
Turk J Math

(2017) 41: 293 – 304

c⃝ TÜBİTAK
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Abstract: In this paper, we study the notion of substantial efficiency for a given multiobjective optimization problem.

We provide two characterizations for substantially efficient solutions: the first one is based on a scalar problem and the

second one is in terms of a stability concept. Moreover, this paper introduces the notion of quasi-substantial efficiency.

Similar to those of substantial efficiency, two characterizations for quasi-substantially efficient solutions are obtained.

Key words: Substantial efficiency, scalarization function, stable problem,quasi-substantial efficiency

1. Introduction and preliminaries

In many real problems of economics, management science, engineering, and industry, decisions are characterized

by many criteria and usually these criteria cannot be brought to a common scale by some utility functions. These

problems are referred to as multiobjective optimization problems. Multiobjective optimization is one of the most

important areas in optimization, which is of great interest because of the large variety of applications. From

the large amount of relevant publications about multiobjective optimization, we mention three books [3, 4, 15].

Because of the conflict between objective functions, often there is no solution that optimizes all objective

functions simultaneously. Hence, efficient solutions are considered as primary solutions of multiobjective

optimization problems. An efficient problem is a feasible solution in which improvement of no objective function

is possible without impairing at least one of the others, but the set of efficient solutions is a large set. Thus,

selecting a suitable decision for the decision maker among this large set is a difficult task. In order to overcome

this difficulty, we should consider some other appropriate factors for selecting decisions (solutions) that are

better in some senses. One of the most important factors to exclude anomalous efficient solutions is trade-offs

between objective functions. Trade-off analysis is one of the most important elements in quantitative efficiency

analysis. A trade-off denotes the amount of giving up one of the objective functions, which leads to improvement

of another objective function. There are different concepts of proper efficiency that give different interpretations

of trade-offs between objective functions.

As is evident in [5], a special class of efficient solutions that have been defined based on trade-off analysis

is the set of properly efficient solutions. Proper efficiency was first introduced by Kuhn and Tucker in 1951

[14]. Geoffrion, considering trade-offs between objective functions, defined the notion of a properly efficient

solution [5]. Borwein, utilizing contingent cones, proposed a definition of properly efficient solutions [2]. Benson
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then introduced another definition of proper efficiency [1]. He showed that his definition and Geoffrion’s are

equivalent where the criterion objective cone is Rp
+ (the nonnegative orthant of Rp ). Henig proposed a more

general notion of properness and studied its relations to Benson’s and Borwein’s properness [8]. Wierzbicki

proposed a property scalarization by means of the Chebyshev metric for efficient solutions [16] and then that

scalarization was extended by Kaliszewski for Henig’s properness [9, 10]. Hartley also introduced a generalization

of Geoffrion’s properness and provided some appropriate characterizations [7]. Ginchev et al. introduced a

characterization of Geoffrion-type higher-order properly efficient solutions in vector optimization [6].

The above-mentioned works show that the notion of proper efficiency is a useful tool for quantitative

Pareto analysis from theoretical and computational points of view. However, when the criterion space is a

subset of Rp (p > 2), the number M , which is finite for each properly efficient element, is not, in general,

a common upper bound for all trade-offs. There is no common upper bound for all trade-offs, though such

a bound exists for properly efficient elements [10–13]. Motivated by this discussion, it is quite natural to

investigate elements for which there is a common upper bound for all trade-offs. Another concept of solution,

namely substantially efficient solutions, deals with an efficient solution in which all trade-offs between objective

functions are bounded by a common upper bound [10–12]. For illuminating this notion of efficiency, consider

a facility location problem. Suppose that this system has three objective functions, cost of raw material, sale

market, and manpower, depending on distance, mileage, freight, fare, exhaustion of manpower, and so on.

Assume that an efficient solution is available for decision making such that these objective functions are such

that if one of these three functions is improved then the others are impaired by the current solution. It is clear

that for a good choice of location a decision maker must consider all trade-offs among all objective functions.

