

On orthogonal systems of shifts of scaling function on local fields of positive characteristic

Gleb Sergeevich BERDNIKOV, Iuliia Sergeevna KRUSS^{*}, Sergey Fedorovich LUKOMSKII Department of Mathematical Analysis, Saratov State University, Saratov, Russia

Received: 03.04.2015	•	Accepted/Published Online: 19.04.2016	٠	Final Version: 03.04.2017

Abstract: We present a new method for constructing an orthogonal step scaling function on local fields of positive characteristic, which generates multiresolution analysis.

Key words: Local field, scaling function, multiresolution analysis

1. Introduction

Chinese mathematicians Jiang et al. in the article [10] introduced the notion of multiresolution analysis (MRA) on local fields. For the fields $F^{(s)}$ of positive characteristic p they proved some properties and gave an algorithm for constructing wavelets for a known scaling function. Using these results they constructed "Haar MRA" and corresponding "Haar wavelets". The problem of constructing orthogonal MRA on the field $F^{(1)}$ was studied in detail in the works [6–8, 12, 14, 15].

In [11] a necessary condition and sufficient conditions for wavelet frame on local fields were given. Behera and Jahan [2] constructed the wavelet packets associated with MRA on local fields of positive characteristic. In the article [1] necessary and sufficient conditions for a function $\varphi \in L^2(F^{(s)})$ under which it is a scaling function for MRA were obtained. These conditions are as follows:

$$\sum_{k \in \mathbb{N}_0} |\hat{\varphi}(\xi + u(k))|^2 = 1$$
(1)

for a.e. ξ in unit ball \mathcal{D} ,

$$\lim_{j \to \infty} |\hat{\varphi}(\mathfrak{p}^j \xi)| = 1 \text{ for a.e. } \xi \in F^{(s)},$$
(2)

and there exists an integral periodic function $m_0 \in L^2(\mathcal{D})$ such that

$$\hat{\varphi}(\xi) = m_0(\mathfrak{p}\xi)\hat{\varphi}(\mathfrak{p}\xi) \text{ for a.e. } \xi \in F^{(s)},$$
(3)

where $\{u(k)\}$ is the set of shifts and \mathfrak{p} is a prime element. Behera and Jahan [3] proved also that if the translates of the scaling functions of two multiresolution analysis are biorthogonal, then the associated wavelet families are also biorthogonal. The same authors [4] proved a characterization of wavelets on local fields of positive

^{*}Correspondence: krussus@gmail.com

²⁰¹⁰ AMS Mathematics Subject Classification: 42C40, 43A25.

characteristic based on results on affine and quasi-affine frames. Therefore, to construct MRA on a local field $F^{(s)}$ we need to construct an integral periodic mask m_0 with conditions (1–3). To solve this problem, in articles [1–3, 10, 11], the prime element methods developed in [16] were used. In these articles only Haar wavelets were obtained. In the article by Lukomskii and Vodolazov [13], another method to construct integral periodic masks and corresponding scaling step functions that generate non-Haar orthogonal MRA were developed.

However, in the article [13], only the simple case of mask m_0 being elementary was considered, i.e. $m_0(\chi)$ is constant on cosets $(F_{-1}^{(s)+})^{\perp}$ and $m_0(\chi)$ takes only two values, 0 and 1. In this article, we get rid of these restrictions and specify the method of constructing the scaling function only with the condition that $|\hat{\varphi}|$ is a step function. We reduce this problem to the study of some dynamical systems and prove that its trajectory has a fixed point.

2. Basic concepts

Let p be a prime number, $s \in \mathbb{N}$, $GF(p^s)$ – finite field. Local field $F^{(s)}$ of positive characteristic p is isomorphic (Kovalski–Pontryagin theorem [9]) to the set of formal power series

$$a = \sum_{i=k}^{\infty} \mathbf{a}_i t^i, \ k \in \mathbb{Z}, \ \mathbf{a}_i = (a_i^{(0)}, a_i^{(1)}, \dots, a_i^{(s-1)}) \in GF(p^s).$$

Addition and multiplication in the field $F^{(s)}$ are defined as the sum and product of such series, i.e. if

$$a = \sum_{i=k}^{\infty} \mathbf{a}_i t^i, \ b = \sum_{i=k}^{\infty} \mathbf{b}_i t^i,$$

then

$$a \dot{+} b = \sum_{i=k}^{\infty} (\mathbf{a}_i \dot{+} \mathbf{b}_i) t^i, \ \mathbf{a}_i \dot{+} \mathbf{b}_i = (\mathbf{a}_i + \mathbf{b}_i) \mod p,$$
$$ab = \sum_{l=2k}^{\infty} t^l \sum_{i,j:i+j=l} (\mathbf{a}_i \mathbf{b}_j).$$

Topology in $F^{(s)}$ is defined by the base of neighborhoods of zero

$$F_n^{(s)} = \{a = \sum_{j=n}^{\infty} \mathbf{a}_j t^j | \mathbf{a}_j \in GF(p^s)\}$$

