Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
тüвітак
Research Article
Turk J Math
(2017) 41: 305-311
(C) TÜBİTAK
doi:10.3906/mat-1512-104

Topological entropies of a class of constrained systems

Yanni MA, Bingzhe HOU*
School of Mathematics, Jilin University, Changchun, P.R. China

Received: 26.12.2015 • Accepted/Published Online: 25.04.2016 \quad • Final Version: 03.04.2017

Abstract

In this paper, we consider a class of constrained systems named double upper bounds (p, q)-constrained systems ((p, q)-DUB systems in brief), which are one-dimensional subshifts of finite type. We determinate the topological entropies (Shannon capacities) $C(p, q)$ of all (p, q)-DUB systems and consequently order all (p, q)-DUB systems according to the size of topological entropies. In particular, $C(p, \infty)=C(p+1, p+1)$ are the only equalities possible among the topological entropies of (p, q)-DUB systems.

Key words: Constrained systems, topological entropy, Shannon capacity, subshifts of finite type, order

1. Introduction

Subshifts of finite type are an important branch in topologically dynamical systems. As a special class of subshifts of finite type, some constrained systems are widely studied, especially run-length-limited (d, k)constrained systems. Given two nonnegative integers d, k with $d<k$, a binary $\{0,1\}$-sequence is called (d, k)-constrained if it has at least d zeros and at most k zeros between any two successive ones. A run-lengthlimited (d, k)-constrained system, or (d, k)-RLL systems in brief, is the set of all (d, k)-constrained binary sequences and the shift on it. (d, k)-RLL systems were first studied by Shannon [9] and are used today in all manners of storage systems $[2,7,8]$. In particular, the Shannon capacity plays a major role in the research of (d, k)-RLL systems (see, e.g., $[1,3-5])$. In fact, the Shannon capacity is the topological entropy of shift on a (d, k)-RLL system.

In this article, we are interested in a class of constrained systems named "double upper bounds (p, q) constrained systems, which are similar to but different from run-length-limited constrained systems. Given two positive integers p, q, we say that a bilateral or unilateral $\{0,1\}$-sequence is double upper bounds (p, q) constrained if it includes neither a run of zeros of length more than p nor a run of ones of length more than q. A double upper bounds (p, q)-constrained system, or (p, q)-DUB system in brief, is the set of all double upper bounds (p, q)-constrained bilateral or unilateral sequences and the shift on it. It is obvious that a (p, q)-DUB system is topologically conjugate to the (q, p)-DUB system. Thus, all through the present paper, we assume $p \leq q$. Moreover, we can take p or q to be infinity, which means that a run of zeros or ones of arbitrary length is admitted. Notice that the (∞, ∞)-DUB system is the full 2 -shift, a bilateral (p, ∞)-DUB system is a $(0, p)$-RLL system for every positive integer p, a bilateral $(1, q)$-DUB system is a $(1, q)$-RLL system for every positive integer q, and other (p, q)-DUB systems are not RLL systems.

[^0]Let $S(p, q)$ be a bilateral or unilateral (p, q)-DUB system, where p and q are two positive integers with $p \leq q \leq \infty$. Obviously, it is a subshift of finite type in the full 2 -shift $\left(\{0,1\}^{\mathbb{Z}}, \sigma\right)$ or $\left(\{0,1\}^{\mathbb{N}}, \sigma\right)$, where σ is the shift mapping on $\{0,1\}$-sequences space. Denote by $C(p, q)$ the topological entropy or Shannon capacity of $S(p, q)$. Let A_{n} be the number of n-length codes in $S(p, q)$. Then

$$
C(p, q)=\lim _{n \rightarrow \infty} \frac{1}{n} \ln A_{n}
$$

It is easy to see that $C(1,1)=0$ and $C(\infty, \infty)=\ln 2$. We will determinate $C(p, q)$ for all p and q. Furthermore, we will order all (p, q)-DUB systems according to the size of topological entropies. In particular, $C(p, \infty)=C(p+1, p+1)$ are the only equalities possible among the topological entropies of (p, q)-DUB systems.

