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Abstract: In this paper, we consider a class of constrained systems named double upper bounds (p, q)-constrained

systems ((p, q)-DUB systems in brief), which are one-dimensional subshifts of finite type. We determinate the topo-

logical entropies (Shannon capacities) C(p, q) of all (p, q)-DUB systems and consequently order all (p, q)-DUB systems

according to the size of topological entropies. In particular, C(p,∞) = C(p + 1, p + 1) are the only equalities possible

among the topological entropies of (p, q)-DUB systems.
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1. Introduction

Subshifts of finite type are an important branch in topologically dynamical systems. As a special class of

subshifts of finite type, some constrained systems are widely studied, especially run-length-limited (d, k)-

constrained systems. Given two nonnegative integers d, k with d < k , a binary {0, 1}-sequence is called

(d, k)-constrained if it has at least d zeros and at most k zeros between any two successive ones. A run-length-

limited (d, k)-constrained system, or (d, k)-RLL systems in brief, is the set of all (d, k)-constrained binary

sequences and the shift on it. (d, k)-RLL systems were first studied by Shannon [9] and are used today in all

manners of storage systems [2,7,8]. In particular, the Shannon capacity plays a major role in the research of

(d, k)-RLL systems (see, e.g., [1,3–5]). In fact, the Shannon capacity is the topological entropy of shift on a

(d, k)-RLL system.

In this article, we are interested in a class of constrained systems named “double upper bounds (p, q)-

constrained systems, which are similar to but different from run-length-limited constrained systems. Given

two positive integers p, q , we say that a bilateral or unilateral {0, 1}-sequence is double upper bounds (p, q)-

constrained if it includes neither a run of zeros of length more than p nor a run of ones of length more than q .

A double upper bounds (p, q)-constrained system, or (p, q)-DUB system in brief, is the set of all double upper

bounds (p, q)-constrained bilateral or unilateral sequences and the shift on it. It is obvious that a (p, q)-DUB

system is topologically conjugate to the (q, p)-DUB system. Thus, all through the present paper, we assume

p ≤ q . Moreover, we can take p or q to be infinity, which means that a run of zeros or ones of arbitrary

length is admitted. Notice that the (∞,∞)-DUB system is the full 2-shift, a bilateral (p,∞)-DUB system is a

(0, p)-RLL system for every positive integer p , a bilateral (1, q)-DUB system is a (1, q)-RLL system for every

positive integer q , and other (p, q)-DUB systems are not RLL systems.
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Let S(p, q) be a bilateral or unilateral (p, q)-DUB system, where p and q are two positive integers with

p ≤ q ≤ ∞ . Obviously, it is a subshift of finite type in the full 2-shift ({0, 1}Z, σ) or ({0, 1}N, σ), where σ is

the shift mapping on {0, 1} -sequences space. Denote by C(p, q) the topological entropy or Shannon capacity

of S(p, q). Let An be the number of n -length codes in S(p, q). Then

C(p, q) = lim
n→∞

1

n
lnAn.

It is easy to see that C(1, 1) = 0 and C(∞,∞) = ln 2. We will determinate C(p, q) for all p and q .

Furthermore, we will order all (p, q)-DUB systems according to the size of topological entropies. In particular,

C(p,∞) = C(p+1, p+1) are the only equalities possible among the topological entropies of (p, q)-DUB systems.

2. Topological entropies of (p, q)-DUB systems

For a bilateral or unilateral (p, q)-DUB system S(p, q), let Λ be the set of all q -length codes in S(p, q). One

can write Λ = {β1, . . . , βm} , where each βi = z1 . . . zq is a q -length code in S(p, q). Define an m×m matrix

B by, for any βi = z1 . . . zq and βj = w1 . . . wq in Λ,

Bij ≜ B(βi, βj) = 1

if z2 . . . zq = w1 . . . wq−1 and z1 . . . zqwq is a (q + 1)-length code in S(p, q); otherwise, Bij ≜ B(βi, βj) = 0.

Moreover, we obtain a subshift of finite type (ΣB , σ) with transition matrix B , where

ΣB = {(xi) ∈ ΛZ (or ΛN);B(xi, xi+1) = 1, for all i ∈ Z (or N)}

and σ is the shift on ΣB . As is known as a classic conclusion in symbolic dynamical systems, (ΣB , σ) is

topologically conjugate to the (p, q)-DUB system (S(p, q), σ). Furthermore, if λ is the spectral radius of B ,

then

C(p, q) = lnλ.

For instance, let us consider S(1, 2). Choose Λ = {β1, β2, β3} , where β1 = 01, β2 = 10, and β3 = 11. Define

B =

 0 1 1
1 0 0
0 1 0

 .

Then the spectral radius of B is λ = 1.3247 . . . , and consequently

C(1, 2) = lnλ = 0.2812 . . . > 0.

To determinate the topological entropies of (p, q)-DUB systems, we need to review some conclusions in

Perron–Frobenius theory (refer to [6, 10]).