If

$$a = \sum_{j=n}^{\infty} \mathbf{a}_j t^j, \ \mathbf{a}_n \neq \mathbf{0},$$

then by definition $||a|| = (\frac{1}{p^s})^n$, which implies

$$F_n^{(s)} = \{ x \in F^{(s)} : ||x|| \le (\frac{1}{p^s})^n \}$$

Thus, we may consider local field $F^{(s)}$ of positive characteristic p as the field of sequences infinite in both directions

$$a = (\ldots, \mathbf{0}_{n-1}, \mathbf{a}_n, \ldots, \mathbf{a}_0, \mathbf{a}_1, \ldots), \ \mathbf{a}_j \in GF(p^s),$$

which have only a finite number of elements \mathbf{a}_j with negative j nonequal to zero, and the operations of addition and multiplication are defined by equalities

$$a+b = ((\mathbf{a}_i + \mathbf{b}_i))_{i \in \mathbb{Z}},$$
$$ab = (\sum_{i,j:i+j=l} (\mathbf{a}_i \mathbf{b}_j))_{l \in \mathbb{Z}},$$
(4)

where "+" and " \cdot " are respectively addition and multiplication in $GF(p^s)$. Thus,

$$||a|| = ||(\dots, \mathbf{0}_{n-1}, \mathbf{a}_n, \mathbf{a}_{n+1}, \dots)|| = (\frac{1}{p^s})^n, \text{ if } \mathbf{a}_n \neq \mathbf{0},$$
$$F_n^{(s)} = \{a = (\mathbf{a}_j)_{j \in \mathbb{Z}} : \mathbf{a}_j \in GF(p^s); \ \mathbf{a}_j = 0, \ \forall j < n\}.$$

Let us consider $F^{(s)+}$ – the additive group of the field $F^{(s)}$. Neighborhoods $F_n^{(s)}$ are compact subgroups of the group $F^{(s)+}$; we will denote them as $F_n^{(s)+}$. They have the following properties:

1) ...
$$\subset F_1^{(s)+} \subset F_0^{(s)+} \subset F_{-1}^{(s)+} \dots$$

2) $F_n^{(s)+}/F_{n+1}^{(s)+} \cong GF(p^s)^+$ and $\sharp(F_n^{(s)+}/F_{n+1}^{(s)+}) = p^s$.

This implies that if s = 1 then $F^{(1)+}$ is a Vilenkin group with the stationary generating sequence $p_n = p$. The inverse is also true: one can define multiplication in any Vilenkin group $(\mathfrak{G}, \dot{+})$ with stationary generating sequence $p_n = p$ using equality (4). Supplied with such operation $(\mathfrak{G}, \dot{+}, \cdot)$ becomes a field isomorphic to $F^{(1)}$, where $e = (\ldots, 0, 0_{-1}, 1_0, 0_1, \ldots)$ is a neutral element with respect to multiplication.

It was noted in [17] that the field $F^{(s)}$ can be described as a linear space over $GF(p^s)$. Using this description one may define the multiplication of element $a \in F^{(s)}$ on element $\overline{\lambda} \in GF(p^s)$ coordinatewise, i.e. $\overline{\lambda}a = (\dots \mathbf{0}_{n-1}, \overline{\lambda}\mathbf{a}_n, \overline{\lambda}\mathbf{a}_{n+1}, \dots)$, and the modulus of $\overline{\lambda} \in GF(p^s)$ can be defined as

$$|\overline{\lambda}| = \begin{cases} 1, & \overline{\lambda} \neq \mathbf{0}, \\ 0, & \overline{\lambda} = \mathbf{0}. \end{cases}$$

It was also proved there that the system $g_k \in F_k^{(s)} \setminus F_{k+1}^{(s)}$ is a basis in $F^{(s)}$, i.e. any element $a \in F^{(s)}$ can be represented as:

$$a = \sum_{k \in \mathbb{Z}} \overline{\lambda}_k g_k, \ \overline{\lambda}_k \in GF(p^s).$$

From now on we will consider $g_k = (..., \mathbf{0}_{k-1}, (1^{(0)}, 0^{(1)}, ..., 0^{(s-1)})_k, \mathbf{0}_{k+1}, ...)$. In this case $\overline{\lambda}_k = \mathbf{a}_k$. Let us define the sets

$$H_0^{(\nu)} = \{ h \in F^{(s)} : h = \mathbf{a}_{-1}g_{-1} \dot{+} \mathbf{a}_{-2}g_{-2} \dot{+} \dots \dot{+} \mathbf{a}_{-\nu}g_{-\nu} \},\$$

where ν is a fixed natural number:

$$H_0 = \{ h \in F^{(s)} : h = \mathbf{a}_{-1}g_{-1} \dot{+} \mathbf{a}_{-2}g_{-2} \dot{+} \dots \dot{+} \mathbf{a}_{-\nu}g_{-\nu}, \nu \in \mathbb{N} \}.$$

The set H_0 is the set of shifts in $F^{(s)}$. It is an analogue of the set of nonnegative integers.

We will denote the collection of all characters of $F^{(s)+}$ as X. The set X generates a commutative group with respect to the multiplication of characters: $(\chi * \phi)(a) = \chi(a) \cdot \phi(a)$. The inverse element is defined as $\chi^{-1}(a) = \overline{\chi(a)}$, and the neutral element is $e(a) \equiv 1$.

Following [17] we define characters r_n of the group $F^{(s)+}$ in the following way. Let $x = (\dots, \mathbf{0}_{k-1}, \mathbf{x}_k, \mathbf{x}_{k+1}, \dots)$, $\mathbf{x}_j = (x_j^{(0)}, x_j^{(1)}, \dots, x_j^{(s-1)}) \in GF(p^s)$. The element \mathbf{x}_j can be written in the form $\mathbf{x}_j = (x_{js+0}, x_{js+1}, \dots, x_{js+(s-1)})$. In this case

$$x = (\dots, 0, \dots, 0, x_{ks+0}, x_{ks+1}, \dots, x_{ks+s-1}, x_{(k+1)s+0}, x_{(k+1)s+1}, \dots, x_{(k+1)s+s-1}, \dots)$$

and the collection of all such sequences x is a Vilenkin group. Thus, the equality $r_n(x) = r_{ks+l}(x) = e^{\frac{2\pi i}{p}(x_{ks+l})}$ defines the Rademacher function of $F^{(s)+}$ and every character $\chi \in X$ can be described in the following way:

$$\chi = \prod_{n \in \mathbb{Z}} r_n^{a_n}, \quad a_n = \overline{0, p-1}.$$
(5)

