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Abstract: In this paper, we consider a class Kα of all functions f univalent in the unit disk ∆ that are normalized by

f(0) = f ′(0) − 1 = 0 while the sets f(∆) are convex in two symmetric directions: eiαπ/2 and e−iαπ/2 , α ∈ [0, 1] . It

means that the intersection of f(∆) with each straight line having the direction eiαπ/2 or e−iαπ/2 is either a compact

set or an empty set. We find the Koebe set for Kα . Moreover, we perform the same operation for functions in Kβ,γ ,

i.e. for functions that are convex in two fixed directions: eiβπ/2 and eiγπ/2 , −1 ≤ β ≤ γ ≤ 1.
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1. Introduction

Let D ⊂ C be a domain. The set D is said to be convex in the direction of eiγ if the intersection of D with

each straight line having the direction eiγ is either a compact set (i.e. a straight line, a ray, or a segment) or

an empty set. Since the convexity of the set D in the direction of −eiγ is equivalent to the convexity of D in

the direction of eiγ , one can discuss only the case γ ∈ [−π/2, π/2].

Let A be the class of all functions analytic in ∆ ≡ {ζ ∈ C : |ζ| < 1} and normalized by f(0) = f ′(0)−1 =

0. Denote by Kα the class of those univalent functions f ∈ A for which f(∆) is a set convex in two symmetric

directions: eiαπ/2 and e−iαπ/2 , α ∈ [0, 1]. For α = 0 and α = 1 the set Kα reduces to two well-known families:

K0 = K(1) consisting of functions convex in the direction of the real axis and K1 = K(i) consisting of functions

convex in the direction of the imaginary axis. These classes were discussed, among others, by Hengartner and

Schober, Goodman and Saff, Ciozda, Brown, and Prokhorov (see [1–17]). The set Kα , α ∈ (0, 1) has not been

discussed yet.

In this paper, we shall find the Koebe set for Kα . Let us recall that for a given class A ⊂ A , the Koebe

set for A is a set of the form K(A) =
∩
f∈A f(∆). Usually, the Koebe set is a domain; in this case we also call

it the Koebe domain.

The main tool used to this end is the technique of subordination. Recall that for two analytic functions

f and g , f is subordinated to g if and only if there exists a function ω analytic in ∆, ω(0) = 0, |ω(z)| < 1 for

all z ∈ ∆, such that f(z) = g(ω(z)). In this case, we write f ≺ g . Additionally, if the function g is univalent

then we have

f ≺ g if and only if f(∆) ⊂ g(∆).
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For a given set E , we use the following notation: E = {w : w ∈ E} , k · E = {kw : w ∈ E} ,

Ec = {w : w /∈ E} .

2. Extremal functions for Kα

In this section we describe the extremal functions for the problem of finding the Koebe set for Kα . For such

an extremal function f there exist boundary points of f(∆) that coincide with the points of ∂K(Kα), i.e. the

boundary points of the Koebe set K(Kα).

Lemma 1 If f ∈ Kα , α ∈ [0, 1] , then f(z) , −f(−z) , and −f(−z) also belong to Kα .

The proof of this lemma is obvious. From Lemma 1 we conclude that if a set E is the image of ∆ under a

function belonging to Kα then there exist functions in Kα mapping ∆ onto sets E , −E , and −E . The above

three sets are symmetric to E with respect to the real axis, the origin, and the imaginary axis, respectively.

Furthermore, from Lemma 1 it follows that it is enough to describe the boundary of the Koebe set for

Kα in the first quarter of the complex plane. The whole boundary can be obtained by taking the reflection of

this curve in both axes.

Let f be a function in Kα , α ∈ (0, 1) and let w0 be an arbitrary point that is not in f(∆). The

convexity of f in the direction eiαπ/2 gives that at least one of two rays emanating from w0 in the direction

eiαπ/2 or −eiαπ/2 is disjoint from f(∆). Similarly, from the convexity of f in the direction e−iαπ/2 it follows

that at least one of two rays emanating from w0 in the direction e−iαπ/2 or −e−iαπ/2 is disjoint from f(∆).

