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1. Introduction and physical motivation

The hyperbolic heat conduction equation is a fundamental tool in many modern industrial applications such

as microelectronics and the processing of materials by irradiation with a laser beam of high intensity and very

short application times (see [4, 6, 12, 13] for instance). Usually the mathematical formulation of these problems

leads to the study of boundary value problems with data given by irregular distributions such as Heaviside’s

function or Dirac’s δ distribution.

Real industrial materials frequently are neither isotropic (see [16] for instance for some concrete examples)

nor homogeneous. Assuming the density ρ and the specific heat c to be constant in order to avoid more

complications, the hyperbolic heat equation in the open set Ω occupied by the body is (see [2])

−
3∑

h=1

∂

∂ xh

 3∑
j=1

khj(x)
∂ T

∂ xj
(x, t)

+ ρ c

(
∂T

∂t
(x, t) + τ

∂2T

∂t2
(x, t)

)
=

= ρ

(
S(x, t) + τ

∂S

∂t
(x, t)

)
, (1)

where T (x, t) is the temperature in the point x at the instant t, (khj(x)) is the symmetric thermal conductivity

tensor of the material, τ is the relaxation parameter, and S(x, t) denotes the internal heat sources in the body.

Moreover, the preservation of the second law of thermodynamics implies that the differential operator in (1)

must be strongly elliptic in Ω. If khj = k for every 1 ≤ h, j ≤ 3 we obtain the hyperbolic heat equation for an

isotropic homogeneous body.
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The study of these problems with full generality is very ambitious and it is expected that a rigorous

and complete mathematical treatment will be quite long, difficult, and complex. In a first step to this goal,

we have studied in [10] the existence and regularity properties of the solutions of mixed initial and boundary

problems related to (1) when all involved data are regular. In a further step, the specific purpose of this paper is

to study existence, uniqueness, and regularity theorems about solutions of homogeneous mixed initial-boundary

value problems for the hyperbolic heat equation (1) in the case of infinitely differentiable coefficients up to the

closure Ω of the spatial domain but with nonregular data distributions in its right side. Roughly speaking, after

the elimination of the temporal variable by Laplace transformation, we are concerned with a family of spatially

elliptic operators indexed by the Laplace transform variable. When these operators have ”regular” functional

spaces as domain and range we can obtain a quite precise estimation of the norm of the inverse operators, an

estimation that is essentially conserved after transposition, enlargement of the range space of the transposed

operators, and complex interpolation. In this way we arrive at the world of ”irregular” domain spaces for our

operators in such a way that we can to apply the Laplace inversion formula to obtain our solution functions

and to study their properties.

The paper is organized as follows. In this section we set the notation and give an account of the necessary

functional spaces to be used as well as some preliminary results. Section 2 settles the selected framework to

develop our study and presents various fundamental results in order to find quantitative information about the

operators we are concerned with. In section 3 we apply these previous results to get our main theorems on

existence and regularity properties of solutions in the case of irregular data.

Notation is standard in general. All used functions and vector spaces are assumed to be complex if not

clearly stated otherwise. E′ always denotes the dual space of the normed space E. Points (x1, x2, ..., xn) ∈ Rn

are denoted by x in short. A bold Greek letter α ∈ (N ∪ {0})n will denote a multi-index for derivations.

The symbol ≈ means ”isomorphic”. We shall always consider an open bounded set Ω ⊂ Rn, n ∈ N with

boundary ∂Ω being a C∞ manifold of dimension n − 1 such that Ω is locally on the same side of ∂Ω.

