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Abstract: Recently we introduced the concept of Poincaré chaos. In the present paper, by means of the Bebutov

dynamical system, an unpredictable solution is considered as a generator of the chaos in a quasilinear system. The

results can be easily extended to different types of differential equations. An example of an unpredictable function is

provided. A proper irregular behavior in coupled Duffing equations is observed through simulations.
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1. Introduction

The row of periodic, quasiperiodic, almost periodic, recurrent, and Poisson stable motions was successively

developed in the theory of dynamical systems. Then chaotic dynamics started to be considered, which is

not a single motion phenomenon, since a prescribed set of motions is required for a definition [16, 22, 31].

Our manuscript serves for proceeding the row and involving chaos as a purely functional object in nonlinear

dynamics. In our previous paper [13], we introduced unpredictable motions based on Poisson stability. This

time, we introduce the concept of an unpredictable function as an unpredictable point in Bebutov dynamics

[29].

It was proved in [13] that an unpredictable point gives rise to the existence of chaos in the quasiminimal

set. Thus, if one shows the existence of an unpredictable solution of an equation, then the chaos exists. The

present study as well as our previous results concerning replication of chaos [12] support the opinion of Holmes

[20] that the theory of chaos has to be a part of the theory of differential equations. Since the main body of the

results on chaotic motions has been formulated in terms of differential and difference equations, we may suggest

that all these achievements have to be embedded and developed in the theory of dynamical systems or, more

specifically, in the theory of differential equations or hybrid systems.

The rest of the paper is organized as follows. In the next section, we give the auxiliary results from

the previous paper [13]. Section 3 is concerned with Bebutov dynamics and the description of unpredictable

functions. The existence of unpredictable solutions in a quasilinear system is considered in Section 4. Section

5 is devoted to examples. Finally, some concluding remarks are given in Section 6.
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2. Preliminaries

Throughout the paper, we will denote by R, R+, N , and Z the sets of real numbers, nonnegative real numbers,

natural numbers, and integers, respectively. Moreover, we will make use of the usual Euclidean norm for vectors

and the norm induced by the Euclidean norm for square matrices [21].

Let (X, d) be a metric space. A mapping π : R+ ×X → X is a semiflow on X [29] if:

(i) π(0, p) = p for all p ∈ X;

(ii) π(t, p) is continuous in the pair of variables t and p;

(iii) π(t1, π(t2, p)) = π(t1 + t2, p) for all t1, t2 ∈ R+ and p ∈ X.

Suppose that π is a semiflow on X. A point p ∈ X is stable P+ (positively Poisson stable) if there

exists a sequence {tn} , tn → ∞ as n → ∞, such that π(tn, p) → p as n → ∞ [24]. For a fixed p ∈ X, let us

denote by Θp the closure of the trajectory T (p) = {π(t, p) : t ∈ R+} , i.e. Θp = T (p).

It was demonstrated by Hilmy [19] that if the trajectory corresponding to a Poisson stable point p is

contained in a compact subset of X and it is neither a rest point nor a cycle, then the quasiminimal set contains

an uncountable set of motions everywhere dense and Poisson stable. The following theorem can be proved by

adapting the technique given in [19, 24].

Theorem 2.1 Suppose that p ∈ X is stable P+ and T (p) is contained in a compact subset of X. If Θp is

neither a rest point nor a cycle, then it contains an uncountable set of motions everywhere dense and stable

P+.

The results of our paper are correct if one considers stable P− (negatively Poisson stable) points for a

semiflow with negative time or both stable P+ and stable P− (Poisson stable) points for a flow. The definition

of a quasiminimal set is given for a Poisson stable point in [24].

The descriptions of an unpredictable point and trajectory are as follows.

Definition 2.1 ([13]) A point p ∈ X and the trajectory through it are unpredictable if there exist a positive

number ϵ0 (the unpredictability constant) and sequences {tn} and {τn} , both of which diverge to infinity, such

that lim
n→∞

π(tn, p) = p and d(π(tn + τn, p), π(τn, p)) ≥ ϵ0 for each n ∈ N.