Without going into detail, it means that f(∆) is disjoint from at least one of the following four sectors:

D1 = {w ∈ C : −απ/2 ≤ arg(w − w0) ≤ απ/2} (1)

D2 = {w ∈ C : απ/2 ≤ arg(w − w0) ≤ (2 − α)π/2} (2)

D3 = {w ∈ C : (2 − α)π/2 ≤ arg(w − w0) ≤ (2 + α)π/2} (3)

D4 = {w ∈ C : −(2 − α)π/2 ≤ arg(w − w0) ≤ −απ/2} (4)

However, if, for instance, argw0 = απ/2 then 0 belongs to the boundaries of both sets: D3 and D4 . Hence,

f(∆) is not disjoint from either D3 or D4 . On the other hand, if argw0 ∈ (−απ/2, απ/2) then 0 ∈ D3 ; hence

f(∆) ∩D3 ̸= ∅ . A similar argument can be given for other values of the argument of w0 .

Now we shall find the functions that map ∆ univalently onto (D1)c and (D2)c . We will show that the

images of these functions are sufficient to determine the Koebe sets for Kα .

Let α be a fixed number in (0, 1). It is known that the function

f(z) = a

[
1 −

(
1 − z

1 + z

)2−α
]
, a =

1

2(2 − α)
, z ∈ ∆ (5)

maps ∆ univalently onto the complement of the sector {w ∈ C : | arg(w − a)| ≤ απ/2} . Consider the Möbius

transform of f given by

ft(z) =
f
(
z−it
1+itz

)
− f(−it)

(1 − t2)f ′(−it)
, t ∈ (−1, 1) , z ∈ ∆. (6)
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Since

f ′(−it) =

(
1 + it

1 − it

)1−α

/(1 − it)2 , (7)

the function ft maps ∆ univalently onto the complement of the sector measuring απ with the vertex in

at = a 1+t2

1−t2 . This sector is not necessarily symmetric with respect to the real axis because the expression

f ′(−it) is not always real. Putting

f ′(−it) = k(t)eiθ(t), (8)

we can see that the bisector of the discussed sector has the direction e−iθ(t) . Now

Ft(z) = eiθ(t)ft(ze
−iθ(t)) , z ∈ ∆

is the univalent mapping of ∆ onto the complement of the sector measuring απ with the vertex in At = ate
iθ(t) ;

its bisector is parallel to the real axis. Hence,

Ft(∆) = C \ {w ∈ C : | arg(w −At)| ≤ απ/2} .

Applying (7) and (8), we have

θ(t) = arg f ′(−it) = 2(2 − α) arg(1 + it) = 2(2 − α) arctan t

and consequently

t = tan
θ(t)

2(2 − α)
.

The above yields that

t ∈ (−1, 1) ⇔ θ(t) ∈ (−(2 − α)π/2, (2 − α)π/2) .

Combining the above facts, we obtain the following form of At :

At =
1

2(2 − α) cos2(θ(t)/(2 − α))
eiθ(t). (9)

In an analogous way we find the function Gt that maps ∆ univalently onto the complement of the set

D2 = {w ∈ C : απ/2 ≤ arg(w − w0) ≤ (2 − α)π/2} . The sector D2 has the measure (1 − α)π .

Taking β = 1 − α , b = (2(2 − β))−1 and

g(z) = ib

[
1 −

(
1 − z/i

1 + z/i

)2−β
]

, z ∈ ∆, (10)

we obtain
g(∆) = C \ {w ∈ C : απ/2 ≤ arg(w − ib) ≤ (2 − α)π/2} .

Considering

gt(z) =
g
(
z−t
1−tz

)
− g(−t)

(1 − t2)g′(−t)
, t ∈ (−1, 1) , z ∈ ∆
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and

Gt(z) = eiψ(t)gt(ze
−iψ(t)) , z ∈ ∆

with
ψ(t) = −2(1 + α) arctan t

leads to
Gt(∆) = C \ {w ∈ C : απ/2 ≤ arg(w −Bt) ≤ (2 − α)π/2} .