We refer to [8] for the definition and properties of the Sobolev spaces Hr(Ω), Hr
0 (Ω), H

r,s(Ω×]T0, T1[) and

Hr,s
0,0(Ω×]T0, T1[), r, s ∈ [0,∞[ (and analogous spaces defined on the boundary ∂Ω) and its dual spaces as well

for basic facts about complex interpolation spaces [X,Y ]θ between Banach spaces X and Y. If m ≥ k in [0,∞[,

Im,k : Hm(Ω) −→ Hk(Ω) will denote the continuous inclusion map. For simplicity we will use the notation

ΩT := Ω×] − T, T [ for T > 0. Unless clearly stated otherwise, the restriction of G ∈ D′(Ω × R) to any open

subset of Ω× R will be denoted by the same symbol, G. We shall need the following lemma.

Lemma 1 Let 0 ≤ r2 ≤ r1 and 0 ≤ s be real numbers. If 0 < ρ < 1 and T > 0 one has the continuous

inclusion maps

1)
[
Hr1(]− T, T [, Hs(Ω)),Hr2(]− T, T [, Hs(Ω))

]
ρ
⊂ H(1−ρ)r1+ρr2(]− T, T [,Hs(Ω)).

2)
[
Hs(]− T, T [,Hr1(Ω)),Hs(]− T, T [,Hr2(Ω))

]
ρ
⊂ Hs

(
]− T, T [,H(1−ρ)r1+ρr2(Ω)

)
.

Proof We apply the technique of complex interpolation (see
[
[8], chapter 1, section 14

]
). Let Z =

{
ξ+ iη ∈

C
∣∣ ξ ∈]0, 1[, η ∈ R

}
and given Banach spaces Y1 ⊂ Y2, Y1 dense in Y2, let H

(
Z, Y1, Y2)

)
be the set of continuous

functions f : Z −→ Y2 such that f(ηi) ∈ L∞(R, Y1), f(1 + ηi) ∈ L∞(R, Y2) and f is scalarly holomorphic in Z.
1) Take Y1 := Hr1(] − T, T [,Hs(Ω)) and Y2 : Hr2(] − T, T [,Hs(Ω)). Given ε > 0 and z(x, t) ∈ Z1 :=
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[
Y1, Y2

]
ρ
there is f ∈ H

(
Z, Y1, Y2

)
such that z(x, t) = f(ρ)(x, t) and

max
(∥∥f(ηi,x, t)∥∥

L∞(R,Y1)
,
∥∥f(1 + ηi,x, t)

∥∥
L∞(R,Y2)

)
≤
∥∥z(x, t)∥∥

Z1
+ ε. (2)

Defining g(ξ + iη, t) =
∥∥f(ξ + iη)(x, t)

∥∥
Hs(Ω)

∈ H(Z,Hr1(−T, T ),Hr2(−T, T )) and writing X1 := Hr1(] −

T, T [), X2 := Hr2(]−T, T [) and r := (1−ρ)r1+ρr2 we have g(iη, t) ∈ L∞(R, X1

)
and g(1+iη, t) ∈ L∞(R, X2).

As a consequence g(ρ, t) =
∥∥f(ρ)(x, t)∥∥

Hs(Ω)
∈
[
X1, X2

]
ρ

≈ Hr(] − T, T [) (by
[
[8] chapter 1, theorem 9.6

]
).

Then z(x, t) = f(ρ)(x, t) ∈ Z2 := Hr
(
]− T, T [,Hs(Ω)

)
and there is M > 0 such that by (2) we have∥∥z(x, t)∥∥

Z2
=
∥∥g(ρ, t)∥∥

Hr(]−T,T [)
≤M

∥∥g(ρ, t)∥∥
[X1,X2]ρ

≤M max
(∥∥g(ηi, t)∥∥

L∞(R,X1)
,
∥∥g(1 + ηi, t)

∥∥
L∞(R,X2)

)
≤M

(∥∥z(x, t)∥∥
Z1

+ ε
)

and the continuity of the inclusion follows from the arbitrariness of ε > 0.

2) Now consider Y1 := Hs(] − T, T [,Hr1(Ω)) and Y2 := Hs(] − T, T [,Hr2(Ω)) and Z3 :=
[
Y1, Y2

]
ρ
.

