, \mathbf{a}_{k-2}, \ldots, \mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}}^{(0)}=1$, then such a condition is also satisfied by any vertex of level $l=k \leq N$ of the tree \tilde{T}. Using (13) and substituting $\mathbf{i}_{1}=\mathbf{a}_{k-1}, \mathbf{i}_{2}=\mathbf{a}_{k-2}, \ldots, \mathbf{i}_{k-1}=\mathbf{a}_{1} \neq \mathbf{0}, \mathbf{i}_{k}=\mathbf{0}, \ldots, \mathbf{i}_{N}=\mathbf{0}$, we rewrite the induction hypothesis:

$$
\begin{gathered}
a_{\mathbf{a}_{k-1}, \mathbf{a}_{k-2}, \ldots, \mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}}^{(0)}=\lambda_{\mathbf{a}_{k-1}, \mathbf{a}_{k-2}, \ldots, \mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}} \lambda_{\mathbf{a}_{k-2}, \mathbf{a}_{k-3}, \ldots, \mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}} \ldots \lambda_{\mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}} \lambda_{\mathbf{0}, \mathbf{0}, \ldots, \mathbf{0}} \ldots \\
\ldots \lambda_{\mathbf{0}, \mathbf{0}, \ldots, \mathbf{0}}=\lambda_{\mathbf{a}_{k-1}, \mathbf{a}_{k-2}, \ldots, \mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}} \lambda_{\mathbf{a}_{k-2}, \mathbf{a}_{k-3}, \ldots, \mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0} \ldots \lambda_{\mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}}=1}
\end{gathered}
$$

Here we omit $\lambda_{\mathbf{0}, \mathbf{0}, \ldots, \mathbf{0}}=1$. Now, let

$$
\mathbf{A}_{k}=\left(\mathbf{a}_{k}, \mathbf{a}_{k-1}, \ldots, \mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}\right), \quad \mathbf{a}_{1} \neq \mathbf{0}
$$

be a vertex of level k of \tilde{T}.
Let this vertex be connected to the vertex $\mathbf{A}_{k-1}=\left(\mathbf{a}_{k-1}, \ldots, \mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}\right)$ of level $k-1$ in \tilde{T}. Then it can be shown that the vertex \mathbf{A}_{k} is only connected to the vertex \mathbf{A}_{k-1} in digraph Γ also.

First, let us prove that in graph Γ the vertex \mathbf{A}_{k} is not connected to any other vertex, which has level $k-1$ in \tilde{T}. We will prove the fact by contradiction. Assume that $\mathbf{B}_{k-1}=\left(\mathbf{b}_{k-1}, \ldots, \mathbf{b}_{1} \neq \mathbf{0}, \mathbf{0}, \ldots, \mathbf{0}\right)$ is another vertex that has level $k-1$ in \tilde{T} and that \mathbf{A}_{k} is connected to \mathbf{A}_{k-1} and \mathbf{B}_{k-1} in graph Γ. By construction, if \mathbf{A}_{k} is connected to \mathbf{B}_{k-1} then for any $i=\overline{1, k-1}, \quad \mathbf{a}_{i}=\mathbf{b}_{i}$, which implies vertices \mathbf{A}_{k-1} and \mathbf{B}_{k-1} being identical, which contradicts the uniqueness of the vertices in \tilde{T} and Γ. Thus, there is only one vertex, which is of level $(k-1)$ in \tilde{T} and to which \mathbf{A}_{k} is connected in graph Γ.

Secondly, we prove that in Γ the vertex \mathbf{A}_{k} is not connected to any vertex that has level strictly less than $k-1$ in tree \tilde{T}. Let $n>1, \mathbf{B}_{k-n}=\left(\mathbf{b}_{k-n}, \ldots, \mathbf{b}_{1}, \mathbf{0}, \ldots, \mathbf{0}\right)$ be an arbitrary vertex of level $(k-n)$ in \tilde{T}. By construction of Γ, for the vertex \mathbf{A}_{k} to be connected to \mathbf{B}_{k-n} it is necessary for the equality $\mathbf{a}_{1}=\mathbf{0}$ to hold, which is impossible by assumption $\mathbf{a}_{1} \neq \mathbf{0}$. Thus, we proved that the vertex \mathbf{A}_{k} is connected only to \mathbf{A}_{k-1} in Γ.