For example, if the decision maker considers improving the cost of raw material and impairing the cost of both

the sale market and manpower in a current efficient solution such that with a large change (improving) in cost

of raw material and infinitesimal change (impairing) in sale market and manpower, it means that the decision

maker ignores two objective functions, sale market and manpower, in the current efficient solution. Thus, the

current efficient solution is not a good choice for the facility location problem.

This paper provides two characterizations for substantially efficient solutions: the first one is based on

some scalar functions and the second one is in terms of stability theory.

As is expected, the requirement for the existence of a common upper bound for all trade-offs in the notion

of substantial efficiency is strong. On the other hand, in this notion we do not have any meaningful interpretation

for unbounded trade-offs. Considering the above-mentioned weaknesses of proper efficiency and substantial

efficiency, we propose an intermediate notion, namely quasi-substantial efficiency. This new notion considers

all trade-offs. In contrast to substantial efficiency, it has a flexible treatment of trade-offs. Like substantial

efficiency, quasi-substantial efficiency can be used as an efficient guideline in applications in an interactive

procedure where substantially efficient solutions are not available. More precisely, instead of introducing a

common upper bound, it considers a certain rate of growth for all trade-offs, including bounded and unbounded

trade-offs. This paper also provides two characterizations for quasi-substantially efficient solutions: the first

one is based on some scalar functions and the second one is in terms of stability concept.

This paper is organized as follows. Section 2 contains two characterizations for substantialy efficient

solutions. Section 3 introduces the notion of quasi-substantial efficiency and illustrates this notion by a numerical

example, and it gives two characterizations for quasi-substantially efficient solutions.

Throughout this paper we use the following notations:

Rp
+ =

{
y : yi ≧ 0, ∀i ∈ {1, 2, ..., p}

}
,
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Rp
++ =

{
y : yi > 0, ∀i ∈ {1, 2, ..., p}

}
.

For y1, y2 ∈ Rp , we use the following notations:

y1 ≦ y2 ⇔ y2 − y1 ∈ Rp
+ ,

y1 ≤ y2 ⇔ y2 − y1 ∈ Rp
+ and y1 ̸= y2 ,

y1 < y2 ⇔ y2 − y1 ∈ Rp
++ .

In this paper, the following multiobjective programming is considered:

min f(x)

s.t. x ∈ X, (1)

where X ⊆ Rn is the feasible set and f = (f1, ..., fp) : X ⊂ Rn → Rp is a vector function.

According to the concept of Pareto optimality, x̂ ∈ X is an efficient solution if(
f(X)− f(x̂)

)
∩ (−Rp

+) = {0} ,
where f(X) is the image of X under f . The concept of efficiency plays a useful role in analyzing the vector

optimization problem. In order to exclude certain efficient solutions that display an undesirable anomaly and

to provide a more satisfactory characterization, the decision maker must use trade-off analysis. From economic

points of views, the decision maker is interested in achieving a large value of so-called gain-to-loss by moving

from the current solution to another one. Motivated by this important economic idea, boundedness of trade-off

or ratio of change for objective functions plays a crucial role in some concepts of enhanced efficiency such as

proper efficiency and substantial efficiency. The following definition states the concept of proper efficiency in

the sense of Geoffrion.

Definition 1.1 [5] An efficient solution x̂ ∈ X is a properly efficient solution in Geoffrion’s sense if there exists

a positive number M such that for all x ∈ X and i ∈ {1, ..., p} with fi(x) < fi(x̂) there exists a j ∈ {1, ..., p}
with fj(x̂) < fj(x) such that

fi(x̂)− fi(x)

fj(x)− fj(x̂)
≤ M. (2)

It is clear that in a properly efficient solution, the trade-off between some objective functions can be unbounded.

However, in applicable and natural systems, proper efficiency is usually unusable; consider the facility location

problem that was stated in this section. In this regard, Kaliszewski in [10] introduced a concept of optimality

that considers the trade-off between all objective functions, and the trade-off between all objective functions

can be unbounded, as follows.