An important point to discuss is the sensitivity or unpredictability. In famous research studies [16,

22, 23, 26, 30], sensitivity was considered as a property of a system on a certain set of initial data since it

compares the behavior of at least a couple of solutions. Definition 2.1 allows us to formulate unpredictability

for a single trajectory. Indicating an unpredictable point p, one can make an error by taking a point π(tn, p).

Then d(π(τn, π(tn, p)), π(τn, p)) ≥ ϵ0, and this is unpredictability for the motion. Thus, we speak about the

unpredictability of a single trajectory, whereas the former definitions considered the property in a set of motions.

It was proved in [13] that if p ∈ X is an unpredictable point, then T (p) is neither a rest point nor a cycle,

and that if a point p ∈ X is unpredictable, then every point of the trajectory T (p) is also unpredictable. It is

worth noting that the unpredictability constant ϵ0 is common for each point on an unpredictable trajectory.
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The dynamics on a set S ⊆ X is sensitive [16, 23] if there exists a positive number ϵ0 such that for each

u ∈ S and each positive number δ there exist a point uδ ∈ S and a positive number τδ such that d(uδ, u) < δ

and d(π(τδ, uδ), π(τδ, u)) ≥ ϵ0.

A result concerning sensitivity in a quasiminimal set is given in the next theorem.

Theorem 2.2 ([13]) The dynamics on Θp is sensitive if p ∈ X is an unpredictable point.

Theorem 2.2 mentions the presence of sensitivity in the set Θp if p is an unpredictable point in X.

According to Theorem 2.1, if the trajectory T (p) of an unpredictable point p ∈ X is contained in a compact

subset of X, then Θp contains an uncountable set of everywhere dense stable P+ motions. Additionally, since

T (p) is dense in Θp, the transitivity is also valid in the dynamics. We named this type of chaos Poincaré chaos

in our previous paper [13].

3. Unpredictable functions and chaos

This section is devoted to the description of unpredictable functions and their connection with chaos. For that

purpose, the results provided in [29] will be utilized.

Let us denote by C(R) the set of continuous functions defined on R with values in Rm, and assume

that C(R) has the topology of uniform convergence on compact sets, i.e. a sequence {hk} in C(R) is said to

converge to a limit h if for every compact set U ⊂ R the sequence of restrictions {hk|U} converges to {h|U}
uniformly.

One can define a metric d on C(R) as [29]

d(h1, h2) =
∞∑
k=1

2−kρk(h1, h2), (1)

where h1, h2 belong to C(R) and

ρk(h1, h2) = min

{
1, sup

s∈[−k,k]

∥h1(s)− h2(s)∥

}
, k ∈ N.

Let us define the mapping π : R+×C(R) → C(R) by π(t, h) = ht, where ht(s) = h(t+ s). The mapping

π defines a semiflow on C(R) and it is called the Bebutov dynamical system [29].

We describe an unpredictable function as follows.

Definition 3.1 An unpredictable function is an unpredictable point of the Bebutov dynamical system.

According to Theorem III.3 [29], a motion π(t, h) lies in a compact set if h is a bounded and uniformly

continuous function. Assuming this, by means of Theorem 2.2, we obtain that an unpredictable function h

determines chaos if it is bounded and uniformly continuous. On the basis of this result, one can say that if a

differential equation admits an unpredictable solution that is uniformly continuous and bounded, then chaos

is present in the set of solutions. In the next section, we will prove the existence of an unpredictable solution

whose quasiminimal set is a chaotic attractor.

256



AKHMET and FEN/Turk J Math

4. Unpredictable solutions of quasilinear systems

Consider the following quasilinear system,

x′ = Ax+ f(x) + g(t), (2)

where the m ×m constant matrix A has eigenvalues all with negative real parts, the function f : Rm → Rm

is continuous, and g : R → Rm is a uniformly continuous and bounded function.

Since the eigenvalues of the matrix A have negative real parts, there exist positive numbers K and ω

such that ∥eAt∥ ≤ Ke−ωt, t ≥ 0 [18].

The following conditions are required:

(C1) There exists a positive number Mf such that sup
x∈Rm

∥f(x)∥ ≤Mf ;

(C2) There exists a positive number Lf such that ∥f(x1)− f(x2)∥ ≤ Lf ∥x1 − x2∥ for all x1, x2 ∈ Rm;

(C3) KLf − ω < 0.