Since Y1 ⊂ Z3, given z(x, t) ∈ Y1 there is f(ξ + ηi,x, t) ∈ H
(
Z, Y1, Y2

)
such that z(x, t) = f(ρ,x, t),

f(iη,x, t) ∈ L∞(R, Y1), f(1 + ηi,x, t) ∈ L∞(R, Y2) and

max
(∥∥f(ηi,x, t)∥∥

L∞(R,Y1)
,
∥∥f(1 + ηi,x, t)

∥∥
L∞(R,Y2)

)
≤
∥∥z(x, t)∥∥

Z3
+ ε. (3)

Then there is a set T0 ⊂] − T, T [ with Lebesgue measure 0 such that for every t ∈] − T, T [\T0, the function

gt(ξ + ηi,x) := f(ξ + ηi,x, t) ∈ H(Z,Hr1(Ω),Hr2(Ω)) verifies gt(ηi,x) ∈ L∞(R,Hr1(Ω)), gt(1 + ηi,x) ∈
L∞(R, Hr2(Ω)). It follows that gt(ρ,x) ∈

[
Hr1(Ω), Hr2(Ω)

]
ρ
≈ Hr(Ω) (by

[
[8] chapter 1, theorem 9.6

]
), where

r := (1 − ρ)r1 + ρr2. Then there are M1 > 0,M2 > 0 such that by (3)
∥∥gt(ρ,x)∥∥Hr(Ω)

≤ M
(∥∥z(x, t)∥∥

Z3
+ ε
)

and so ∥∥gt(ρ,x)∥∥Hs(]−T,T [,Hr(Ω)
=
∥∥∥∥∥gt(ρ,x)∥∥Hr(Ω)

∥∥∥
Hs(]−T,T [)

≤
∥∥∥ ∥∥f(ρ,x, t)∥∥Hr(Ω)

∥∥∥
Hs(]−T,T [)

≤M1(
∥∥z(x, t)∥∥

Z3
+ 2Tε) ≤M1(M2

∥∥z(x, t)∥∥
Y1

+ 2Tε)

and by the arbitrariness of ε > 0 we obtain the continuity of the inclusion map Y1 ⊂ Hs(]−T, T [,Hr(Ω)). Since

Y1 is dense in Z3 (
[
[8], chapter 1, remark 2.6

]
) the map can be continuously extended to the inclusion into

Z3 (because Z3 ⊂ L2(ΩT ) and the convergence of a sequence in this space implies almost everywhere punctual

convergence of some subsequence). 2

We shall need more involved spaces in order to take into account the boundary conditions of our problems.

Let d(x, ∂Ω) := infy∈∂Ω
∥∥x− y

∥∥ be the (continuous) distance up to the boundary ∂Ω of x ∈ Ω function. Let

r ∈ N ∪ {0}. We define

Ξr(Ω) =
{
f ∈ L2(Ω)

∣∣∣ ∥∥f∥∥Ξr(Ω)
=
( ∑
|α|≤r

∥∥∥d(x, ∂Ω)|α| ∂
|α|f

∂xα
(x)
∥∥∥2
L2(Ω)

) 1
2

<∞
}
. (4)

Ξr(Ω) endowed with the norm ∥.∥Ξr(Ω) turns out to be a Banach space. We extend this definition to the case

r ∈]0,∞[ by complex interpolation setting Ξr(Ω) =
[
Ξk+1(Ω),Ξk(Ω)

]
k+1−r for k < r < k + 1, k ∈ N ∪ {0},
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endowed with any canonical norm of the interpolated space. It is easy to see that Hr(Ω) ⊂ Ξr(Ω) for each

r ≥ 0. Moreover, it can be shown (see
[
[8], chapter 2, formula (6.21)

]
) that in these cases D(Ω) is dense in

Ξr(Ω). Hence, if Ξ−r(Ω) := (Ξr(Ω))′ we have a Gelfand triple Ξr(Ω) ⊂ L2(Ω) ⊂ Ξ−r(Ω) and the inclusions

Ξ−r(Ω) ⊂ H−r(Ω) and Ξ−r(Ω) ⊂
(
Hr(Ω)

)′
.