Definition 1.2 [10] An efficient solution x̂ ∈ X is said to be a substantially efficient solution for Problem (1)

if there exists a positive real number M such that for all x ∈ X and i, j ∈ {1, ..., p} with fi(x) < fi(x̂) and

fj(x̂) < fj(x) the following inequality holds:

fi(x̂)− fi(x)

fj(x)− fj(x̂)
≤ M.

The next section proceeds to characterize these solutions.
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2. Characterization of substantially efficient solutions

In the previous section, it was stated that substantially efficient solution sets are an important subset of efficient

solution sets because of compatibility with natural systems and problems. Hence, investigation and character-

ization of substantially efficient solutions is important. To this end, this section is devoted to characterizing

substantially efficient solutions. First, an equivalent definition of substantial solutions and a geometrical inter-

pretation of these solutions are given. After that, an example is given for illuminating substantial solutions.

Next, we propose a characterization of these efficient solutions using a scalar function. At the end of this section

a perturbation problem is considered for investigating the stability of a problem with a substantially efficient

solution.

Definition 2.1 [10] An efficient solution x̂ ∈ X is called a substantial solution for (1) if there exists a positive

real number λ such that ((
fi(x̂), fj(x̂)

)
−Dλ

ij

)
∩ Yij =

{(
fi(x̂), fj(x̂)

)}
,

where

Dλ
ij =

{
x ∈ R2 : xj < 0 and xi + λxj > 0

}
∪

{
0

}
, i, j ∈ {1, 2, ..., p}, i ̸= j

and Yij is the projection of the set f(X) on the plane fi fj .

Example 2.2 Consider problem min− 1
2≤x≤1

(
f1(x), f2(x), f3(x)

)
in which

f1(x) =

{
− ln (−x) if − 1

2 ≤ x < 0,
− sinx if 0 ≤ x ≤ 1,

f2(x) = |x| and

f3(x) =

{
− exp (−x) if − 1

2 ≤ x < 0,
− exp (x) if 0 ≤ x ≤ 1.

Set x̂ := 0 . Then
(
f1(x̂), f2(x̂), f3(x̂)

)
= (0, 0, 1) . It is obvious that x̂ is an efficient solution. It is seen

that f1(x) < f1(x̂) , f2(x̂) < f2(x) and f3(x) < f3(x̂) , for all 0 < x ≤ 1 . It can be easily shown that there

exists M1 > 0 such that:

f1(x̂)− f1(x)

f2(x)− f2(x̂)
=
sinx

|x|
≤ M1, for all 0 < x ≤ 1,

f3(x̂)− f3(x)

f2(x)− f2(x̂)
=
−1 + exp (x)

|x|
≤ M1, for all 0 < x ≤ 1.

It is also obvious that f1(x̂) < f1(x) , f2(x̂) < f2(x) and f3(x) < f3(x̂) , for all −1
2 ≤ x < 0 .

It can be easily shown that there exists M2 > 0 such that:

f3(x̂)− f3(x)

f1(x)− f1(x̂)
=
−1 + exp (−x)

− ln (−x)
≤ M2, for all − 1

2
≤ x < 0,

f3(x̂)− f3(x)

f2(x)− f2(x̂)
=
−1 + exp (−x)

|x|
≤ M2, for all − 1

2
≤ x < 0.
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Set M := max{M1,M2} . Thus, x̂ = 0 satisfies Definition 1.2 and it is a substantially efficient solution.

Figure. The ordering cones −DM
1,2 and −DM

2,1 .

Note that the number of Dλ
ij cones (i, j ∈ {1, ..., p}, i ̸= j) in Rp is p(p− 1). Considering Example 2.2,

the ordering cones −DM
1,2 and −DM

2,1 are depicted in the Figure. It is clear that Dλ
ij cones are pointed, i.e.

Dλ
ij ∩ −Dλ

ij = {0} [12, 13].

It is easy to check that Definitions 1.2 and 2.1 are equivalent [10, 12, 13].

In the sequel, two characterizations for determining substantially efficient solutions are introduced. One

of them is in the term of scalarization and the other utilizes the concept of stability.