Lemma 2.1 Let B ≥ 0 be a square matrix. Then BN > 0 for some positive integer N if and only if B is

primitive.
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Lemma 2.2 Suppose that B is a primitive nonnegative square matrix. Let λ be the spectral radius of B . Then

lim
n→∞

Bn

λn
= rl,

where r and l are the left and right eigenvectors for B normalized so that lr = 1 .

Denote by an the number of n-length codes ending with zero in S(p, q), and denote by bn the number

of n-length codes ending with one in S(p, q). Then, obviously, An = an + bn.

Proposition 2.3 The transition matrix B defined as above is primitive. Furthermore, the limit lim
n→∞

an

An
exists.

Proof Obviously, B is a square {0, 1} -matrix. To prove that B is primitive, we will show that for N = q+4,

BN > 0. Given any βi = (z1, z2, · · · , zq) and βj = (z′1, z
′
2, · · · , z′q) in Λ:

(1) If zq = 0 and z′1 = 0, then there exists a code

C = (z1, z2, · · · , zq−1, 0, 1, 0, 1, 0, z
′
2, z

′
3, · · · , z′q)

in S(p, q). Consequently, there exists a (q+4)-length code from βi to βj in ΣB and hence BN
ij = BN (βi, βj) >

0.

(2) If zq = 0 and z′1 = 1, then there exists a code

C = (z1, z2, · · · , zq−1, 0, 1, 1, 0, 1, z
′
2, z

′
3, · · · , z′q)

in S(p, q). Consequently, there exists a (q+4)-length code from βi to βj in ΣB and hence BN
ij = BN (βi, βj) >

0.

(3) If zq = 1 and z′1 = 0, then there exists a code

C = (z1, z2, · · · , zq−1, 1, 0, 1, 1, 0, z
′
2, z

′
3, · · · , z′q)

in S(p, q). Consequently, there exists a (q+4)-length code from βi to βj in ΣB and hence BN
ij = BN (βi, βj) >

0.

(4) If zq = 1 and z′1 = 1, then there exists a code

C = (z1, z2, · · · , zq−1, 1, 0, 1, 0, 1, z
′
2, z

′
3, · · · , z′q)

in S(p, q). Consequently, there exists a (q+4)-length code from βi to βj in ΣB and hence BN
ij = BN (βi, βj) >

0.

In conclusion, we have BN > 0. Notice that An is the sum of all elements of Bn and an is the sum of

elements in some certain columns of Bn . Then, by Lemma 2.2, the limit lim
n→∞

an

An
exists. 2

According to Proposition 2.3, denote

lim
n→∞

an
An

= x

and

lim
n→∞

bn
An

= y = 1− x.
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In addition, if λ is the the spectral radius of B , then

lim
n→∞

An+1

An
= λ.

For 0 < p ≤ q < ∞ , we have for each n ∈ N ,

an+1 = bn + bn−1 + bn−2 + · · ·+ bn−p+1,

bn+1 = an + an−1 + an−2 + · · ·+ an−q+1.

Then

an+1

An−p+1
=

bn + bn−1 + bn−2 + · · ·+ bn−p+1

An−p+1

and

bn+1

An−q+1
=

an + an−1 + an−2 + · · ·+ an−q+1

An−q+1
.

As n → ∞ ,

λpx = λp−1y + λp−2y + λp−3y + · · ·+ λy + y

and

λqy = λq−1x+ λq−2x+ λq−3x+ · · ·+ λx+ x.

Consequently,

x =
λp−1 + λp−2 + λp−3 + · · ·+ λ+ 1

λp + λp−1 + λp−2 + · · ·+ λ+ 1

and

x =
λq

λq + λq−1 + λq−2 + · · ·+ λ+ 1
.

Thus,

λp−1 + λp−2 + λp−3 + · · ·+ λ+ 1

λp + λp−1 + λp−2 + · · ·+ λ+ 1
=

λq

λq + λq−1 + λq−2 + · · ·+ λ+ 1
,

and hence

λp − 1

λp+1 − 1
+

λq − 1

λq+1 − 1
= 1. (2.1)

Equation (2.1) is said to be the characteristic equation of S(p, q) for 0 < p ≤ q < ∞ .

Similarly, for 0 < p < ∞ and q = ∞ , we have for each n ∈ N ,

an+1 = bn + bn−1 + bn−2 + · · ·+ bn−p+1,

bn+1 = An,

and then

λpx = λp−1y + λp−2y + λp−3y + · · ·+ λy + y

and
λy = 1.
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Consequently,

λp−1 + λp−2 + λp−3 + · · ·+ λ+ 1

λp + λp−1 + λp−2 + · · ·+ λ+ 1
=

λ− 1

λ
.

Thus,

λp − 1

λp+1 − 1
+

1

λ
= 1. (2.2)

Equation (2.2) is said to be the characteristic equation of S(p,∞) for 0 < p < ∞ .

For (p, q) ̸= (1, 1), (∞,∞), it is not difficult to see that S(p, q) is a subsystem of S(∞,∞) and S(1, 2)

is a subsystem of S(p, q). Then

0 < C(1, 2) ≤ C(p, q) = lnλ ≤ C(∞,∞) = ln 2.