Equality (5) can be rewritten as

$$\chi = \prod_{k \in \mathbb{Z}} r_{ks+0}^{a_k^{(0)}} r_{ks+1}^{a_k^{(1)}} \dots r_{ks+s-1}^{a_k^{(s-1)}}$$
(6)

and let us define

$$\mathbf{r}_{k}^{\mathbf{a}_{k}} := r_{ks+0}^{a_{k}^{(0)}} r_{ks+1}^{a_{k}^{(1)}} \dots r_{ks+s-1}^{a_{k}^{(s-1)}}$$

where $\mathbf{a}_{k} = (a_{k}^{(0)}, a_{k}^{(1)}, \dots, a_{k}^{(s-1)}) \in GF(p^{s})$. Then (6) takes the form

$$\chi = \prod_{k \in \mathbb{Z}} \mathbf{r}_k^{\mathbf{a}_k}.$$
(7)

We will refer to $\mathbf{r}_{k}^{(1,0,\ldots,0)} = \mathbf{r}_{k}$ as the Rademacher functions. By definition we set

$$(\mathbf{r}_k^{\mathbf{a}_k})^{\mathbf{b}_k} = \mathbf{r}_k^{\mathbf{a}_k \mathbf{b}_k}, \quad \chi^{\mathbf{b}} = (\prod \mathbf{r}_k^{\mathbf{a}_k})^{\mathbf{b}} = \prod \mathbf{r}_k^{\mathbf{a}_k \mathbf{b}}, \quad \mathbf{a}_k, \mathbf{b}_k, \mathbf{b} \in GF(p^s)$$

The definition of the Rademacher function implies that if $\mathbf{x} = ((x_k^{(0)}, x_k^{(1)}, \dots, x_k^{(s-1)}))_{k \in \mathbb{Z}}$ and $\mathbf{u} = (u^{(0)}, u^{(1)}, \dots, u^{(s-1)}) \in GF(p^s)$, then

$$(\mathbf{r}_k^{\mathbf{u}}, \mathbf{x}) = \prod_{l=0}^{s-1} e^{\frac{2\pi i}{p} u^{(l)} x_k^{(l)}}$$

In [17] the following properties of characters were proved:

1) $\mathbf{r}_{k}^{\mathbf{u} \neq \mathbf{v}} = \mathbf{r}_{k}^{\mathbf{u}} \mathbf{r}_{k}^{\mathbf{v}}, \ \mathbf{u}, \mathbf{v} \in GF(p^{s}).$

2) $(\mathbf{r}_k^{\mathbf{v}}, \mathbf{u}g_j) = 1, \ \forall k \neq j, \ \mathbf{u}, \mathbf{v} \in GF(p^s).$

3) The set of characters of the field $F^{(s)}$ is a linear space $(X, *, \cdot^{GF(p^s)})$ over the finite field $GF(p^s)$ with multiplication being an inner operation and the power $\mathbf{u} \in GF(p^s)$ being an outer operation.

4) The sequence of Rademacher functions (\mathbf{r}_k) is a basis in the space $(X, *, \cdot^{GF(p^s)})$.

5) Any sequence of characters $\chi_k \in (F_{k+1}^{(s)})^{\perp} \setminus (F_k^{(s)})^{\perp}$ is also a basis in the space $(X, *, \cdot^{GF(p^s)})$, where $F_n^{(s)^{\perp}}$ is the annihilator of $F_n^{(s)+}$.

The dilation operator \mathcal{A} in local field $F^{(s)}$ can be defined as $\mathcal{A}x := \sum_{n=-\infty}^{+\infty} \mathbf{a}_n g_{n-1}$, where $x = \sum_{n=-\infty}^{+\infty} \mathbf{a}_n g_n \in F^{(s)}$. In the group of characters it is defined as $(\chi \mathcal{A}, x) = (\chi, \mathcal{A}x)$.

3. Scaling function and MRA

We will consider a case of scaling function φ , which generates an orthogonal MRA, being a step function. The set of step functions constant on cosets of a subgroup $F_M^{(s)}$ with the support $\operatorname{supp}(\varphi) \subset F_{-N}^{(s)}$ will be denoted as $\mathfrak{D}_M(F_{-N}^{(s)})$, $M, N \in \mathbb{N}$. Similarly, $\mathfrak{D}_{-N}(F_M^{(s)^{\perp}})$ is a set of step functions, constant on the cosets of a subgroup $F_{-N}^{(s)^{\perp}}$ with the support $\operatorname{supp}(\varphi) \subset F_M^{(s)^{\perp}}$. If $\varphi \in \mathfrak{D}_M(F_{-N}^{(s)})$ generates an orthogonal MRA, it satisfies the refinement equation $\varphi(x) = \sum_{h \in H_0^{(N+1)}} \beta_h \varphi(\mathcal{A}x - h)$, which can be rewritten in a frequency from

$$\hat{\varphi}(\chi) = m_0(\chi)\hat{\varphi}(\chi \mathcal{A}^{-1}),\tag{8}$$

where

$$m_0(\chi) = \frac{1}{p^s} \sum_{h \in H_0^{(N+1)}} \beta_h \overline{(\chi \mathcal{A}^{-1}, h)}$$
(9)

is the mask of equation (8).

For the step functions in the article [13] condition (3) and orthogonality condition (1) are rewritten in the terms of Rademacher functions.

1) If $\hat{\varphi}(\chi) \in \mathfrak{D}_{-N}(F_M^{(s)^{\perp}})$ is a solution of refinement equation (8) and the system of shifts $(\varphi(\dot{x-h}))_{h\in H_0}$ is orthonormal, then φ generates an orthogonal MRA.