2. Topological entropies of (p, q)-DUB systems

For a bilateral or unilateral (p, q)-DUB system $S(p, q)$, let Λ be the set of all q-length codes in $S(p, q)$. One can write $\Lambda=\left\{\beta_{1}, \ldots, \beta_{m}\right\}$, where each $\beta_{i}=z_{1} \ldots z_{q}$ is a q-length code in $S(p, q)$. Define an $m \times m$ matrix B by, for any $\beta_{i}=z_{1} \ldots z_{q}$ and $\beta_{j}=w_{1} \ldots w_{q}$ in Λ,

$$
B_{i j} \triangleq B\left(\beta_{i}, \beta_{j}\right)=1
$$

if $z_{2} \ldots z_{q}=w_{1} \ldots w_{q-1}$ and $z_{1} \ldots z_{q} w_{q}$ is a $(q+1)$-length code in $S(p, q)$; otherwise, $B_{i j} \triangleq B\left(\beta_{i}, \beta_{j}\right)=0$. Moreover, we obtain a subshift of finite type $\left(\Sigma_{B}, \sigma\right)$ with transition matrix B, where

$$
\Sigma_{B}=\left\{\left(x_{i}\right) \in \Lambda^{\mathbb{Z}}\left(\text { or } \Lambda^{\mathbb{N}}\right) ; B\left(x_{i}, x_{i+1}\right)=1, \text { for all } i \in \mathbb{Z}(\text { or } \mathbb{N})\right\}
$$

and σ is the shift on Σ_{B}. As is known as a classic conclusion in symbolic dynamical systems, $\left(\Sigma_{B}, \sigma\right)$ is topologically conjugate to the (p, q)-DUB system $(S(p, q), \sigma)$. Furthermore, if λ is the spectral radius of B, then

$$
C(p, q)=\ln \lambda .
$$

For instance, let us consider $S(1,2)$. Choose $\Lambda=\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$, where $\beta_{1}=01, \beta_{2}=10$, and $\beta_{3}=11$. Define

$$
B=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Then the spectral radius of B is $\lambda=1.3247 \ldots$, and consequently

$$
C(1,2)=\ln \lambda=0.2812 \ldots>0
$$

To determinate the topological entropies of (p, q)-DUB systems, we need to review some conclusions in Perron-Frobenius theory (refer to [6, 10]).

Lemma 2.1 Let $B \geq 0$ be a square matrix. Then $B^{N}>0$ for some positive integer N if and only if B is primitive.

MA and HOU/Turk J Math

Lemma 2.2 Suppose that B is a primitive nonnegative square matrix. Let λ be the spectral radius of B. Then

$$
\lim _{n \rightarrow \infty} \frac{B^{n}}{\lambda^{n}}=r l
$$

where r and l are the left and right eigenvectors for B normalized so that $l r=1$.
Denote by a_{n} the number of n-length codes ending with zero in $S(p, q)$, and denote by b_{n} the number of n-length codes ending with one in $S(p, q)$. Then, obviously, $A_{n}=a_{n}+b_{n}$.

Proposition 2.3 The transition matrix B defined as above is primitive. Furthermore, the limit $\lim _{n \rightarrow \infty} \frac{a_{n}}{A_{n}}$ exists.
Proof Obviously, B is a square $\{0,1\}$-matrix. To prove that B is primitive, we will show that for $N=q+4$, $B^{N}>0$. Given any $\beta_{i}=\left(z_{1}, z_{2}, \cdots, z_{q}\right)$ and $\beta_{j}=\left(z_{1}^{\prime}, z_{2}^{\prime}, \cdots, z_{q}^{\prime}\right)$ in Λ :
(1) If $z_{q}=0$ and $z_{1}^{\prime}=0$, then there exists a code

$$
C=\left(z_{1}, z_{2}, \cdots, z_{q-1}, 0,1,0,1,0, z_{2}^{\prime}, z_{3}^{\prime}, \cdots, z_{q}^{\prime}\right)
$$