Thus, λ ∈ (1, 2]. We will prove that λ is the unique root of the characteristic equation in (1, 2).

Theorem 2.4 For (p, q) ̸= (1, 1), (∞,∞) , there exists one and only one root λ of the characteristic equation

(2.1) or (2.2) in the open interval (1, 2) . Furthermore, C(p, q) = lnλ .

Proof Let f(λ) =
λp − 1

λp+1 − 1
. Since

f ′(λ) =
−λ2p + (p+ 1)λp − pλp−1

(λp+1 − 1)2

=
λp−1((p+ 1)λ− λp+1 − p)

(λp+1 − 1)2
< 0,

one can see that f(λ) is a strictly decreasing function, and so is the function F (λ) =
λp − 1

λp+1 − 1
+

λq − 1

λq+1 − 1
.

Notice

F (λ) =
λp − 1

λp+1 − 1
=

1 + λ+ λ2 + · · ·+ λp−1

1 + λ+ λ2 + · · ·+ λp
+

1 + λ+ λ2 + · · ·+ λq−1

1 + λ+ λ2 + · · ·+ λq
,

and then

F (1) =
p

p+ 1
+

q

q + 1
=

1

1 + 1
p

+
1

1 + 1
q

≥ 1

2
+

1

2
= 1,

and the equality holds if and only if p = q = 1. In addition,

F (2) =
2p − 1

2p+1 − 1
+

2q − 1

2q+1 − 1

=
2p+q+2 − 3 · 2p − 3 · 2q + 2

(2p+1 − 1)(2q+1 − 1)

<
2p+q+2 − 3 · 2p − 3 · 2q + 2

(2p+1 − 1)(2q+1 − 1)
+

2p + 2q − 1

(2p+1 − 1)(2q+1 − 1)

=
2p+q+2 − 2q+1 − 2p+1 + 1

(2p+1 − 1)(2q+1 − 1)

= 1.
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Therefore, the characteristic equation (2.1) has a unique root in the open interval (1, 2). Similarly, the charac-

teristic equation (2.2) has a unique root in the open interval (1, 2). It follows from the discussions before this

theorem that the unique root λ is the spectral radius of B corresponding to S(p, q), and hence C(p, q) = lnλ . 2

Now we will order all (p, q)-DUB systems according to the size of topological entropies. First, let us

consider the equalities possible among the topological entropies of (p, q)-DUB systems.

Proposition 2.5 For every positive integer p ,

C(p,∞) = C(p+ 1, p+ 1).

Proof For S(p,∞), the characteristic equation (2.2) can be written as follows:

λp+2 − 2λp+1 + 1 = 0.

For S(p+ 1, p+ 1), the characteristic equation is

λp+1 − 1

λp+2 − 1
=

1

2
,

that is also

λp+2 − 2λp+1 + 1 = 0.

Therefore, we have

C(p,∞) = C(p+ 1, p+ 1).

2

Next, we will prove some strict inequalities.

Proposition 2.6 For any p , q , and q′ with q < q′ ≤ ∞ , we have

C(p, q) < C(p, q′).

Proof Let λ0, λ1 ∈ (1, 2) with C(p, q) = lnλ0 and C(p, q′) = lnλ1 . Let gq(λ) =
λq−1

λq+1−1 for positive integer

q and g∞(λ) = 1
λ . For any λ0 ∈ (1, 2), one can see

gq+1(λ0)− gq(λ0) =
λq+1
0 − 1

λq+2
0 − 1

− λq
0 − 1

λq+1
0 − 1

=
λq+2
0 + λq

0 − 2λq+1
0

(λq+2
0 − 1)(λq+1

0 − 1)

=
λq
0(λ0 − 1)2

(λq+2
0 − 1)(λq+1

0 − 1)

> 0,

and

g∞(λ0)− gq(λ0) =
λ0 − 1

λ0(λ
q+1
0 − 1)

> 0.
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Consequently, if λ0 ∈ (1, 2) satisfies equation (2.1), i.e.

λp
0 − 1

λp+1
0 − 1

+
λq
0 − 1

λq+1
0 − 1

= 1,

then for q′ with q < q′ < ∞ ,

λp
0 − 1

λp+1
0 − 1

+
λq′

0 − 1

λq′+1
0 − 1

> 1

and

λp
0 − 1

λp+1
0 − 1

+
1

λ0
> 1.

Since the functions λp−1
λp+1−1 + λq−1

λq+1−1 and λp−1
λp+1−1 + 1

λ are strictly decreasing on (1, 2), we have λ0 < λ1 . In

conclusion, C(p, q) < C(p, q′). 2

Following from the two above propositions, we obtain the complete size relationship of the topological

entropies of all (p, q)-DUB systems.

Theorem 2.7

0 = C(1, 1) < C(1, 2) < . . . < C(1,∞) = C(2, 2) < C(2, 3) < . . . < C(2,∞)

= C(3, 3) < C(3, 4) < . . . . . . < C(∞,∞) = ln 2.
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