2) If $\hat{\varphi}(\chi) \in \mathfrak{D}_{-N}(F_M^{(s)^{\perp}})$, then the system of shifts $(\varphi(\dot{x-h}))_{h\in H_0}$ will be orthonormal iff for any $\mathbf{a}_{-N}, \mathbf{a}_{-N+1}, \dots, \mathbf{a}_{-1} \in GF(p^s)$

$$\sum_{\mathbf{a}_{0},\mathbf{a}_{1},\dots,\mathbf{a}_{M-1}\in GF(p^{s})} |\hat{\varphi}(F_{-N}^{(s)} \mathbf{r}_{-N}^{\mathbf{a}_{-N}} \dots \mathbf{r}_{0}^{\mathbf{a}_{0}} \dots \mathbf{r}_{M-1}^{\mathbf{a}_{M-1}})|^{2} = 1.$$
(10)

Thus, to construct an orthogonal MRA one must construct a function $\hat{\varphi}(\chi) \in \mathfrak{D}_{-N}(F_M^{(s)^{\perp}})$, which is a solution of refinement equation (8) and which satisfies conditions (10). Satisfying both conditions is the main difficulty of this problem.

As was already mentioned in the introduction, a method for construction of a scaling function that generates non-Haar orthogonal MRA was specified in [13]. It is constructed by the means of some tree and results in a function such that $|\hat{\varphi}|$ takes two values only: 0 and 1. A more general case will be presented in the next section.

4. Construction of orthogonal scaling function

Definition 4.1. Let $F^{(s)}$ be a local field of positive characteristic p, and N is a natural number. Then by N-valid tree we mean a tree oriented from leaves to root and satisfying these conditions:

1)Every vertex is an element of $GF(p^s)$, i.e has the form $\mathbf{a}_i = (a_i^{(0)}, a_i^{(1)}, \dots, a_i^{(s-1)})$, $a_i^{(j)} = \overline{0, p-1}$. 2)The root and all vertices of level N-1 are equal to the zero element of $GF(p^s)$: $\mathbf{0} = (0^{(0)}, 0^{(1)}, \dots, 0^{(s-1)})$. 3)Any path $(\mathbf{a}_k \to \mathbf{a}_{k+1} \to \dots \to \mathbf{a}_{k+N-1})$ of length N-1 appears in the tree exactly one time.

Let us choose N-valid tree T and construct a scaling function using it.

1) We will use this tree T to construct new tree \tilde{T} . Every vertex of the tree \tilde{T} is a vector of N elements each being an element of $GF(p^s)$: $\mathbf{A} = (\mathbf{a}_N, \mathbf{a}_{N-1}, \dots, \mathbf{a}_1)$. Such vertices are constructed in the following way: if a tree T has a path of length N-1 starting from \mathbf{a}_N

$$\mathbf{a}_N \to \mathbf{a}_{N-1} \to \cdots \to \mathbf{a}_1,$$

then in \tilde{T} we will have a vertex with the value equal to the array of N elements $(\mathbf{a}_N, \mathbf{a}_{N-1}, \ldots, \mathbf{a}_1)$. Due to condition 3) of N-validity of tree T each such array corresponds to the unique vertex of the new tree \tilde{T} . Thus, the root of \tilde{T} is an N-dimensional vector with all elements equal to the zero of $GF(p^s)$ $\mathbf{O} = (\mathbf{0}, \mathbf{0}, \ldots, \mathbf{0})$. Vertices of level 1 in tree \tilde{T} are N-dimensional vectors, which have all their elements, except the first one, equal to the zero of $GF(p^s)$: $(\mathbf{a}_i, \mathbf{0}, \ldots, \mathbf{0})$, where \mathbf{a}_i is some vertex of level N in tree T. Vertices of level 2 in tree \tilde{T} are N-dimensional vectors: $(\mathbf{a}_{i_2}, \mathbf{a}_{i_1}, \mathbf{0}, \ldots, \mathbf{0})$, where \mathbf{a}_{i_2} and \mathbf{a}_{i_1} are some vertices of levels N + 1 and N of tree T respectively, which are connected. We should note that in this example $\mathbf{a}_{i_1} \neq \mathbf{0}$, but \mathbf{a}_{i_2} may be a zero element of $GF(p^s)$. Thus, in \tilde{T} connected vertices have the form $(\mathbf{a}_{i_N}, \mathbf{a}_{i_{N-1}}, \ldots, \mathbf{a}_{i_1}) \to (\mathbf{a}_{i_{N-1}}, \ldots, \mathbf{a}_{i_1}, \mathbf{a}_{i_0})$. However, not all vertices satisfying this condition will be connected. Arcs are taken from the original tree T. If we denote height(T) = H, $height(\tilde{T}) = \tilde{H}$, then obviously $\tilde{H} = H - N + 1$.

2) Now we will construct a directed graph Γ using \tilde{T} . We connect each vertex $\mathbf{A}_N = (\mathbf{a}_N, \mathbf{a}_{N-1}, \dots, \mathbf{a}_1)$ of \tilde{T} to each vertex of lesser level of the form $(\mathbf{a}_{N-1}, \dots, \mathbf{a}_1, \mathbf{a}_0)$, i.e. having the first (N-1) elements equal to the last (N-1) elements of vertex \mathbf{A}_N . The vertices, to which \mathbf{A}_N is connected, we will denote by $(\mathbf{a}_{N-1}, \dots, \mathbf{a}_1, \tilde{\mathbf{a}}_0)$, i.e. $\mathbf{a}_0 \in {\{\tilde{\mathbf{a}}_0\}}$ iff the vertex \mathbf{A}_N is connected to $(\mathbf{a}_{N-1}, \dots, \mathbf{a}_1, \mathbf{a}_0)$ in digraph Γ .