Corresponding to parameters M > 0 and i ∈ {1, ..., p} we define the extended real valued scalar function

f̄i : X → R̄ = R ∪ {−∞,∞} as

f̄i(x) = fi(x)− fi(x̂) +M min
{
fj(x)− fj(x̂)| fj(x)− fj(x̂) > 0 and j ∈ {1, ..., p}

}
. (3)

In the following theorem, using scalar function (3), substantially efficient solutions are characterized.

Theorem 2.3 Let x̂ ∈ X be an efficient element of Problem (1). Then x̂ is a substantially efficient solution

of Problem (1) if and only if there is a positive real number M such that for any i ∈ {1, ..., p}

inf
x∈X

f̄i(x) ≥ 0, (4)

where f̄i is defined as (3).

Proof

⇒) By contradiction assume that for any M > 0 there is an xM and an index iM ∈ {1, ..., p} such that

f̄iM (xM ) < 0. Hence, fiM (xM ) < fiM (x̂). Since x̂ is an efficient solution, there exists an index j0 ∈ {1, ..., p}
such that fj0(x̂) < fj0(xM ). Without loss of generality assume that

fj0(xM )− fj0(x̂) = min
{
fj(xM )− fj(x̂)| fj(xM )− fj(x̂) > 0 and j ∈ {1, ..., p}

}
.

Therefore,

f̄iM (xM ) = fiM (xM )− fiM (x̂) +M(fj0(xM )− fj0(x̂)) < 0.
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Consequently,

fiM (x̂)− fiM (xM )

fj0(xM )− fj0(x̂)
> M,

and this contradicts the substantial efficiency of x̂ . Hence, the proof of the “only if ” part of the theorem is

completed.

⇐) Suppose that there is a positive real number M such that, for any i ∈ {1, ..., p} , (4) holds. Assume

that there are i, j ∈ {1, ..., p} and x ∈ X such that fi(x) < fi(x̂) and fj(x̂) < fj(x). Then

0 ≤ fi(x)− fi(x̂) +M(fj(x)− fj(x̂)).

Thus,

fi(x̂)− fi(x)

fj(x)− fj(x̂)
≤ M,

and it completes the proof. 2

At the end of this section, substantially efficient solutions are characterized based on the notion of stability. To

this aim, consider problem P̄ (0) as follows:

P̄ (0) :minφ(x)

s.t. x ∈ X,

f(x) ≤ 0,

where φ : Rn → R is an arbitrary function. Now, related to any y ∈ Rp , the perturbation Problem P̄ (y) is

defined as follows:

P̄ (y) :minφ(x)

s.t. x ∈ X,

f(x) ≤ y.

Denote by A(y) the feasible set of Problem P̄ (y). Set

v(y) =

{
inf{φ(x) : x ∈ A(y)}, if A(y) ̸= ∅,
∞, if A(y) = ∅.

Assume that x̂ is a minimizer of Problem P̄ (0); that is,

v(0) = inf{φ(x)|x ∈ A(0)} = φ(x̂).

In this case, we say that Problem P̄ (0) is stable at x̂ if there exists an M > 0 such that

v(y)− v(0)

min{yj |yj > 0 and j ∈ {1, ..., p}}
≥ −M, for all y ̸= 0.
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Theorem 2.4 Assume that x̂ ∈ X is an efficient solution of Problem (1). Then x̂ is a substantially efficient

solution if and only if for any i ∈ {1, ..., p} , Pi(0) is stable at x̂ , where Pi(y) is defined as follows:

Pi(y) : vi(y) = min(fi(x)− fi(x̂))

s.t. x ∈ X,

f(x)− f(x̂) ≤ y.

Proof ⇒) By contradiction assume that Pi(0) is not stable at x̂ . Thus, for any M > 0 there are yM ∈ Rp

and xM ∈ X with f(xM )− f(x̂) ≤ yM such that

vi(y
M )− vi(0)

min{yMj |yMj > 0 and j ∈ {1, ..., p}}
<−M,

and

fi(xM )− fi(x̂)

min{yMj |yMj > 0 and j ∈ {1, ..., p}}
< −M. (5)

Since x̂ is an efficient solution and fi(xM ) < fi(x̂), there is an index j ∈ {1, ..., p} with fj(x̂) < fj(xM ).