The vertex of this sector is

Bt =
i

2(1 + α) cos2(ψ(t)/(1 + α))
eiψ(t). (11)

Moreover,

t ∈ (−1, 1) ⇔ ψ ∈ (−(1 + α)π/2, (1 + α)π/2) .

The same result can be achieved using a geometric approach. A set

{w ∈ C : απ/2 ≤ arg(w −Bt) ≤ (2 − α)π/2}

is obtained from the set
{w ∈ C : | arg(w −At)| ≤ απ/2}

substituting α by 1 − α and applying two transformations: the axial symmetry with respect to the real axis

and the rotation through an angle π/2 about the origin. Consequently, Gt may be obtained as a composition

of Ft with some suitably taken transformations.

From an argument similar to the one presented above but given for α = 0, it follows that f defined by

(5) reduces to the well-known Koebe function f(z) = z
(1+z)2 . In this case, the Möbius transform (6) leads to

ft(z) =
z(

1 + 1+it
1−itz

)2

(
1 +

2it

1 + t2
z

)
.

The set ft(∆) coincides with the complement of a ray having the direction e−iθ , where θ = 4 arctan t .

Eventually, the composition of ft with a suitably taken rotation generates the function

Ft(z) =
z(

1 + e−iθ/2z
)2 ·

(
1 + i sin(θ/2)e−iθz

)
θ = 4 arctan t

which maps ∆ univalently onto the complement of the horizontal ray.

On the other hand, for α = 0 (i.e. for β = 1) the function g given by (10) is of the form g(z) = z
1+z/i .

After some easy calculus, we obtain

gt(z) =
z

1 + zeiψ/i
, ψ = −2 arctan t t ∈ (−1, 1)

and hence Gt(z) = z
1+z/i for all t ∈ (−1, 1).

When α is equal to 1, the situation is reversed. A function f is equal to f(z) = z
1+z . Then

ft(z) =
z

1 + zeiθ
θ = 2 arctan t t ∈ (−1, 1)
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and Ft(z) = z
1+z for all t ∈ (−1, 1). On the other hand, g can be written as g(z) = z

(1+z/i)2 . This yields that

gt(z) =
z(

1 − i1−it1+itz
)2

(
1 − 2t

1 + t2
z

)

and consequently

Gt(z) =
z(

1 + e−iψ/2z/i
)2 ·

(
1 + i sin(ψ/2)e−iψz/i

)
ψ = −4 arctan t.

The function G maps ∆ univalently onto the complement of the vertical ray. Moreover, Gt(z) = iF−t(−iz).

The functions Ft (for α = 0) and Gt (for α = 1) were found by Reade and Zlotkiewicz as well as by

Goodman and Saff. They used these functions to determine the Koebe sets for the class of functions convex in

the direction of the real axis and the imaginary axis, respectively.

3. Koebe set for Kα

Let A and B be the functions of the form

A(θ) =
1

2(2 − α) cos(θ/(2 − α))
eiθ θ ∈ (−(2 − α)π/2, (2 − α)π/2) , (12)

B(ψ) =
i

2(1 + α) cos(ψ/(1 + α))
eiψ ψ ∈ (−(1 + α)π/2, (1 + α)π/2) . (13)

These functions correspond to the vertices of the sectors from the previous section (see formulae (9), (11)).

Observe that for θ ∈ [0, (2 − α)π/2)) the function |A(θ)| is increasing. Moreover,

ReA(θ) ≥ 0 ⇔ θ ∈ [−π/2, π/2] .

Analogously, for ψ ∈ [0, (1 + α)π/2) a function |B(ψ)| is increasing and

ImB(ψ) ≥ 0 ⇔ ψ ∈ [−π/2, π/2] .

Denote by EA and EB two bounded sets that have the boundaries

{A(θ) : θ ∈ [−π/2, π/2]} ∪ {−A(θ) : θ ∈ [−π/2, π/2]}

and
{B(ψ) : ψ ∈ [−π/2, π/2]} ∪ {−B(ψ) : ψ ∈ [−π/2, π/2]}

respectively.