3) Let us denote

$$\lambda_{\mathbf{a}_{-N},\mathbf{a}_{-N+1},...,\mathbf{a}_{-1},\mathbf{a}_{0}} = |m_{0}(F^{(s)}{}^{\perp}_{-N}\mathbf{r}_{-N}^{\mathbf{a}_{-N}}\mathbf{r}_{-N+1}^{\mathbf{a}_{-N+1}}\dots\mathbf{r}_{-1}^{\mathbf{a}_{-1}}\mathbf{r}_{0}^{\mathbf{a}_{0}})|^{2}$$

i.e. $\lambda_{\mathbf{a}_{-N},\mathbf{a}_{-N+1},\dots,\mathbf{a}_{-1},\mathbf{a}_{0}}$ is an (N+1)-dimensional array, enumerated by the elements of $GF(p^{s})$.

If the vertex $(\mathbf{a}_N, \mathbf{a}_{N-1}, \dots, \mathbf{a}_1)$ of graph Γ is connected to the vertices $(\mathbf{a}_{N-1}, \mathbf{a}_{N-2}, \dots, \mathbf{a}_1, \tilde{\mathbf{a}}_0)$ then we define the values of the mask in the way satisfying the condition

$$\sum_{\tilde{\mathbf{a}}_0} \lambda_{\mathbf{a}_{-N}, \mathbf{a}_{-N+1}, \dots, \mathbf{a}_{-1}, \tilde{\mathbf{a}}_0} = 1 \text{ and } \lambda_{\mathbf{a}_{-N}, \mathbf{a}_{-N+1}, \dots, \mathbf{a}_{-1}, \mathbf{a}_0} = 0 \text{ for any } \mathbf{a}_0 \notin \{\tilde{\mathbf{a}}_0\}.$$
 (11)

Also, let us define $m_0(F_{-N}^{(s)}) = 1$, which implies $\lambda_{\mathbf{0},\mathbf{0},...,\mathbf{0}} = 1$.

To present the main result we will need some extra notation. First, we must note that the orthonormality condition (10) for the system of shifts of $\varphi(x)$ can be rewritten as follows: for any $\mathbf{a}_{-N}, \mathbf{a}_{-N+1}, \dots, \mathbf{a}_{-1} \in$

 $GF(p^s)$

$$1 = \sum_{\mathbf{a}_{0},\mathbf{a}_{1},\dots,\mathbf{a}_{M-1}\in GF(p^{s})} |\hat{\varphi}(F_{-N}^{(s)} \mathbf{r}_{-N}^{\mathbf{a}_{-N}} \dots \mathbf{r}_{-1}^{\mathbf{a}_{-1}} \mathbf{r}_{0}^{\mathbf{a}_{0}} \dots \mathbf{r}_{M-1}^{\mathbf{a}_{M-1}})|^{2} = \sum_{\mathbf{a}_{0}\in GF(p^{s})} \lambda_{\mathbf{a}_{-N},\mathbf{a}_{-N+1},\dots,\mathbf{a}_{0}} \sum_{\mathbf{a}_{1}\in GF(p^{s})} \lambda_{\mathbf{a}_{-N+1},\mathbf{a}_{-N+2},\dots,\mathbf{a}_{1}} \dots \cdots \sum_{\mathbf{a}_{M-2}\in GF(p^{s})} \lambda_{\mathbf{a}_{M-N-2},\mathbf{a}_{M-N-1},\dots,\mathbf{a}_{M-2}} \sum_{\mathbf{a}_{M-1}\in GF(p^{s})} \lambda_{\mathbf{a}_{M-N-1},\mathbf{a}_{M-N},\mathbf{a}_{M-1}} \lambda_{\mathbf{a}_{M-N},\mathbf{a}_{M-N+1},\dots,\mathbf{a}_{M-1},\mathbf{0}} \dots \lambda_{\mathbf{a}_{M-1},\mathbf{0},\dots,\mathbf{0}}.$$
(12)

Let us then define a sequence of N-dimensional arrays $A^{(n)} = (a^{(n)}_{\mathbf{i}_1,\mathbf{i}_2,\dots,\mathbf{i}_N})_{\mathbf{i}_1,\mathbf{i}_2,\dots,\mathbf{i}_N \in GF(p^s)}$ recurrently by giving the relations of their components:

$$a_{\mathbf{i}_1,\mathbf{i}_2,\ldots,\mathbf{i}_N}^{(0)} = \lambda_{\mathbf{i}_1,\mathbf{i}_2,\ldots,\mathbf{i}_N,\mathbf{0}}\lambda_{\mathbf{i}_2,\mathbf{i}_3,\ldots,\mathbf{i}_N,\mathbf{0},\mathbf{0}}\ldots\lambda_{\mathbf{i}_N,\mathbf{0},\ldots,\mathbf{0}},\tag{13}$$

$$a_{\mathbf{i}_{1},\mathbf{i}_{2},\dots,\mathbf{i}_{N}}^{(n)} = \sum_{\mathbf{j}\in GF(p^{s})} \lambda_{\mathbf{i}_{1},\mathbf{i}_{2},\dots,\mathbf{i}_{N},\mathbf{j}} a_{\mathbf{i}_{2},\mathbf{i}_{3},\dots,\mathbf{i}_{N},\mathbf{j}}^{(n-1)}.$$
(14)

We will say that the element $a_{\mathbf{i}_1,\mathbf{i}_2,\ldots,\mathbf{i}_N}^{(s)}$ corresponds to vertex $(\mathbf{i}_1,\mathbf{i}_2,\ldots,\mathbf{i}_N)$.