in $S(p, q)$. Consequently, there exists a $(q+4)$-length code from β_{i} to β_{j} in Σ_{B} and hence $B_{i j}^{N}=B^{N}\left(\beta_{i}, \beta_{j}\right)>$ 0 .
(2) If $z_{q}=0$ and $z_{1}^{\prime}=1$, then there exists a code

$$
C=\left(z_{1}, z_{2}, \cdots, z_{q-1}, 0,1,1,0,1, z_{2}^{\prime}, z_{3}^{\prime}, \cdots, z_{q}^{\prime}\right)
$$

in $S(p, q)$. Consequently, there exists a $(q+4)$-length code from β_{i} to β_{j} in Σ_{B} and hence $B_{i j}^{N}=B^{N}\left(\beta_{i}, \beta_{j}\right)>$ 0 .
(3) If $z_{q}=1$ and $z_{1}^{\prime}=0$, then there exists a code

$$
C=\left(z_{1}, z_{2}, \cdots, z_{q-1}, 1,0,1,1,0, z_{2}^{\prime}, z_{3}^{\prime}, \cdots, z_{q}^{\prime}\right)
$$

in $S(p, q)$. Consequently, there exists a $(q+4)$-length code from β_{i} to β_{j} in Σ_{B} and hence $B_{i j}^{N}=B^{N}\left(\beta_{i}, \beta_{j}\right)>$ 0 .
(4) If $z_{q}=1$ and $z_{1}^{\prime}=1$, then there exists a code

$$
C=\left(z_{1}, z_{2}, \cdots, z_{q-1}, 1,0,1,0,1, z_{2}^{\prime}, z_{3}^{\prime}, \cdots, z_{q}^{\prime}\right)
$$

in $S(p, q)$. Consequently, there exists a $(q+4)$-length code from β_{i} to β_{j} in Σ_{B} and hence $B_{i j}^{N}=B^{N}\left(\beta_{i}, \beta_{j}\right)>$ 0 .

In conclusion, we have $B^{N}>0$. Notice that A_{n} is the sum of all elements of B^{n} and a_{n} is the sum of elements in some certain columns of B^{n}. Then, by Lemma 2.2, the limit $\lim _{n \rightarrow \infty} \frac{a_{n}}{A_{n}}$ exists.

According to Proposition 2.3, denote

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{A_{n}}=x
$$

and

$$
\lim _{n \rightarrow \infty} \frac{b_{n}}{A_{n}}=y=1-x
$$

In addition, if λ is the the spectral radius of B, then

$$
\lim _{n \rightarrow \infty} \frac{A_{n+1}}{A_{n}}=\lambda
$$

For $0<p \leq q<\infty$, we have for each $n \in \mathbb{N}$,

$$
\begin{aligned}
& a_{n+1}=b_{n}+b_{n-1}+b_{n-2}+\cdots+b_{n-p+1} \\
& b_{n+1}=a_{n}+a_{n-1}+a_{n-2}+\cdots+a_{n-q+1}
\end{aligned}
$$

Then

$$
\frac{a_{n+1}}{A_{n-p+1}}=\frac{b_{n}+b_{n-1}+b_{n-2}+\cdots+b_{n-p+1}}{A_{n-p+1}}
$$

and

$$
\frac{b_{n+1}}{A_{n-q+1}}=\frac{a_{n}+a_{n-1}+a_{n-2}+\cdots+a_{n-q+1}}{A_{n-q+1}} .
$$

As $n \rightarrow \infty$,

$$
\lambda^{p} x=\lambda^{p-1} y+\lambda^{p-2} y+\lambda^{p-3} y+\cdots+\lambda y+y
$$

and

$$
\lambda^{q} y=\lambda^{q-1} x+\lambda^{q-2} x+\lambda^{q-3} x+\cdots+\lambda x+x
$$