In order to distinguish the behavior of temporal and spatial variables we introduce another space. Given

0 < T we fix a number T0 <
T
2 . Consider the function φT0,T ∈ C∞(R) with compact support [−T, T ] defined

by

φT0,T (t) :=


e
− T2

0
T2
0 −(t+T−T0)2 if − T < t ≤ −T + T0

1
e if − T + T0 ≤ t ≤ T − T0

e
− T2

0
T2
0 −(t−T+T0)2 if T − T0 ≤ t < T

0 if t ∈]−∞,−T ] ∪ [T,∞[

Clearly ∥φT0,T ∥L∞(R) =
1
e independent on T. For every s ≤ r in N ∪ {0} we define

Ξr,s(ΩT ) :=
{
f ∈ L2(]− T, T [,Ξr(Ω))

∣∣∣
∥∥f∥∥

Ξr,s(ΩT )
:=

 s∑
j=0

∥∥∥∥ |φT0,T (t)|j
∂jf

∂tj

∥∥∥∥2
L2(]−T,T [,Ξr−j(Ω))

 1
2

<∞

 .

As above we define Ξr,s(ΩT ) for r ∈ [0,∞[ and s ∈ N by interpolation and, in a second step, we define

Ξr,s(ΩT ), r ≥ 0, s ≥ 0 by interpolation on s, providing all interpolated spaces with any standard interpolation

norm. Since limt→−T
φT0,T (t)

T+t = limt→T
φT0,T (t)

T−t = 0, from
[
[8], chapter 4, proposition 9.1

]
, we obtain that

D(ΩT ) is also dense in Ξr,s(ΩT ) and, defining for every r ≥ s ≥ 0 the space Ξ−r,−s(ΩT ) := Ξr,s(ΩT )
′, it turns

out that we have another Gelfand triple

Ξr,s(ΩT ) ⊂ L2(ΩT ) ⊂ Ξ−r,−s(ΩT ) ⊂ D′(Ω× R). (5)

An example that will be used later on: Given φ(x) ∈ Ξr(Ω) and α > 0, to estimate
∥∥e−α tφ(x)∥∥

Ξr, 1
2
+ε(ΩT )

,

0 < ε < 1
2 we note that

∥∥e−α tφ(x)∥∥
Ξr,0(ΩT )

=

(∫ T

−T

∣∣e−2 α t
∣∣∥∥φ(x)∥∥2

Ξr(Ω)
dt

) 1
2

≤
∥∥φ(x)∥∥

Ξr(Ω)

eαT√
2α

and

∥∥e−α tφ(x)∥∥
Ξr,1(ΩT )

≤

(∫ T

−T

(
e−2αt +

α2

e2
e−2αt

) ∥∥φ(x)∥∥2
Ξr(Ω)

dt

) 1
2

≤

≤
∥∥φ(x)∥∥

Ξr(Ω)

√
1 +

α2

e2

√
e2αT − e−2αT

2α
≤
∥∥φ(x)∥∥

Ξr(Ω)

√
1 +

α2

e2
eαT√
2α
.
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Since Ξr,
1
2+ε(ΩT ) =

[
Ξr,1(ΩT ),Ξ

r,0(ΩT )
]

1
2−ε

, there is Qε > 0 such that

∥∥e−α tφ(x)∥∥
Ξr, 1

2
+ε(ΩT )

≤ Qε
∥∥e−α tφ(x)∥∥ 1

2+ε

Ξr,1(ΩT )

∥∥e−α tφ(x)∥∥ 1
2−ε
Ξr,0(ΩT )