The main result of the present study is mentioned in the next theorem.

Theorem 4.1 Suppose that the conditions (C1) − (C3) are valid. If the function g(t) is unpredictable,

then system (2) possesses a unique uniformly exponentially stable unpredictable solution, which is uniformly

continuous and bounded on R.
Proof Using the technique for quasilinear equations [18], one can confirm under the conditions (C1)− (C3)

that system (2) possesses a unique bounded on R solution ϕ(t) that satisfies the relation

ϕ(t) =

∫ t

−∞
eA(t−u)[f(ϕ(u)) + g(u)]du. (3)

Moreover, sup
t∈R

∥ϕ(t)∥ ≤ Mϕ, where Mϕ =
K(Mf +Mg)

ω
and Mg = sup

t∈R
∥g(t)∥. The solution ϕ(t) is uniformly

continuous on R since sup
t∈R

∥ϕ′(t)∥ ≤ ∥A∥Mϕ +Mf +Mg.

Suppose that x(t) is a solution of (2) such that x(t0) = x0 for some t0 ∈ R and x0 ∈ Rm. It can be

verified that

∥x(t)− ϕ(t)∥ ≤ K ∥x0 − ϕ(t0)∥ e(KLf−ω)(t−t0), t ≥ t0,

and, therefore, ϕ(t) is uniformly exponentially stable.

Since the function g(t) is unpredictable, there exist a positive number ϵ0 ≤ 1 and sequences {tn}, {τn},
both of which diverge to infinity, such that d(gtn , g) → 0 as n → ∞ and d(gtn+τn , gτn) ≥ ϵ0 for all n ∈ N,
where the distance function d is given by (1).

First of all, we shall show that d(ϕtn , ϕ) → 0 as n→ ∞. Fix an arbitrary small positive number ϵ < 1,

and suppose that α is a positive number satisfying α ≤ ω −KLf

2ω +K − 2KLf
. Let k0 be a sufficiently large natural

number such that

k0 ≥ max

{
ln(1/αϵ)

ln 2
,

1

ω −KLf
ln

(
2K(Mf +Mg)

ωαϵ

)}
. (4)
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There exists a natural number n0 such that if n ≥ n0 , then d(gtn , g) < 2−2k0αϵ. Therefore, for n ≥ n0,

the inequality ρ2k0(gtn , g) < αϵ is valid. Since αϵ < 1, we have that ∥g(tn + s)− g(s)∥ < αϵ for s ∈ [−2k0, 2k0].

Making use of the relation (3), one can obtain that

ϕ(tn + s)− ϕ(s) =

∫ s

−∞
eA(s−u)[f(ϕ(tn + u))− f(ϕ(u)) + g(tn + u)− g(u)]du.

Thus, if s belongs to the interval [−2k0, 2k0], then it can be verified that

∥ϕ(tn + s)− ϕ(s)∥ ≤ 2K(Mf +Mg)

ω
e−ω(s+2k0) +

Kαϵ

ω

(
1− e−ω(s+2k0)

)
+KLf

∫ s

−2k0

e−ω(s−u) ∥ϕ(tn + u)− ϕ(u)∥ du. (5)

Now, let us define the functions

ψn(s) = eωs ∥ϕ(tn + s)− ϕ(s)∥ , n ≥ n0.

Inequality (5) implies that

ψn(s) ≤
Kαϵ

ω
eωs +

(
2K(Mf +Mg)−Kαϵ

ω

)
e−2ωk0 +KLf

∫ s

−2k0

ψn(u)du.

Applying Gronwall’s lemma [14], one can confirm that

ψn(s) ≤
Kαϵ

ω −KLf
eωs

(
1− e(KLf−ω)(s+2k0)

)
+

2K(Mf +Mg)

ω
eKLfse2(KLf−ω)k0 .