In new notation the sum

$$\sum_{\mathbf{a}_{M-1}\in GF(p^s)}\lambda_{\mathbf{a}_{M-N-1},\mathbf{a}_{M-N},\dots,\mathbf{a}_{M-1}}\lambda_{\mathbf{a}_{M-N},\mathbf{a}_{M-N+1},\dots,\mathbf{a}_{M-1},\mathbf{0}}\dots\lambda_{\mathbf{a}_{M-1},\mathbf{0},\dots,\mathbf{0}}$$

from (12) defines elements of the array $A^{(1)}$. The sum

$$\sum_{\mathbf{a}_{M-2}\in GF(p^s)}\lambda_{\mathbf{a}_{M-N-2},\mathbf{a}_{M-N-1},\dots,\mathbf{a}_{M-2}}$$
$$\sum_{\mathbf{a}_{M-1}\in GF(p^s)}\lambda_{\mathbf{a}_{M-N-1},\mathbf{a}_{M-N},\dots,\mathbf{a}_{M-1}}\lambda_{\mathbf{a}_{M-N},\mathbf{a}_{M-N+1},\dots,\mathbf{a}_{M-1},\mathbf{0}}\dots\lambda_{\mathbf{a}_{M-1},\mathbf{0},\dots,\mathbf{0}}$$

defines the elements of the array $A^{(2)}$, and so on. The whole sum specified in (12) defines elements of array $A^{(M)}$. Using new notation, orthonormality condition (12) can be reformulated in the following way: the system of shifts of the function $\varphi(x) \in \mathfrak{D}_M(F_{-N}^{(s)})$ is orthonormal if and only if for any $\mathbf{i}_1, \mathbf{i}_2, \ldots, \mathbf{i}_N$: $a_{\mathbf{i}_1, \mathbf{i}_2, \ldots, \mathbf{i}_N}^{(M)} = 1$, in other words, iff an array $A^{(M)}$ has all its elements equal to 1.

Lemma 4.1. The components of $A^{(0)}$ corresponding to vertices of level $l \leq N$ in the tree \tilde{T} are equal to 1.

Proof First, let us notice that any vertex of \tilde{T} of level $l \leq N$ has the form $(\mathbf{a}_l, \mathbf{a}_{l-1}, \dots, \mathbf{a}_1, \mathbf{0}, \dots, \mathbf{0})$, $\mathbf{a}_1 \neq \mathbf{0}$. Indeed, if a vertex has level l in \tilde{T} , then the first element of the vector - the vertex of T - is of level l + N - 1in T and is the beginning of the following path directed to root: $(\mathbf{a}_l \to \mathbf{a}_{l-1} \to \dots \to \mathbf{a}_1 \to \mathbf{0} \to \dots \to \mathbf{0})$, where \mathbf{a}_1 is a vertex of level N and is nonzero by the N-validity condition. We will prove the lemma by induction on l. Let l = 0. Thus, we consider the root of T. The root has the form $(\mathbf{0}, \mathbf{0}, \dots, \mathbf{0})$. By construction $\lambda_{\mathbf{0},\mathbf{0},\dots,\mathbf{0}} = 1$. Its corresponding element of array $A^{(0)}$ is $a_{\mathbf{0},\mathbf{0},\dots,\mathbf{0}}^{(0)}$. Let us substitute $\mathbf{i}_1, \mathbf{i}_2, \dots, \mathbf{i}_N = \mathbf{0}$ into (13). We obtain

$$a_{\mathbf{0},\mathbf{0},\ldots,\mathbf{0}}^{(0)} = \lambda_{\mathbf{0},\mathbf{0},\ldots,\mathbf{0}}\lambda_{\mathbf{0},\mathbf{0},\ldots,\mathbf{0}}\ldots\lambda_{\mathbf{0},\mathbf{0},\ldots,\mathbf{0}} = 1.$$

Now we prove that if any vertex of level l = k - 1 < N satisfies the condition $a_{\mathbf{a}_{k-1},\mathbf{a}_{k-2},...,\mathbf{a}_1,\mathbf{0},...,\mathbf{0}} = 1$, then such a condition is also satisfied by any vertex of level $l = k \leq N$ of the tree \tilde{T} . Using (13) and substituting $\mathbf{i}_1 = \mathbf{a}_{k-1}, \ \mathbf{i}_2 = \mathbf{a}_{k-2}, \ \ldots, \ \mathbf{i}_{k-1} = \mathbf{a}_1 \neq \mathbf{0}, \ \mathbf{i}_k = \mathbf{0}, \ \ldots, \ \mathbf{i}_N = \mathbf{0}$, we rewrite the induction hypothesis:

Here we omit $\lambda_{\mathbf{0},\mathbf{0},\ldots,\mathbf{0}} = 1$. Now, let

$$A_k = (a_k, a_{k-1}, \dots, a_1, 0, \dots, 0), \quad a_1 \neq 0$$

be a vertex of level k of \tilde{T} .

Let this vertex be connected to the vertex $\mathbf{A}_{k-1} = (\mathbf{a}_{k-1}, \dots, \mathbf{a}_1, \mathbf{0}, \dots, \mathbf{0})$ of level k-1 in \tilde{T} . Then it can be shown that the vertex \mathbf{A}_k is only connected to the vertex \mathbf{A}_{k-1} in digraph Γ also.

First, let us prove that in graph Γ the vertex \mathbf{A}_k is not connected to any other vertex, which has level k-1 in \tilde{T} . We will prove the fact by contradiction. Assume that $\mathbf{B}_{k-1} = (\mathbf{b}_{k-1}, \ldots, \mathbf{b}_1 \neq \mathbf{0}, \mathbf{0}, \ldots, \mathbf{0})$ is another vertex that has level k-1 in \tilde{T} and that \mathbf{A}_k is connected to \mathbf{A}_{k-1} and \mathbf{B}_{k-1} in graph Γ . By construction, if \mathbf{A}_k is connected to \mathbf{B}_{k-1} then for any $i = \overline{1, k-1}$, $\mathbf{a}_i = \mathbf{b}_i$, which implies vertices \mathbf{A}_{k-1} and \mathbf{B}_{k-1} being identical, which contradicts the uniqueness of the vertices in \tilde{T} and Γ . Thus, there is only one vertex, which is of level (k-1) in \tilde{T} and to which \mathbf{A}_k is connected in graph Γ .