Consequently,

$$
x=\frac{\lambda^{p-1}+\lambda^{p-2}+\lambda^{p-3}+\cdots+\lambda+1}{\lambda^{p}+\lambda^{p-1}+\lambda^{p-2}+\cdots+\lambda+1}
$$

and

$$
x=\frac{\lambda^{q}}{\lambda^{q}+\lambda^{q-1}+\lambda^{q-2}+\cdots+\lambda+1} .
$$

Thus,

$$
\frac{\lambda^{p-1}+\lambda^{p-2}+\lambda^{p-3}+\cdots+\lambda+1}{\lambda^{p}+\lambda^{p-1}+\lambda^{p-2}+\cdots+\lambda+1}=\frac{\lambda^{q}}{\lambda^{q}+\lambda^{q-1}+\lambda^{q-2}+\cdots+\lambda+1}
$$

and hence

$$
\begin{equation*}
\frac{\lambda^{p}-1}{\lambda^{p+1}-1}+\frac{\lambda^{q}-1}{\lambda^{q+1}-1}=1 \tag{2.1}
\end{equation*}
$$

Equation (2.1) is said to be the characteristic equation of $S(p, q)$ for $0<p \leq q<\infty$.
Similarly, for $0<p<\infty$ and $q=\infty$, we have for each $n \in \mathbb{N}$,

$$
\begin{aligned}
& a_{n+1}=b_{n}+b_{n-1}+b_{n-2}+\cdots+b_{n-p+1} \\
& b_{n+1}=A_{n}
\end{aligned}
$$

and then

$$
\lambda^{p} x=\lambda^{p-1} y+\lambda^{p-2} y+\lambda^{p-3} y+\cdots+\lambda y+y
$$

and

$$
\lambda y=1
$$

Consequently,

$$
\frac{\lambda^{p-1}+\lambda^{p-2}+\lambda^{p-3}+\cdots+\lambda+1}{\lambda^{p}+\lambda^{p-1}+\lambda^{p-2}+\cdots+\lambda+1}=\frac{\lambda-1}{\lambda}
$$

Thus,

$$
\begin{equation*}
\frac{\lambda^{p}-1}{\lambda^{p+1}-1}+\frac{1}{\lambda}=1 \tag{2.2}
\end{equation*}
$$

Equation (2.2) is said to be the characteristic equation of $S(p, \infty)$ for $0<p<\infty$.
For $(p, q) \neq(1,1),(\infty, \infty)$, it is not difficult to see that $S(p, q)$ is a subsystem of $S(\infty, \infty)$ and $S(1,2)$ is a subsystem of $S(p, q)$. Then

$$
0<C(1,2) \leq C(p, q)=\ln \lambda \leq C(\infty, \infty)=\ln 2
$$

Thus, $\lambda \in(1,2]$. We will prove that λ is the unique root of the characteristic equation in $(1,2)$.

Theorem 2.4 For $(p, q) \neq(1,1),(\infty, \infty)$, there exists one and only one root λ of the characteristic equation (2.1) or (2.2) in the open interval (1,2). Furthermore, $C(p, q)=\ln \lambda$.

Proof Let $f(\lambda)=\frac{\lambda^{p}-1}{\lambda^{p+1}-1}$. Since

$$
\begin{aligned}
f^{\prime}(\lambda) & =\frac{-\lambda^{2 p}+(p+1) \lambda^{p}-p \lambda^{p-1}}{\left(\lambda^{p+1}-1\right)^{2}} \\
& =\frac{\lambda^{p-1}\left((p+1) \lambda-\lambda^{p+1}-p\right)}{\left(\lambda^{p+1}-1\right)^{2}}<0
\end{aligned}
$$

one can see that $f(\lambda)$ is a strictly decreasing function, and so is the function $F(\lambda)=\frac{\lambda^{p}-1}{\lambda^{p+1}-1}+\frac{\lambda^{q}-1}{\lambda^{q+1}-1}$.
Notice