Hence, the inequality

∥ϕ(tn + s)− ϕ(s)∥ < Kαϵ

ω −KLf
+

2K(Mf +Mg)

ω
e(KLf−ω)(s+2k0)

is valid. Since the number k0 satisfies (4), we have e(KLf−ω)k0 ≤ ωαϵ

2K(Mf +Mg)
so that

∥ϕ(tn + s)− ϕ(s)∥ <
(
1 +

K

ω −KLf

)
αϵ

for s ∈ [−k0, k0]. Therefore, the inequality

sup
s∈[−k,k]

∥ϕ(tn + s)− ϕ(s)∥ <
(
1 +

K

ω −KLf

)
αϵ

holds for each integer k with 1 ≤ k ≤ k0. It is clear that

(
1 +

K

ω −KLf

)
αϵ < 1. Thus,

ρk(ϕtn , ϕ) <

(
1 +

K

ω −KLf

)
αϵ, 1 ≤ k ≤ k0.
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For n ≥ n0, it can be obtained by using (4) one more time that

d(ϕtn , ϕ) =
∞∑
k=1

2−kρk(ϕtn , ϕ)

<

(
1 +

K

ω −KLf

)
αϵ

k0∑
k=1

2−k +
∞∑

k=k0+1

2−k

<

(
2 +

K

ω −KLf

)
αϵ

≤ ϵ.

Hence, d(ϕtn , ϕ) → 0 as n→ ∞.

Next, we will verify the presence of a positive number ϵ0 and a sequence {τn} , τn → ∞ as n → ∞,

such that d(ϕtn+τn , ϕτn) ≥ ϵ0 for all n ∈ N.

Let N be a natural number such that
∞∑

k=N+1

2−k ≤ ϵ0
2
. One can confirm that

N∑
k=1

2−kρk(gtn+τn , gτn) ≥
ϵ0
2
.

In this case, for each n ∈ N, there exist integers kn0 between 1 and N such that

ρkn
0
(gtn+τn , gτn) ≥

2k
n
0 ϵ0
2N

≥ ϵ0
N
.

Therefore, it can be verified that

sup
s∈[−kn

0 ,kn
0 ]

∥g(tn + τn + s)− g(τn + s)∥ ≥ ϵ0
N
, n ∈ N.

The last inequality implies the existence of numbers ηn ∈ [−kn0 , kn0 ] satisfying

∥g(tn + τn + ηn)− g(τn + ηn)∥ ≥ ϵ0
N
, n ∈ N. (6)

Suppose that g(s) = (g1(s), g2(s), . . . , gm(s)), where each gi, 1 ≤ i ≤ m, is a real-valued function. In

accordance with (6), for each n ∈ N, there is an integer jn, 1 ≤ jn ≤ m, with

|gjn(tn + τn)− gjn(τn)| ≥
ϵ0
Nm

,

where τn = τn+ηn, n ∈ N. Since the function g is uniformly continuous, there exists a positive number ∆ ≤ 1,

which does not depend on the sequences {tn} and {τn} , such that both of the inequalities

∥g(tn + τn)− g(tn + τn + s)∥ ≤ ϵ0
4Nm
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and

∥g(τn)− g(τn + s)∥ ≤ ϵ0
4Nm

are valid for s ∈ [−∆,∆]. Thus, we have for s ∈ [−∆,∆] that

|gjn(tn + τn + s)− gjn(τn + s)| ≥ |gjn(tn + τn)− gjn(τn)|

− |gjn(tn + τn)− gjn(tn + τn + s)|

− |gjn(τn)− gjn(τn + s)|

≥ ϵ0
2Nm

. (7)

For each n ∈ N, one can find numbers sn1 , s
n
2 , . . . , s

n
m ∈ [−∆,∆] such that

∥∥∥ ∫ ∆

−∆

[g(tn + τn + u)− g(τn + u)] du
∥∥∥ = 2∆

( m∑
i=1

[gi(tn + τn + sni )− gi(τn + sni )]
2
)1/2

. (8)

Hence, it can be deduced by means of (7) and (8) that

∥∥∥∫ ∆

−∆

[g(tn + τn + u)− g(τn + u)] du
∥∥∥ ≥ 2∆

∣∣gjn(tn + τn + snjn)− gjn(τn + snjn)
∣∣

≥ ∆ϵ0
Nm

.