Let α1 be the only solution in [0, 1] of the equation

(2 − α)

(
cos

π

2(2 − α))
− 1

)
+ 1 − 2α = 0 (14)

and let α2 = 1 − α1 . The exact values of these numbers are: α1 = 0.181 . . . and α2 = 0.818 . . . .
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Lemma 2 If α ∈ [α1, α2] then the curves given by (12) and (13) have one common point in the closed first

quarter of the complex plane.

Proof The complex equation A(θ) = B(ψ) is equivalent to the system of real equations{
θ = π/2 + ψ

(2 − α) cos θ
2−α = (1 + α) cos ψ

1+α .

Applying the first condition, the second one takes the form

h(α, θ) = 0 (15)

where

h(α, θ) = (2 − α) cos
θ

2 − α
− (1 + α) cos

π/2 − θ

1 + α
, α ∈ [0, 1] θ ∈ [0, π/2]. (16)

Since

∂h

∂θ
= −

(
sin

θ

2 − α
+ sin

π/2 − θ

1 + α

)
is negative for all (α, θ) ∈ [0, 1] × [0, π/2], the function h with fixed α is decreasing for θ ∈ [0, π/2].

Observe that min{h(0, θ) : θ ∈ [0, π/2]} = h(0, π/2) =
√

2 − 1 > 0. It means that for α = 0 the function

h given by (16) does not vanish. Therefore, the curves A(θ) and B(ψ) have no common points in the first

quadrant of the complex plane.

Similarly, max{h(1, θ) : θ ∈ [0, π/2]} = h(1, 0) = 1 −
√

2 < 0 means that for α = 1 the curves A(θ) and

B(ψ) do not intersect each other in the first quadrant.

From the above we conclude that the discussed curves have a point of intersection if and only if (15) has

a solution; it holds only for some range of variability of α .

For a fixed θ ∈ [0, π/2], the function

[0, 1] ∋ α 7→ (2 − α) cos
θ

2 − α

decreases and a function

[0, 1] ∋ α 7→ (1 + α) cos
π/2 − θ

1 + α

increases. Hence, for a fixed θ , the function h , as a function of a variable α , is decreasing.

Consequently, there exists only one number α ∈ (0, 1), which is the solution of h(α, π/2) = 0; let us

denote it by α1 . The number α1 satisfies equation (14). Analogously, there exists only one number α ∈ (0, 1)

such that h(α2, 0) = 0; let us denote it by α2 . It is easy to check that α2 = 1 − α1 .

It follows from the monotonicity of h(α, θ) with respect to θ that if α ∈ (α1, α2) then there exists only

one θα ∈ (0, π/2) satisfying h(α, θα) = 0. Moreover, for θ ∈ [0, θα) we have h(α, θ) > 0 and for θ ∈ (θα, π/2]

there is h(α, θ) < 0. 2

Now we are ready to prove the main result of the paper. Let r1(θ), r2(θ) be given as follows

r1(θ) =

[
2(2 − α) cos

θ

2 − α

]−1
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r2(θ) =

[
2(1 + α) cos

θ − π/2

1 + α

]−1

.

Let α1 be the solution of (14), α2 = 1 − α1 , and θα be the number from the proof of Lemma 2.

Theorem 1 The Koebe set for the class Kα , α ∈ [0, 1] is a bounded domain that is symmetric with respect to

both axes of the complex plane. Its boundary in the first quadrant of the complex plane has the polar equation

w = r(θ)eiθ , where:

a) r(θ) = r1(θ) θ ∈ [0, π/2] for α ∈ [0, α1]

b) r(θ) =

{
r1(θ) θ ∈ [0, θα]

r2(θ) θ ∈ [θα, π/2]
for α ∈ [α1, α2]

c) r(θ) = r2(θ) θ ∈ [0, π/2] for α ∈ [α2, 1].

The Koebe sets for two selected values of α are presented in Figure 1.