≤

≤ Qε
∥∥φ(x)∥∥

Ξr(Ω)

eα T√
2 α

(√
1 +

α2

e2

) 1
2+ε

. (6)

Finally we consider spaces of the latter type but with unbounded temporal intervals. We fix an unbounded

strictly increasing sequence {Tm}∞m=0 in ]0,∞[ such that T0 < Tm−Tm−1 for each m ∈ N and let Sm be the

map sending every measurable function in Ω×R to its restriction to Ω×]−Tm,Tm[. Given 0 < r, s we define

Ξr,s(Ω× R) :=
{
f : Ω× R −→ R

∣∣∣ ∥∥f∥∥
Ξr,s(Ω×R) := sup

m∈N

∥∥Sm(f)
∥∥
Ξr,s(ΩTm )

<∞
}
. (7)

For every f ∈ D(ΩTm
) let f̃ ∈ D(Ω × R) be its extension by 0 on the complement of ΩTm

. Then f̃ ∈

Ξr,s(Ω×R) and Sm(f̃) = f. As D(ΩTm) is dense in Ξr,s(ΩTm) it turns out that Sm ∈ L
(
Ξr,s(Ω×R),Ξr,s(ΩTm)

)
has a dense range and so the adjoint map S′

m ∈ L
(
Ξ−r,−s(ΩTm), (Ξr,s(Ω × R))′

)
is injective. Then we

define Ξ−r,−s(Ω×R) :=
∪∞
m=1 S

′
m(Ξ−r,−s(ΩTm)) provided with the topology induced by the norm topology of

(Ξr,s(Ω × R))′. We shall identify each Ψ ∈ Ξ−r,−s(ΩTm) with S′
m(Ψ) ∈ Ξ−r,−s(Ω × R). The following lemma

holds:

Lemma 2 Let Ψ ∈ Ξ−r,−s(Ω,R). There are m ∈ N and a sequence φk(x, t) ∈ D(Ω × R), such that Ψ =

limk→∞ φk(x, t) in Ξ−r,−s(Ω,R) and
∪∞
k=1 Supp(φk) ⊂ ΩTm .

Proof By definition of Ξ−r,−s(Ω × R) there are m ∈ N and φ ∈ Ξ−r,−s(ΩTm) such that Ψ = S′
m(φ). By

(5) there is a sequence {φk}∞k=1 ⊂ D(ΩTm) convergent to φ in Ξ−r,−s(ΩTm). Then Ψ = limk→∞ S′
m(φk) in

Ξ−r,−s(Ω× R). The fact that S′
m(φk) = φ̃k, k ∈ N ends the proof. 2

For our concrete applications we note the important result:

Proposition 3 Let x0 ∈ Ω and −T
2 < −T0 < t0 < T0 < T

2 . If r > n
2 and r ≥ s > 1

2 we have

δ(x− x0)⊗ δ(t− t0) ∈ Ξ−r,−s(ΩT ) and so δ(x− x0)⊗ δ(t− t0) ∈ Ξ−r,−s(Ω× R). Moreover, for each k0 ∈ N
there is Kk0(Ω) such that

sup
{∥∥δ(x− x0)⊗ δ(t− t0)

∥∥
Ξ−r,−s(ΩT

, d(x0, ∂Ω) >
1

k0
,
∣∣t0∣∣ < T − 1

k0

}
≤ Kk0(T,Ω).

Proof Define Ωk :=
{
x ∈ Ω | d(x, ∂Ω) > 1

k

}
, k ∈ N and choose k0 ∈ N such that x0 ∈ Ωk0 and

|t0| < T − 1
k0
. Fix functions ρ1(x) ∈ D(Ω) and ρ2(t) ∈ D(]− T, T [) such that ρ1(x) = 1 if x ∈ Ωk0 , ρ1(x) = 0

if x ∈ Ω\Ω2 k0 and ρ2(t) = 1 if t ∈
]
−T + 1

k0
, T − 1

k0

[
and ρ2(t) = 0 if t ∈

]
−T,−T + 1

2 k0

[
∪
]
T − 1

2 k0
, T
[
.