Now, using the equation

ϕ(tn + τn + s)− ϕ(τn + s) = ϕ(tn + τn −∆)− ϕ(τn −∆)

+

∫ s

−∆

A[ϕ(tn + τn + u)− ϕ(τn + u)]du

+

∫ s

−∆

[f(ϕ(tn + τn + u))− f(ϕ(τn + u))]du

+

∫ s

−∆

[g(tn + τn + u)− g(τn + u)]du,

we attain that

∥ϕ(tn + τn +∆)− ϕ(τn +∆)∥ ≥
∥∥∥∫ ∆

−∆

[g(tn + τn + u)− g(τn + u)]du
∥∥∥

−∥ϕ(tn + τn −∆)− ϕ(τn −∆)∥

−
∫ ∆

−∆

(∥A∥+ Lf ) ∥ϕ(tn + τn + u)− ϕ(τn + u)∥ du.

The last inequality implies that

sup
s∈[−∆,∆]

∥ϕ(tn + τn + s)− ϕ(τn + s)∥ ≥ ϵ0, n ∈ N,
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where ϵ0 =
∆ϵ0

2Nm[1 + ∆(∥A∥+ Lf )]
. Therefore, we have d(ϕtn+τn , ϕτn) ≥ ϵ0 for each n ∈ N.

The theorem is proved. 2

In the definition of Devaney chaos, periodic motions constitute a dense subset. However, in our case,

instead of periodic motions, Poisson stable motions take place in the dynamics. More precisely, we say that the

dynamics on the quasiminimal set of functions on R is chaotic if the dynamics on it is sensitive and transitive,

and there exists a continuum of Poisson stable trajectories dense in the quasiminimal set. Nevertheless, in

the framework of chaos there may be infinitely many periodic motions. For instance, the symbolic dynamics

of biinfinite sequences possesses both an uncountable set of nonperiodic Poisson stable motions and infinitely

many cycles [13, 31].

5. Examples

5.1. Example 1

In this subsection, we will construct an unpredictable function.

Consider the function z(t) = (z1(t), z2(t)) defined as z1(t) = pi, z2(t) = qi for t ∈ [i, i+ 1), i ∈ Z, such
that (pi, qi) is an unpredictable trajectory [13] of the Hénon map

pi+1 = α0 − β0qi − p2i
qi+1 = pi,

(9)

where β0 ̸= 0 and α0 ≥ (5+2
√
5)(1+ |β0|)2/4. The unpredictable trajectory belongs to a Cantor set such that

there exists a positive number R satisfying ∥(pi, qi)∥ ≤ R for each i ∈ Z [15, 27].

Define the continuous on R function ψ(t) such that

ψ(t) = e−γ(t−i)ψ(i) +

∫ t

i

e−γ(t−u)z(u)du, t ∈ [i, i+ 1], i ∈ Z,

where γ is a positive number and ψ(0) =

∫ 0

−∞
eγuz(u)du.

Let us show that ψ(t) is an unpredictable function. Fix an arbitrary small positive number ϵ < 1, and let

β be a positive number such that β ≤ γ

2γ + 1
. Suppose that r0 is a sufficiently large natural number such that

r0 ≥ max

{
ln(1/βϵ)

ln 2
,
1

γ
ln

(
2R

γβϵ

)}
. Since (pi, qi) is an unpredictable trajectory of (9), there exist a positive

number ϵ0 and sequences {in} , {jn} , both of which diverge to infinity, such that ∥(pi+in , qi+in)− (pi, qi)∥ < βϵ,

n ∈ N, i = −2r0,−2r0 + 1, . . . , r0 − 1, and ∥(pin+jn , qin+jn)− (pjn , qjn)∥ ≥ ϵ0, n ∈ N.

If s ∈ [−r0, r0], then one can confirm that ∥ψ(in + s)− ψ(s)∥ <
(
1 +

1

γ

)
βϵ for each n ∈ N. Therefore,

π(in, ψ) → ψ as n → ∞ so that ψ(t) is a positively Poisson stable point of the Bebutov dynamical system.