$$
F(\lambda)=\frac{\lambda^{p}-1}{\lambda^{p+1}-1}=\frac{1+\lambda+\lambda^{2}+\cdots+\lambda^{p-1}}{1+\lambda+\lambda^{2}+\cdots+\lambda^{p}}+\frac{1+\lambda+\lambda^{2}+\cdots+\lambda^{q-1}}{1+\lambda+\lambda^{2}+\cdots+\lambda^{q}}
$$

and then

$$
F(1)=\frac{p}{p+1}+\frac{q}{q+1}=\frac{1}{1+\frac{1}{p}}+\frac{1}{1+\frac{1}{q}} \geq \frac{1}{2}+\frac{1}{2}=1
$$

and the equality holds if and only if $p=q=1$. In addition,

$$
\begin{aligned}
F(2) & =\frac{2^{p}-1}{2^{p+1}-1}+\frac{2^{q}-1}{2^{q+1}-1} \\
& =\frac{2^{p+q+2}-3 \cdot 2^{p}-3 \cdot 2^{q}+2}{\left(2^{p+1}-1\right)\left(2^{q+1}-1\right)} \\
& <\frac{2^{p+q+2}-3 \cdot 2^{p}-3 \cdot 2^{q}+2}{\left(2^{p+1}-1\right)\left(2^{q+1}-1\right)}+\frac{2^{p}+2^{q}-1}{\left(2^{p+1}-1\right)\left(2^{q+1}-1\right)} \\
& =\frac{2^{p+q+2}-2^{q+1}-2^{p+1}+1}{\left(2^{p+1}-1\right)\left(2^{q+1}-1\right)} \\
& =1
\end{aligned}
$$

Therefore, the characteristic equation (2.1) has a unique root in the open interval $(1,2)$. Similarly, the characteristic equation (2.2) has a unique root in the open interval (1,2). It follows from the discussions before this theorem that the unique root λ is the spectral radius of B corresponding to $S(p, q)$, and hence $C(p, q)=\ln \lambda$.

Now we will order all (p, q)-DUB systems according to the size of topological entropies. First, let us consider the equalities possible among the topological entropies of (p, q)-DUB systems.

Proposition 2.5 For every positive integer p,

$$
C(p, \infty)=C(p+1, p+1)
$$

Proof For $S(p, \infty)$, the characteristic equation (2.2) can be written as follows:

$$
\lambda^{p+2}-2 \lambda^{p+1}+1=0
$$

For $S(p+1, p+1)$, the characteristic equation is

$$
\frac{\lambda^{p+1}-1}{\lambda^{p+2}-1}=\frac{1}{2}
$$

that is also

$$
\lambda^{p+2}-2 \lambda^{p+1}+1=0
$$

Therefore, we have

$$
C(p, \infty)=C(p+1, p+1)
$$

Next, we will prove some strict inequalities.

Proposition 2.6 For any p, q, and q^{\prime} with $q<q^{\prime} \leq \infty$, we have

$$
C(p, q)<C\left(p, q^{\prime}\right)
$$

Proof Let $\lambda_{0}, \lambda_{1} \in(1,2)$ with $C(p, q)=\ln \lambda_{0}$ and $C\left(p, q^{\prime}\right)=\ln \lambda_{1}$. Let $g_{q}(\lambda)=\frac{\lambda^{q}-1}{\lambda^{q+1}-1}$ for positive integer q and $g_{\infty}(\lambda)=\frac{1}{\lambda}$. For any $\lambda_{0} \in(1,2)$, one can see

$$
\begin{aligned}
g_{q+1}\left(\lambda_{0}\right)-g_{q}\left(\lambda_{0}\right) & =\frac{\lambda_{0}^{q+1}-1}{\lambda_{0}^{q+2}-1}-\frac{\lambda_{0}^{q}-1}{\lambda_{0}^{q+1}-1} \\
& =\frac{\lambda_{0}^{q+2}+\lambda_{0}^{q}-2 \lambda_{0}^{q+1}}{\left(\lambda_{0}^{q+2}-1\right)\left(\lambda_{0}^{q+1}-1\right)} \\
& =\frac{\lambda_{0}^{q}\left(\lambda_{0}-1\right)^{2}}{\left(\lambda_{0}^{q+2}-1\right)\left(\lambda_{0}^{q+1}-1\right)} \\
& >0
\end{aligned}
$$

and

$$
g_{\infty}\left(\lambda_{0}\right)-g_{q}\left(\lambda_{0}\right)=\frac{\lambda_{0}-1}{\lambda_{0}\left(\lambda_{0}^{q+1}-1\right)}>0
$$