Secondly, we prove that in Γ the vertex \mathbf{A}_k is not connected to any vertex that has level strictly less than k-1 in tree \tilde{T} . Let n > 1, $\mathbf{B}_{k-n} = (\mathbf{b}_{k-n}, \dots, \mathbf{b}_1, \mathbf{0}, \dots, \mathbf{0})$ be an arbitrary vertex of level (k-n) in \tilde{T} . By construction of Γ , for the vertex \mathbf{A}_k to be connected to \mathbf{B}_{k-n} it is necessary for the equality $\mathbf{a}_1 = \mathbf{0}$ to hold, which is impossible by assumption $\mathbf{a}_1 \neq \mathbf{0}$. Thus, we proved that the vertex \mathbf{A}_k is connected only to \mathbf{A}_{k-1} in Γ .

By construction that means that $\lambda_{\mathbf{a}_k,\dots,\mathbf{a}_1,\mathbf{0},\dots,\mathbf{0}} = 1$. Thus, substituting $\mathbf{i}_1 = \mathbf{a}_k, \mathbf{i}_2 = \mathbf{a}_{k-1},\dots,\mathbf{i}_k = \mathbf{a}_1, \mathbf{i}_{k+1} = \mathbf{0},\dots,\mathbf{i}_N = \mathbf{0}$ into (13) and using the induction hypothesis we obtain

$$a_{\mathbf{a}_{k},\dots,\mathbf{a}_{1},\mathbf{0},\dots,\mathbf{0}}^{(0)} = \lambda_{\mathbf{a}_{k},\dots,\mathbf{a}_{1},\mathbf{0},\dots,\mathbf{0}}\lambda_{\mathbf{a}_{k-1},\dots,\mathbf{a}_{1},\mathbf{0},\dots,\mathbf{0}} \dots \lambda_{\mathbf{a}_{1},\mathbf{0},\dots,\mathbf{0}} = \lambda_{\mathbf{a}_{k},\dots,\mathbf{a}_{1},\mathbf{0},\dots,\mathbf{0}} a_{\mathbf{a}_{k-1},\dots,\mathbf{a}_{1},\mathbf{0},\dots,\mathbf{0}}^{(0)} = 1.$$

The lemma is proved.

Lemma 4.2. Let us consider N-valid tree T and tree \tilde{T} and digraph Γ constructed using it. Let the values of $m_0(\chi)$ be defined as specified in equalities (8). Let also $(A^{(n)})_{n=0}^{\infty}$ be a sequence of arrays defined by equalities

(13) and (14). Then the array $A^{(n)}$ has its elements corresponding to the vertices of level $l \leq N + n$ in tree \tilde{T} equal to 1.

Proof We will prove the lemma by induction. The validity of the base for n = 0 follows from the previous lemma. Now we prove that if in $A^{(n-1)}$ elements corresponding to vertices of level less than or equal to N+n-1are equal to one, then in $A^{(n)}$ elements corresponding to vertices of level less than or equal to N+n are equal to one. Let $\mathbf{A}_N = (\mathbf{a}_N, \mathbf{a}_{N-1}, \dots, \mathbf{a}_1)$ be a vertex of level $l \leq N + n$ in \tilde{T} . In graph Γ it is connected to all vertices of lower level, which we denote as $(\mathbf{a}_{N-1}, \dots, \mathbf{a}_1, \tilde{\mathbf{a}}_0)$; moreover, $\sum_{\tilde{\mathbf{a}}_0} \lambda_{\mathbf{a}_N, \mathbf{a}_{N-1}, \dots, \mathbf{a}_1, \tilde{\mathbf{a}}_0} = 1$ and

 $\lambda_{\mathbf{a}_N,\mathbf{a}_{N-1},\ldots,\mathbf{a}_1,\mathbf{a}_0} = 0 \ \forall \mathbf{a}_0 \notin \{\tilde{\mathbf{a}}_0\}.$

Also, it should be mentioned that since vertices $(\mathbf{a}_{N-1}, \ldots, \mathbf{a}_1, \tilde{\mathbf{a}}_0)$ of \tilde{T} have their level not higher than $l-1 \leq N+n-1$, then, by the induction hypothesis

$$a_{\mathbf{a}_{N-1},\dots,\mathbf{a}_{1},\tilde{\mathbf{a}}_{0}}^{(n-1)} = 1, \ \forall \tilde{\mathbf{a}}_{0} \in \{\tilde{\mathbf{a}}_{0}\}. \ \text{Then}$$

$$a_{\mathbf{a}_{N-1},\dots,\mathbf{a}_{1},\tilde{\mathbf{a}}_{0}}^{(n)} = \sum_{\mathbf{a}_{0} \in GF(p^{s})} \lambda_{\mathbf{a}_{N},\mathbf{a}_{N-1},\dots,\mathbf{a}_{1},\mathbf{a}_{0}} a_{\mathbf{a}_{N-1},\dots,\mathbf{a}_{1},\mathbf{a}_{0}}^{(n-1)} = \sum_{\tilde{\mathbf{a}}_{0} \in \{\tilde{\mathbf{a}}_{0}\}} \lambda_{\mathbf{a}_{N},\mathbf{a}_{N-1},\dots,\mathbf{a}_{1},\tilde{\mathbf{a}}_{0}} a_{\mathbf{a}_{N-1},\dots,\mathbf{a}_{1},\tilde{\mathbf{a}}_{0}}^{(n-1)} = \sum_{\tilde{\mathbf{a}}_{0} \in \{\tilde{\mathbf{a}}_{0}\}} \lambda_{\mathbf{a}_{N},\mathbf{a}_{N-1},\dots,\mathbf{a}_{1},\tilde{\mathbf{a}}_{0}} a_{\mathbf{a}_{N-1},\dots,\mathbf{a}_{1},\tilde{\mathbf{a}}_{0}}^{(n-1)} = \sum_{\tilde{\mathbf{a}}_{0} \in \{\tilde{\mathbf{a}}_{0}\}} \lambda_{\mathbf{a}_{N},\mathbf{a}_{N-1},\dots,\mathbf{a}_{1},\tilde{\mathbf{a}}_{0}} = 1,$$

which proves the lemma.