On the other hand, we have sup
s∈[0,1]

∥ψ(in + jn + s)− ψ(jn + s)∥ ≥ (1− e−γ)ϵ0
γ(1 + e−γ)

, and this proves that ψ(t) is an

unpredictable function.
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5.2. Example 2

In this part of the paper, we will show how an unpredictable point may cause irregular dynamics. For that

purpose, we will make use of coupled Duffing equations such that the first one is forced with a relay function

and the second one is perturbed with the solutions of the former.

Let us consider the following forced Duffing equation,

x′′ + 0.68x′ + 1.6x+ 0.008x3 = ν(t, ζ, λ), (10)

where the forcing term ν(t, ζ, λ) is a relay function defined as

ν(t, ζ, λ) =

{
1.2, if ζ2j(λ) < t ≤ ζ2j+1(λ), j ∈ Z,
0.4, if ζ2j−1(λ) < t ≤ ζ2j(λ), j ∈ Z. (11)

In (11), the sequence ζ = {ζj}j∈Z of switching moments is defined through the equation ζj = j + κj , j ∈ Z,

where the sequence {κj}j∈Z is a solution of the logistic map

κj+1 = λκj(1− κj). (12)

By means of the variables x1 = x and x2 = x′, equation (10) can be written as a system in the following form:

x′1 = x2
x′2 = −1.6x1 − 0.68x2 − 0.008x31 + ν(t, ζ, λ).

(13)

We suppose that the parameter λ in (12) is greater than 4 such that the map possesses an invariant

Cantor set Λ ⊂ [0, 1] [27]. It was demonstrated in [13] that for such values of the parameter the map (12)

possesses an unpredictable point in Λ. Let us consider system (13) with ζ0 ∈ Λ. For each natural number p ,

system (13) admits an unstable periodic solution with period 2p if p is odd and an unstable periodic solution

with period p if p is even [5]. The reader is referred to [1–12] for more information about the dynamics of relay

systems.

In order to illustrate the irregular dynamics of (13), we make use of the value λ = 4.007 in the system

and depict the solution corresponding to the initial data x1(0.41) = 0.6, x2(0.41) = 0.5 and ζ0 = 0.41 in Figure

1. The simulation results seen in Figure 1 confirm the presence of irregular behavior in the dynamics of (13).

Due to the instability, simulations of the system cannot be provided for large intervals of time.

Next, we take into account another Duffing equation,

y′′ + 0.95y′ + 1.8y + 0.005y3 = 0. (14)

Using the variables y1 = y and y2 = y′, equation (14) can be reduced to the system

y′1 = y2
y′2 = −1.8y1 − 0.95y2 − 0.005y31 .

(15)

We perturb (15) with the solutions of (13) and set up the system

z′1 = z2 + x1(t)
z′2 = −1.8z1 − 0.95z2 − 0.005z31 + x2(t).

(16)

262



AKHMET and FEN/Turk J Math

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

t

x 1

0 10 20 30 40 50 60 70 80 90 100

−0.5

0

0.5

t

x 2

Figure 1. The solution of (13) with x1(0.41) = 0.6, x2(0.41) = 0.5, and ζ0 = 0.41. The value λ = 4.007 is used in the

simulation. The figure reveals the presence of chaos in the dynamics of (13).
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Figure 2. Chaotic behavior in the dynamics of system (16). The solution (x1(t), x2(t)) represented in Figure 1 is

utilized as the perturbation in (16). The irregularity is observable in both z1 and z2 coordinates.

System (16) is in the form of (2), where A =

(
0 1

−1.8 −0.95

)
, f(z1, z2) = (0,−0.005z31), and g(t) =

(x1(t), x2(t)). Both eigenvalues of A have real parts −0.475, and the coefficient of the nonlinear term is chosen

sufficiently small in absolute value so that the conditions (C1)− (C3) are valid for (16).

Figure 2 shows the solution of (16) with z1(0.41) = 0.1 and z2(0.41) = 0.2. For the simulation, the

solution (x1(t), x2(t)), which is represented in Figure 1, is used. One can observe in Figure 2 that the represented

solution behaves irregularly.