0,2

-0,2
0

-0,2

-0,4

0,1

0,4

0-0,1 0,2

0,3

-0,2

0,2

0,1

-0,1

-0,3

0,2-0,2
0

0,3-0,1 0,1-0,3 0

Figure 1. Koebe sets K(Kα) for α = 1/10 (the left one) and α = 1/3 (the right one).

Proof Let w0 ∈ C be an arbitrary boundary point of K(Kα) with a fixed α ∈ [0, 1]. There exists a function

fw0 ∈ Kα such that w0 ∈ ∂fw0(∆).

By virtue of Lemma 1, the following functions fw0(z), −fw0(−z), and −fw0(−z) also belong to Kα ,

and so the points w0 , −w0 , and −w0 belong to the boundary of the set K(Kα). It means that K(Kα) is

symmetric with respect to both axes of the complex plane.

From the convexity of fw0 in the directions eiαπ/2 and −eiαπ/2 we conclude that at least one of the four

possibilities holds:

fw0(∆) ⊂ (Dk)c , k = 1, 2, 3, 4

where Dk are defined by (1)–(4). We shall discuss each case separately.

At the beginning, assume that fw0(∆) ⊂ (D1)c . For this reason, fw0(∆) ⊂ Ft(∆) for some t ∈ (−1, 1).

However, Ft(0) = 0 and Ft is univalent; it yields that fw0 ≺ Ft . On the other hand, 1 = f ′w0
(0) ≤ F ′

t (0) = 1,
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which implies that fw0 ≡ Ft . Hence, w0 = A(θ), where θ = argw0 ∈ (−(2 − α)π/2, (2 − α)π/2). It means that

the points A(θ) may belong to the boundary of the Koebe set for Kα only if the extremal functions fw0 = fA(θ)

satisfy fA(θ)(∆) = (D1)c .

From Lemma 1 it follows that the points −A(θ), θ ∈ (−(2 − α)π/2, (2 − α)π/2) coincide with the

boundary of K(Kα) only if the functions f−A(θ) satisfy the condition f−A(θ)(∆) = (D3)c .

Suppose now that fw0(∆) ⊂ (D2)c . Hence, fw0(∆) ⊂ Gt(∆) for some t ∈ (−1, 1). Consequently,

fw0 ≺ Gt . Since 1 = f ′w0
(0) ≤ G′

t(0) = 1, there is fw0 ≡ Gt . It means that w0 = B(ψ), where

ψ = argw0 − π/2 ∈ (−(1 + α)π/2, (1 + α)π/2). This shows that the points B(ψ) belong to the Koebe set

for Kα only if the functions fw0 = fB(ψ) satisfy fB(ψ)(∆) = (D2)c .

By virtue of Lemma 1, the points −B(ψ), ψ ∈ (−(1 + α)π/2, (1 + α)π/2) are the boundary points of

K(Kα) only if the complements of the images of ∆ under f−B(ψ) are equal to D4 .

The above considerations prove that, in order to find the boundary of K(Kα), it is sufficient to discuss

only the curves A(θ), B(ψ) defined by (12), (13), and the curves obtained from these two curves as a result of

the axial symmetry with respect to both axes of the complex plane, or equivalently as a result of the symmetry

with respect to the origin. We have proved

K(Kα) = EA ∩ EB .

The final step is finding a solution of

min {|A(θ)|, |B(ψ)| : argA(θ) = argB(ψ) = φ} (17)

for each fixed number φ ∈ [0, π/2].

From Lemma 2 we know that if α ∈ (α1, α2) then the curves given by (12) and (13) intersect each

other only in one point in the open first quadrant of the complex plane. For this reason, if α ∈ (α1, α2),

then it is enough to derive the minimum (17) for φ = 0. From (12) and (13) it follows that argA(θ) = 0

for θ = 0 and argB(ψ) = 0 for ψ = −π/2. We shall compare two values: A(0) = [2(2 − α)]−1 and

B(−π/2) = [2(1 + α) cos(π/2(1 + α))]−1 . It follows from (14) for α = α1 that cos(π/2(2 − α1)) = 1+α1

2−α1
, or

equivalently cos(π/2(1 + α2)) = 2−α2

1+α2
. From the monotonicity of cos(π/2(1 + α)) and 2−α

1+α , we conclude that

taking α less than α2 we obtain

cos
π

2(1 + α)
<

2 − α

1 + α

which means that
A(0) < B(−π/2).