Choose j0 ∈ {1, ..., p} such that

fj0(xM )− fj0(x̂) = min{fj(xM )− fj(x̂)|fj(xM )− fj(x̂)j > 0 and j ∈ {1, ..., p}}.

Then

fj0(xM )− fj0(x̂) ≤ min{yMj |yMj > 0 and j ∈ {1, ..., p}}. (6)

Consequently, by (5) and (6), we have

fi(x̂)− fi(xM ) > M
(
fj0(xM )− fj0(x̂)

)
.

This inequality contradicts the substantial efficiency of x̂ . Hence, the “only if ” part of the theorem is proven.

⇐) By contradiction assume that x̂ is not a substantial solution of Problem (1). Hence, by Theorem

2.3, for any unbounded sequence of positive real numbers {Mk} there are sequences {xk} and {ik} ∈ {1, ..., p}
such that

fik(xk)− fik(x̂) +Mk min{(fj(xk)− fj(x̂))|(fj(xk)− fj(x̂)) > 0 and j ∈ {1, ..., p}} < 0.

Define yk := f(xk) − f(x̂). Since x̂ is efficient and fik(xk) < fik(x̂), there is j ∈ {1, ...p} such that ykj > 0.

Hence,

vi(y
k)− vi(0)

min{ykj |ykj > 0 and j ∈ {1, ..., p}}
≤ fi(xk)− fi(x̂)

min{ykj |ykj > 0 and j ∈ {1, ..., p}}

≤
−Mk min{ykj : ykj > 0 and j ∈ {1, ..., p}}

min{ykj |ykj > 0 and j ∈ {1, ..., p}}

=−Mk → −∞, as k → ∞

and it contradicts the stability of Pi(0) at x̂ . This contradiction completes the “if ” part of the proof. 2
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3. Characterization of quasi-substantially efficient solutions

In the previous section, substantial solutions were investigated. The main weaknesses of substantial efficiency are

due to its interpretation for unbounded trade-offs. Indeed, it does not distinguish different types of unbounded

trade-offs. In order to overcome these weaknesses, this paper proposes a new concept of efficient solutions,

namely quasi-substantial efficiency (a generalization of substantial efficiency), which analyzes the treatment of

both bounded and unbounded trade-off. The rate of growth of unbounded trade-offs is indicated by a certain

expression denoting the order of quasi-substantial efficiency. In applications, whenever the decision maker

cannot use the substantially efficient solutions or whenever substantially efficient solutions are not available,

for example inaccessible points, then the decision maker can use some efficient solutions for which the rates

of growth of unbounded trade-offs are less than others. In this regard, this section gives the definition and

characterization of quasi-substantially efficient solutions.

Definition 3.1 Let s be a nonnegative real number. An efficient solution x̂ ∈ X is said to be a quasi-

substantially efficient solution of order s for Problem (1), if there exists a positive number M such that for all

x ∈ X and i, j ∈ {1, ..., p} with fi(x) < fi(x̂) and fj(x̂) < fj(x) the following inequality holds:

fi(x̂)− fi(x)

fj(x)− fj(x̂)
≤ M

∥x− x̂∥s
.

Example 3.2 Consider problem min− 1
2≤x≤1

(
f1(x), f2(x), f3(x)

)
in which

f1(x) =

{
ln (−x) if − 1

2 ≤ x < 0,
sinx if 0 ≤ x ≤ 1,

f2(x) = x2 and

f3(x) =

{
− exp (−x) if − 1

2 ≤ x < 0,
− exp (x) if 0 ≤ x ≤ 1.

Set x̂ := 0 . Then
(
f1(x̂), f2(x̂), f3(x̂)

)
= (0, 0, 1) . Let s > 2 . It is obvious that x̂ is an efficient solution.