Next, we will demonstrate the presence of periodic motions in system (16) by means of the Ott–Grebogi–

Yorke (OGY) control technique [25]. Since the logistic map (12) is the main source of the chaotic behavior

in the coupled system (13) + (16), we will apply the OGY method to the map. Let us explain briefly the

method for the logistic map [28]. Suppose that the parameter λ in (12) is allowed to vary in the range of

[4.007− ε, 4.007 + ε] , where ε is a given small positive number. Consider an arbitrary solution {κj} , κ0 ∈ Λ,

of the map, and denote by κ(i), i = 1, 2, . . . , p, the target p -periodic orbit to be stabilized. In the OGY control

method [28], at each iteration step j after the control mechanism is switched on, we consider the logistic map
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Figure 3. The stabilization of the 2-periodic solution of (16) corresponding to the fixed point 3.007/4.007 of the logistic

map (12). The value ε = 0.095 is used and the control is switched on at t = ζ20.

with the parameter value λ = λ̄j , where

λ̄j = 4.007

(
1 +

(2κ(i) − 1)(κj − κ(i))

κ(i)(1− κ(i))

)
, (17)

provided that the number on the right-hand side of the formula (17) belongs to the interval [4.007−ε, 4.007+ε].
In other words, formula (17) is valid if the trajectory {κj} is sufficiently close to the target periodic orbit.

Otherwise, we take λ̄j = 4.007, so that the system evolves at its original parameter value, and wait until the

trajectory {κj} enters a sufficiently small neighborhood of the periodic orbit κ(i), i = 1, 2, . . . , p, such that the

inequality −ε ≤ 4.007
(2κ(i) − 1)(κj − κ(i))

κ(i)(1− κ(i))
≤ ε holds. If this is the case, the control of chaos is not achieved

immediately after switching on the control mechanism. Instead, there is a transition time before the desired

periodic orbit is stabilized. The transition time increases if the number ε decreases [17].

Figure 3 shows the stabilization of an unstable 2-periodic solution of (16). Here, the OGY control method

is used around the fixed point 3.007/4.007 of the logistic map (12), and the simulation is performed for the

initial data x1(0.41) = 0.6, x2(0.41) = 0.5, z1(0.41) = 0.1, z2(0.41) = 0.2, ζ0 = 0.41. The control is switched

on at t = ζ20 and the value ε = 0.095 is utilized. One can confirm that even if the control is switched on at

t = ζ20 there is a transition time before the stabilization such that the control becomes dominant approximately

at t = 76. Figure 3 manifests that the OGY control technique is appropriate for the stabilization of the unstable

periodic motions of system (16).

On the other hand, Figure 4 shows the simulation result for (16) when the OGY method is applied around

the 2-periodic orbit κ(1) ≈ 0.34459, κ(2) ≈ 0.90497 of (12). The represented solution corresponds again to the

initial data x1(0.41) = 0.6, x2(0.41) = 0.5, z1(0.41) = 0.1, z2(0.41) = 0.2, ζ0 = 0.41. The value ε = 0.072

is used and the control is switched on at t = ζ25. The presence of a transition time before the stabilization is

observable in Figure 4 such that the control becomes dominant approximately at t = 46. One can observe that

the stabilized 2-periodic solutions seen in Figure 3 and Figure 4 are different, and this reveals the presence of

periodic motions.
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Figure 4. The stabilization of the 2-periodic solution of (16) corresponding to the 2-periodic orbit κ(1) ≈ 0.34459,

κ(2) ≈ 0.90497 of (12). The value ε = 0.072 is used and the control is switched on at t = ζ25.

6. Conclusions

The unpredictable function has been defined as an unpredictable point of the Bebutov dynamics, and chaos in

the quasiminimal set of the function is verified. This is the first time in the literature that the existence of an

unpredictable solution for a quasilinear ordinary differential equation is proved.

The concept of unpredictable solutions can be useful for finding more delicate features of chaos in systems

with complicated dynamics. Studies based on unpredictable functions may pave the way for the functional

analysis of chaos to involve the operator theory results. Hopefully, our approach will give a basis for a deeper

comprehension and possibility to unite different appearances of chaos. In this framework, the results can be

developed for partial differential equations, integrodifferential equations, functional differential equations, and

evolution systems.
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