Hence, for α ∈ (α1, α2),

min {|A(θ)|, |B(ψ)| : argA(θ) = argB(ψ) = φ} =

{
r1(θ) , θ ∈ [0, θα]

r2(θ) , θ ∈ [θα, π/2]

The minimum value of (17) for α ∈ [0, α1] and for α ∈ [α2, 1] we can find in a similar way. 2

In particular, for α = 1/2, we have r1(π/2 − θ) = r2(θ), and consequently
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Corollary 1 The Koebe set K(K1/2) is a bounded domain that is symmetric with respect to both axes of the

complex plane. Moreover, it satisfies iK(K1/2) = K(K1/2) . Its boundary is described by the polar equation

w = 1
3 cos( 2

3 θ)
eiθ , θ ∈ [0, π/4] .

A set D satisfying the property iD = D is called 4-fold symmetric. From Corollary 1 it follows that

there exist 4 symmetry axes of K(K1/2): ζ = eikπ/4t , t ∈ R , k = 0, 1, 2, 3. It means that in order to describe

the whole boundary of K(K1/2) it is sufficient to give it only for θ ∈ [0, π/4]. The set K(K1/2) is shown in

Figure 2.

0,3

0,3

-0,2

0,2

0,1

0

-0,3

-0,1

0,2
0

-0,1-0,3 0,1-0,2

Figure 2. Koebe set K(K1/2) .

For α = 0 the result stated in Theorem 1 coincides with the known result for the class K0 = K(1)

consisting of univalent functions that are convex in the direction of the real axis. Namely,

Corollary 2 The Koebe set K(K1) is a bounded domain that is symmetric with respect to both axes of

the complex plane. Its boundary in the first quadrant of the complex plane has the polar equation w =
1

4 cos(θ/2−π/4)e
iθ , θ ∈ [0, π/2] .

Furthermore,

Corollary 3 K(K0) = iK(K1) .

This result was obtained by Reade and Z lotkiewicz [16], and independently by Goodman and Saff [6].

4. The class Kβ,γ

In the first section of this paper the class Kα was defined. It consists of all univalent functions that are convex

in two directions: eiαπ/2 and e−iαπ/2 , α ∈ [0, 1]. The definition of Kα can be generalized in the following way.
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A function f is said to be in a class Kβ,γ if it maps ∆ univalently onto a set convex in two fixed directions:

eiβπ/2 and eiγπ/2 . It can be assumed that −1 ≤ β ≤ γ ≤ 1. In particular, Kα,−α = Kα , α ∈ [0, 1].

It is easy to observe that if f ∈ Kβ,γ , −1 ≤ β ≤ γ ≤ 1 then

F (z) = e−iδπ/2f(eiδπ/2z) , δ =
1

2
(β + γ) (18)

belongs to Kα , α = 1
2 (γ− β). It means that knowledge of the extremal functions in the problem of finding the

Koebe sets for Kα is sufficient to obtain the extremal functions in this problem for Kβ,γ with the help of (18).

Theorem 2 Let β , γ be fixed numbers such that −1 ≤ β ≤ γ ≤ 1 . Then

K(Kβ,γ) = eiδπ/2K(Kα) where δ =
1

2
(β + γ) α =

1

2
(γ − β).

In particular, the class K0,1 consists of univalent functions that are convex in the direction of both the

real and imaginary axes. In this case δ = α = 1/2, and so

Corollary 4

K(K0,1) = eiπ/4K(K1/2).

It means that the Koebe set for K0,1 can be obtained from the set in Figure 2 by rotation about the origin

through an angle of π/4.
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