It is seen that f1(x̂) < f1(x) , f2(x̂) < f2(x) and f3(x) < f3(x̂) , for all 0 < x ≤ 1 . It can be easily shown

that there exists M1 > 0 such that:

f3(x̂)− f3(x)

f2(x)− f2(x̂)
=
−1 + exp (x)

x2
≤ M1

∥x− x̂∥s
, for all 0 < x ≤ 1,

f3(x̂)− f3(x)

f1(x)− f1(x̂)
=
−1 + exp (x)

sinx
≤ M1

∥x− x̂∥s
, for all 0 < x ≤ 1.

Also, f1(x) < f1(x̂) , f2(x̂) < f2(x) and f3(x) < f3(x̂) , for all −1
2 ≤ x < 0 .

It can be easily shown that there exists M2 > 0 such that:

f1(x̂)− f1(x)

f2(x)− f2(x̂)
=
ln (−x)

x2
≤ M2

∥x− x̂∥s
, for all − 1

2
≤ x < 0,

f3(x̂)− f3(x)

f2(x)− f2(x̂)
=
−1 + exp (−x)

x2
≤ M2

∥x− x̂∥s
, for all − 1

2
≤ x < 0.

Set M := max{M1,M2} . Thus, x̂ = 0 is a quasi-substantially efficient solution of order s > 2 .
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Let s ≥ 0. Corresponding to parameters M > 0 and i ∈ {1, ..., p} we define the extended real valued function

f : X → R̂ as

f̂i(x) = ∥x− x̂∥s
(
fi(x)− fi(x̂)

)
+M min

{
fj(x)− fj(x̂)| fj(x)− fj(x̂) > 0 and j ∈ {1, ..., p}

}
. (7)

The following theorem (by using scalar function (7)) provides a necessary and sufficient condition for charac-

terizing quasi-substantial efficient solutions.

Theorem 3.3 Let s ≥ 0 and x̂ ∈ X be an efficient element of Problem (1). Then x̂ is a quasi-substantially

efficient solution of order s for Problem (1) if and only if there is a positive real number M such that for any

i ∈ {1, ..., p} ,

inf
x∈X

f̂i(x) ≥ 0, (8)

where f̂i is defined as (7).

Proof ⇒) By contradiction assume that for any M > 0 there is an xM and an index iM ∈ {1, ..., p} such

that f̂iM (xM ) < 0. Hence, fiM (xM ) < fiM (x̂). Since x̂ is an efficient solution, there exists a j0 ∈ {1, ..., p}
such that fj0(x̂) < fj0(xM ). Without loss of generality, assume that

fj0(xM )− fj0(x̂) = min
{
fj(xM )− fj(x̂)| fj(xM )− fj(x̂) > 0 and j ∈ {1, ..., p}

}
.

Therefore,

f̂iM (xM ) = ∥x− x̂∥s
(
fiM (xM )− fiM (x̂)

)
+M(fj0(xM )− fj0(x̂)) < 0.

Consequently,

fiM (x̂)− fiM (xM )

fj0(xM )− fj0(x̂)
>

M

∥x− x̂∥s
,

and this contradicts the quasi-substantial efficiency of x̂ . Hence, the proof of the “only if ” part of the theorem

is completed.

⇐) Suppose that there is a positive real number M such that for any i ∈ {1, ..., p} , (8) holds. Assume

that there are i, j ∈ {1, ..., p} and x ∈ X such that fi(x) < fi(x̂) and fj(x̂) < fj(x). Then

0 ≤ ∥x− x̂∥s
(
fi(x)− fi(x̂)

)
+M(fj(x)− fj(x̂)).

Thus,

fi(x̂)− fi(x)

fj(x)− fj(x̂)
≤ M

∥x− x̂∥s
.