By construction that means that $\lambda_{\mathbf{a}_{k}, \ldots, \mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}}=1$. Thus, substituting $\mathbf{i}_{1}=\mathbf{a}_{k}, \mathbf{i}_{2}=\mathbf{a}_{k-1}, \ldots, \mathbf{i}_{k}=$ $\mathbf{a}_{1}, \mathbf{i}_{k+1}=\mathbf{0}, \ldots, \mathbf{i}_{N}=\mathbf{0}$ into (13) and using the induction hypothesis we obtain

$$
\begin{gathered}
a_{\mathbf{a}_{k}, \ldots, \mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}}^{(0)}=\lambda_{\mathbf{a}_{k}, \ldots, \mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}} \lambda_{\mathbf{a}_{k-1}, \ldots, \mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}} \ldots \lambda_{\mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}}= \\
\lambda_{\mathbf{a}_{k}, \ldots, \mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}} a_{\mathbf{a}_{k-1}, \ldots, \mathbf{a}_{1}, \mathbf{0}, \ldots, \mathbf{0}}^{(0)}=1
\end{gathered}
$$

The lemma is proved.
Lemma 4.2. Let us consider N-valid tree T and tree \tilde{T} and digraph Γ constructed using it. Let the values of $m_{0}(\chi)$ be defined as specified in equalities (8). Let also $\left(A^{(n)}\right)_{n=0}^{\infty}$ be a sequence of arrays defined by equalities
(13) and (14). Then the array $A^{(n)}$ has its elements corresponding to the vertices of level $l \leq N+n$ in tree \tilde{T} equal to 1.
Proof We will prove the lemma by induction. The validity of the base for $n=0$ follows from the previous lemma. Now we prove that if in $A^{(n-1)}$ elements corresponding to vertices of level less than or equal to $N+n-1$ are equal to one, then in $A^{(n)}$ elements corresponding to vertices of level less than or equal to $N+n$ are equal to one. Let $\mathbf{A}_{N}=\left(\mathbf{a}_{N}, \mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}\right)$ be a vertex of level $l \leq N+n$ in \tilde{T}. In graph Γ it is connected to all vertices of lower level, which we denote as $\left(\mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}, \tilde{\mathbf{a}}_{0}\right) ;$ moreover, $\sum_{\tilde{\mathbf{a}}_{0}} \lambda_{\mathbf{a}_{N}, \mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}, \tilde{\mathbf{a}}_{0}}=1$ and $\lambda_{\mathbf{a}_{N}, \mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}, \mathbf{a}_{0}}=0 \forall \mathbf{a}_{0} \notin\left\{\tilde{\mathbf{a}}_{0}\right\}$.

Also, it should be mentioned that since vertices $\left(\mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}, \tilde{\mathbf{a}}_{0}\right)$ of \tilde{T} have their level not higher than $l-1 \leq N+n-1$, then, by the induction hypothesis

$$
a_{\mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}, \tilde{\mathbf{a}}_{0}}^{(n-1)}=1, \forall \tilde{\mathbf{a}}_{0} \in\left\{\tilde{\mathbf{a}}_{0}\right\} . \text { Then }
$$

$$
\begin{gathered}
a_{\mathbf{a}_{N}, \mathbf{a}_{N-1} \ldots, \mathbf{a}_{1}}^{(n)}=\sum_{\mathbf{a}_{0} \in G F\left(p^{s}\right)} \lambda_{\mathbf{a}_{N}, \mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}, \mathbf{a}_{0}} a_{\mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}, \mathbf{a}_{0}}^{(n-1)}= \\
\sum_{\tilde{\mathbf{a}}_{0} \in\left\{\tilde{\mathbf{a}}_{0}\right\}} \lambda_{\mathbf{a}_{N}, \mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}, \tilde{\mathbf{a}}_{0}} a_{\mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}, \tilde{\mathbf{a}}_{0}}^{(n-1)}=\sum_{\tilde{\mathbf{a}}_{0} \in\left\{\tilde{\mathbf{a}}_{0}\right\}} \lambda_{\mathbf{a}_{N}, \mathbf{a}_{N-1}, \ldots, \mathbf{a}_{1}, \tilde{\mathbf{a}}_{0}}=1,
\end{gathered}
$$

which proves the lemma.
These lemmas directly imply the following theorem.
Theorem 4.3. Let the tree \tilde{T} and digraph Γ be constructed using N-valid tree T. Let the values of $m_{0}(\chi)$ be defined as specified by equalities (11). Let $\tilde{H}=$ height (\tilde{T}). Then the equality

$$
\hat{\varphi}(\chi)=\prod_{k=0}^{\infty} m_{0}\left(\chi \mathcal{A}^{-k}\right) \in \mathfrak{D}_{-N}\left(F_{M}^{(s)^{\perp}}\right)
$$

defines an orthogonal scaling function $\varphi(x) \in \mathfrak{D}_{M}\left(F_{-N}^{(s)}\right)$, and $M \leq \tilde{H}-N$.
Remark. We would like to remind [5] that a discrete dynamical system consists of a nonempty set X and a map $f: X \rightarrow X$. For $n \in \mathbb{N}$, the nth iterate of f is the n-fold composition $f^{n}=f \circ \cdots \circ f$, and f^{0} is considered an identity map. A point $x \in X$ is called a fixed point if $f(x)=x$. Starting at the initial conditions x_{0} at the 0 th iteration, we can apply the function n times to determine the state $x_{n}=f^{n}\left(x_{0}\right)$. The sequence $\left(x_{n}\right)_{n=0}^{+\infty}$ is called a trajectory.