Consequently, if $\lambda_{0} \in(1,2)$ satisfies equation (2.1), i.e.

$$
\frac{\lambda_{0}^{p}-1}{\lambda_{0}^{p+1}-1}+\frac{\lambda_{0}^{q}-1}{\lambda_{0}^{q+1}-1}=1
$$

then for q^{\prime} with $q<q^{\prime}<\infty$,

$$
\frac{\lambda_{0}^{p}-1}{\lambda_{0}^{p+1}-1}+\frac{\lambda_{0}^{q^{\prime}}-1}{\lambda_{0}^{q^{\prime}+1}-1}>1
$$

and

$$
\frac{\lambda_{0}^{p}-1}{\lambda_{0}^{p+1}-1}+\frac{1}{\lambda_{0}}>1
$$

Since the functions $\frac{\lambda^{p}-1}{\lambda^{p+1}-1}+\frac{\lambda^{q}-1}{\lambda^{q+1}-1}$ and $\frac{\lambda^{p}-1}{\lambda^{p+1}-1}+\frac{1}{\lambda}$ are strictly decreasing on $(1,2)$, we have $\lambda_{0}<\lambda_{1}$. In conclusion, $C(p, q)<C\left(p, q^{\prime}\right)$.

Following from the two above propositions, we obtain the complete size relationship of the topological entropies of all (p, q)-DUB systems.

Theorem 2.7

$$
\begin{aligned}
0 & =C(1,1)<C(1,2)<\ldots<C(1, \infty)=C(2,2)<C(2,3)<\ldots<C(2, \infty) \\
& =C(3,3)<C(3,4)<\ldots \ldots<C(\infty, \infty)=\ln 2
\end{aligned}
$$

References

[1] Immink K, Siegel P, Wolf J. Codes for digital recorders. IEEE T Inform Theory 1988; 44: 2260-2299.
[2] Immink K. Codes for Mass Data Storage Systems. Eindhoven, the Netherlands: Shannon Foundation Publishers, 2004.
[3] Kashyap N, Siegel P. Equalities among capacities of (d,k)-constrained systems. SIAM J Discrete Math 2003; 17: 276-297.
[4] Kashyap N. Maximizing the Shannon capacity of constrained systems with two constraints. SIAM J Discrete Math 2003; 17: 298-319.
[5] Kashyap N, Siegel P. Sliding-block decodable encoders between (d,k) runlength-limited constraints of equal capacity. IEEE T Inform Theory 2004; 50: 1327-1331.
[6] Kitchens B. Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov Shifts. Berlin, Germany: Springer-Verlag, 1998.
[7] Marcus B, Siegel P, Wolf J. Finite-state modulation codes for data storage. IEEE J Select Areas Commun 1992; 10: 5-37.
[8] Marcus B, Roth R, Siegel P. Constrained systems and coding for recording channels. In: Brualdi R, Huffman C, Pless V, editors. Handbook of Coding Theory, Amsterdam, the Netherlands: Elsevier, 1998, pp. 1635-1764.
[9] Shannon C. A mathematical theory of communication. Bell Syst Tech J 1948; 27: 379-423.
[10] Varga R. Matrix Iterative Analysis. Berlin, Germany: Springer-Verlag, 2000.

[^0]: *Correspondence: houbz@jlu.edu.cn
 2010 AMS Mathematics Subject Classification: Primary 37B10, 37B40; Secondary 94A55.