2

The following theorem is devoted to the stability of Problem (9) and quasi-substantial efficiency.
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Theorem 3.4 Assume that x̂ ∈ X is an efficient solution of Problem (1) and s ≥ 0 . Then x̂ is a quasi-

substantially efficient solution of order s if and only if for any i ∈ {1, ..., p} , Qi(0) is stable at x̂ , where Qi(y)

is as follows:

Qi(y) : ui(y) = min ∥x− x̂∥s(fi(x)− fi(x̂)) (9)

s.t. x ∈ X, (10)

f(x)− f(x̂) ≤ y. (11)

Proof ⇒) By contradiction assume that Qi(0) is not stable at x̂ . Thus, for any M > 0 there are yM ∈ Rp

and xM ∈ X with f(xM )− f(x̂) ≤ yM such that

ui(y
M )− ui(0)

min{yMj |yMj > 0 and j ∈ {1, ..., p}}
<−M,

and

∥x− x̂∥s
(
fi(xM )− fi(x̂)

)
min{yMj |yMj > 0 and j ∈ {1, ..., p}}

< −M. (12)

Since x̂ is an efficient solution and fi(xM ) < fi(x̂), there is an index j ∈ {1, ..., p} with fj(x̂) < fj(xM ).

Choose j0 ∈ {1, ..., p} such that

fj0(xM )− fj0(x̂) = min
{
fj(xM )− fj(x̂)

∣∣∣fj(xM )− fj(x̂) > 0, and j ∈ {1, ..., p}
}
.

Then

0 < fj0(xM )− fj0(x̂) ≤ min{yMj |yMj > 0 and j ∈ {1, ..., p}}. (13)

Consequently, by (12) and (13) we have

∥x− x̂∥s
(
fi(x̂)− fi(xM )

)
> M

(
fj0(xM )− fj0(x̂)

)
;

that is,

fi(x̂)− fi(xM )

fj0(xM )− fj0(x̂)
>

M

∥x− x̂∥s
.

This inequality contradicts the quasi-substantial efficiency of order s of x̂ . Hence, the “only if ” part of the

theorem is proven.

⇐) By contradiction assume that x̂ is not a quasi-substantial solution of order s of Problem (1). Hence,

by Theorem 2.3, for any unbounded sequence of positive real numbers {Mk} there are sequences {xk} and

{ik} ∈ {1, ..., p} such that

∥x− x̂∥s
(
fik(xk)− fik(x̂)

)
+Mk min

{
(fj(xk)− fj(x̂))

∣∣∣(fj(xk)− fj(x̂)) > 0, and j ∈ {1, ..., p}
}
< 0.
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Define yk := f(xk) − f(x̂). Since x̂ is efficient and fik(xk) < fik(x̂), there is j ∈ {1, ...p} such that ykj > 0.

Hence,

ui(y
k)− ui(0)

min{ykj |ykj > 0 and j ∈ {1, ..., p}}
≤

∥x− x̂∥s
(
fi(xk)− fi(x̂)

)
min{ykj |ykj > 0 and j ∈ {1, ..., p}}

≤
−Mk min{ykj |ykj > 0 and j ∈ {1, ..., p}}

min{ykj |ykj > 0 and j ∈ {1, ..., p}}

=−Mk → −∞, as k → ∞

and it contradicts the stability of Qi(0) at x̂ . This contradiction completes the “if ” part of the proof. 2

4. Conclusion

In this paper, we present two characterizations of substantially efficient solutions and we also introduce a

new concept of efficiency, namely quasi-substantially efficient solutions, and characterize it. In the interactive

optimization literature substantially efficient solutions play an important role and can be used as an efficient

guideline in applications. Therefore, it is interesting to notice this point in interactive optimization. However,

the definition of substantial efficiency is strong in theory but we consider quasi-substantial efficiency to overcome

this problem. Like substantial efficiency, quasi-substantial efficiency, in the interactive optimization literature,

can be used as an efficient guideline in applications where we can not use substantially efficient solutions or

substantially efficient solutions are not available.

Because of the natural uncertainty in real-world situations, studying substantial efficiency and quasi-

substantial efficiency in the presence of uncertainty can be considered as a topic for further research [17].

It should be noted that the scalar problems given in this paper just propose some characterizations

for substantially and quasi-substantially efficient solutions. In order to have a computational procedure, by

comparing available approximation of efficient frontiers (if any exist), we can consider some certain values of

“M ” and determine so-called “M -substantially” and “M -quasi-substantially” efficient solutions.
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