Let us denote the collection of functions $f_{N}:\{0,1, \ldots, p-1\}^{N} \rightarrow[0,1]$ as Φ_{N} and choose a function $\Lambda \in \Phi_{N+1}$. Function Λ may be viewed as $(N+1)$-dimensional array $\Lambda=\left(\lambda_{i_{1}, i_{2}, \ldots, i_{N}, i_{N+1}}\right)$. Then the equalities (14) define discrete dynamic system $\Lambda: \Phi_{N} \rightarrow \Phi_{N}$, and the equality (13) defines the initial state. Theorem 4.3 specifies a class of discrete dynamical systems Λ with initial state $A^{(0)}$, which have a fixed point in their trajectory with initial point (13).

Theorem 4.3 for $s=1, N=1$ was proved by Kruss, for $s=1, N \in \mathbb{N}$ - by Berdnikov, and for any $s, N \in \mathbb{N}$ - by Kruss. The idea to consider the local field of positive characteristic as the vector space was proposed by Lukomskii.

BERDNIKOV et al./Turk J Math

Acknowledgments

The first author was supported by the Russian Foundation for Basic Research (grant 16-01-00152). The second and third authors were supported by the state program of the Ministry of Education and Science of the Russian Federation (project 1.1520.2014K).

References

[1] Behera B, Jahan Q. Multiresolution analysis on local fields and characterization of scaling functions. Adv Pure Appl Math 2012; 3: 181-202.
[2] Behera B, Jahan Q. Wavelet packets and wavelet frame packets on local fields of positive characteristic. J Math Anal Appl 2012; 395: 1-14.
[3] Behera B, Jahan Q. Biorthogonal wavelets on local fields of positive characteristic. Commun Math Anal 2013; 15: 52-75.
[4] Behera B, Jahan Q. Characterization of wavelets and MRA wavelets on local fields of positive characteristic. Collect Math 2015; 66: 33-53.
[5] Brin M, Stuck G. Introduction to Dynamical Systems. Cambridge, UK: Cambridge University Press, 2002.
[6] Farkov YuA. Orthogonal wavelets with compact support on locally compact abelian groups. Izv Ross Akad Nauk Ser Mat 2005; 69: 193-220 (in Russian).
[7] Farkov YuA. Orthogonal wavelets on direct products of cyclic groups. Mat Zametki 2007; 82: 934-952 (in Russian).
[8] Farkov YuA. Multiresolution analysis and wavelets on Vilenkin groups. Facta Universitatis Ser Elec Energ 2008; 21: 309-325.
[9] Gelfand I, Graev M, Piatetski-Shapiro I. Theory of Representations and Authomorphic Functions. Moscow, USSR: Nauka, 1966 (in Russian).
[10] Jiang H, Li D, Jin N. Multiresolution analysis on local fields. J Math Anal Appl 2004; 294: 523-532.
[11] Li D, Jiang H. The necessary condition and sufficient conditions for wavelet frame on local fields. J Math Anal Appl 2008; 345: 500-510.
[12] Lukomskii SF. Step refinable functions and orthogonal MRA on Vilenkin groups. J Fourier Anal Appl 2014; 20: 42-65.
[13] Lukomskii SF,Vodolasov AM. Vodolazov non-Haar MRA on local fields of positive characteristic. J Math Anal Appl 2016; 433: 1415-1440.
[14] Protasov VYu. Approximation by dyadic wavelets. Mat Sb 2007; 198: 135-152 (in Russian).
[15] Protasov VYu, Farkov YuA. Dyadic wavelets and refinable functions on a half-line. Mat Sb 2006; 197: 129160 (in Russian).
[16] Taibleson MH. Fourier Analysis on Local Fields. Princeton, NJ, USA: Princeton University Press, 1975.
[17] Vodolasov AM, Lukomskii SF. MRA on local fields of positive characteristic. Izv Saratov Univ Mat Mekh Inform 2014; 14: 511-518 (in Russian with abstract in English).

[^0]: *Correspondence: krussus@gmail.com
 2010 AMS Mathematics Subject Classification: 42C40, 43A25.