These lemmas directly imply the following theorem.

Theorem 4.3. Let the tree \tilde{T} and digraph Γ be constructed using N-valid tree T. Let the values of $m_0(\chi)$ be defined as specified by equalities (11). Let $\tilde{H} = height(\tilde{T})$. Then the equality

$$\hat{\varphi}(\chi) = \prod_{k=0}^{\infty} m_0(\chi \mathcal{A}^{-k}) \in \mathfrak{D}_{-N}(F_M^{(s)^{\perp}})$$

defines an orthogonal scaling function $\varphi(x) \in \mathfrak{D}_M(F_{-N}^{(s)})$, and $M \leq \tilde{H} - N$.

Remark. We would like to remind [5] that a discrete dynamical system consists of a nonempty set X and a map $f: X \to X$. For $n \in \mathbb{N}$, the *n*th iterate of f is the *n*-fold composition $f^n = f \circ \cdots \circ f$, and f^0 is considered an identity map. A point $x \in X$ is called a *fixed point* if f(x) = x. Starting at the initial conditions x_0 at the 0th iteration, we can apply the function n times to determine the state $x_n = f^n(x_0)$. The sequence $(x_n)_{n=0}^{+\infty}$ is called a *trajectory*.

Let us denote the collection of functions $f_N : \{0, 1, ..., p-1\}^N \to [0, 1]$ as Φ_N and choose a function $\Lambda \in \Phi_{N+1}$. Function Λ may be viewed as (N+1)-dimensional array $\Lambda = (\lambda_{i_1, i_2, ..., i_N, i_{N+1}})$. Then the equalities (14) define discrete dynamic system $\Lambda : \Phi_N \to \Phi_N$, and the equality (13) defines the initial state. Theorem 4.3 specifies a class of discrete dynamical systems Λ with initial state $A^{(0)}$, which have a fixed point in their trajectory with initial point (13).

Theorem 4.3 for s = 1, N = 1 was proved by Kruss, for s = 1, $N \in \mathbb{N}$ – by Berdnikov, and for any $s, N \in \mathbb{N}$ – by Kruss. The idea to consider the local field of positive characteristic as the vector space was proposed by Lukomskii.

Acknowledgments

The first author was supported by the Russian Foundation for Basic Research (grant 16-01-00152). The second and third authors were supported by the state program of the Ministry of Education and Science of the Russian Federation (project 1.1520.2014K).

References

- Behera B, Jahan Q. Multiresolution analysis on local fields and characterization of scaling functions. Adv Pure Appl Math 2012; 3: 181-202.
- [2] Behera B, Jahan Q. Wavelet packets and wavelet frame packets on local fields of positive characteristic. J Math Anal Appl 2012; 395: 1-14.
- Behera B, Jahan Q. Biorthogonal wavelets on local fields of positive characteristic. Commun Math Anal 2013; 15: 52-75.
- Behera B, Jahan Q. Characterization of wavelets and MRA wavelets on local fields of positive characteristic. Collect Math 2015; 66: 33-53.
- [5] Brin M, Stuck G. Introduction to Dynamical Systems. Cambridge, UK: Cambridge University Press, 2002.
- [6] Farkov YuA. Orthogonal wavelets with compact support on locally compact abelian groups. Izv Ross Akad Nauk Ser Mat 2005; 69: 193-220 (in Russian).
- [7] Farkov YuA. Orthogonal wavelets on direct products of cyclic groups. Mat Zametki 2007; 82: 934-952 (in Russian).
- [8] Farkov YuA. Multiresolution analysis and wavelets on Vilenkin groups. Facta Universitatis Ser Elec Energ 2008; 21: 309-325.
- [9] Gelfand I, Graev M, Piatetski-Shapiro I. Theory of Representations and Authomorphic Functions. Moscow, USSR: Nauka, 1966 (in Russian).
- [10] Jiang H, Li D, Jin N. Multiresolution analysis on local fields. J Math Anal Appl 2004; 294: 523-532.
- [11] Li D, Jiang H. The necessary condition and sufficient conditions for wavelet frame on local fields. J Math Anal Appl 2008; 345: 500-510.
- [12] Lukomskii SF. Step refinable functions and orthogonal MRA on Vilenkin groups. J Fourier Anal Appl 2014; 20: 42-65.
- [13] Lukomskii SF, Vodolasov AM. Vodolazov non-Haar MRA on local fields of positive characteristic. J Math Anal Appl 2016; 433: 1415-1440.
- [14] Protasov VYu. Approximation by dyadic wavelets. Mat Sb 2007; 198: 135-152 (in Russian).
- [15] Protasov VYu, Farkov YuA. Dyadic wavelets and refinable functions on a half-line. Mat Sb 2006; 197: 129160 (in Russian).
- [16] Taibleson MH. Fourier Analysis on Local Fields. Princeton, NJ, USA: Princeton University Press, 1975.
- [17] Vodolasov AM, Lukomskii SF. MRA on local fields of positive characteristic. Izv Saratov Univ Mat Mekh Inform 2014; 14: 511-518 (in Russian with abstract in English).