The map u ∈ Ξr,s(ΩT ) −→ ρ1ρ2u ∈ Hs(] − T, T [, Hr(Ω)) is continuous and there is M > 0 (only

depending on ρ1(x), ρ2(t), k0, r, s and φT0,T (t)) such that

∀ u ∈ Ξr,s(ΩT )
∥∥∥ρ1 ρ2 u∥∥∥

Hs(]−T,T [,Hr(Ω))
≤M

∥∥∥u∥∥∥
Ξr,s(ΩT )

. (8)
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In fact, if r, s are in N and u ∈ D(ΩT ) it is straightforward to check (8) using Leibnitz’s rule on derivative of

products. The general result follows by density and can be extended to arbitrary 0 ≤ r, s by interpolation and

application of lemma 1.

On the other hand, since r > n
2 , by Sobolev’s embedding theorem we have Hr(Ω) ⊂ C(Ω) and there is

K1 > 0 such that for every u ∈ D(ΩT ) we have

∀ − T < t < T
∥∥∥ρ1(x) u(x, t)∥∥∥

C(Ω)
≤ K1

∥∥∥ρ1(x) u(x, t)∥∥∥
Hr(Ω)

. (9)

In the same way, since s > 1
2 , by the vector valued version of

[
[8], chapter 1, theorem 9.8

]
(the proof is exactly

the same as that in the scalar valued case) we obtain Hs(] − T, T [, Hr(Ω)) ⊂ C([−T, T ],Hr(Ω)) and there is

K2 > 0 such that

∀ f ∈ Hs(]− T, T [,Hr(Ω))
∥∥∥f(x, t)∥∥∥

C([−T,T ],Hr(Ω))
≤ K2

∥∥∥f(x, t)∥∥∥
Hs(]−T,T [,Hr(Ω))

. (10)

Hence, by (9), (10), and (8) we obtain for every u ∈ D(ΩT )∣∣∣⟨u, δ(x− x0)⊗ δ(t− t0)
⟩∣∣∣ = |u(x0, t0)| ≤

1

ρ1(x0)

∥∥∥ρ1(x) u(x, t0)∥∥∥
C(Ω)

≤

≤ K1

ρ1(x0)

∥∥∥ρ1(x) u(x, t0)∥∥∥
Hr(Ω)

≤ K1
1

ρ1(x0) ρ2(t0)

∥∥∥ρ1 ρ2 u∥∥∥
C([−T,T ],Hr(Ω))

≤

≤ K1 K2

ρ1(x0) ρ2(t0)

∥∥∥ρ1 ρ2 u∥∥∥
Hs(]−T,T [,Hr(Ω))

≤M K1 K2

∥∥∥u∥∥∥
Ξr,s(ΩT )

and hence, by density of D(ΩT ) in Ξr,s(ΩT ) we obtain finally

sup
{∥∥δ(x− x0)⊗ δ(t− t0)

∥∥
Ξ−r,−s(ΩT )

,x0 ∈ Ωk0 , |t0| < T − 1

k0

}
≤ Kk0(T,Ω) (11)

where Kk0(T,Ω) is increasing with Ω. 2

In the next theorem we need weighted spaces. Given a measurable real function g : Ω −→]0,∞[

we define the normed weighted space L2(Ω, g) as the set of measurable functions f : Ω −→ R such that∥∥f∥∥
L2(Ω,g)

:=
∥∥fg∥∥

L2(Ω)
< ∞. If E is a Banach space, the vector E -valued weighted space L2(Ω, g, E) is the

set of strongly measurable functions f : Ω −→ E such that
∥∥f∥∥

L2(Ω,g,E)
:=
∥∥∥f∥E∥∥L2(Ω,g)

<∞
}
.

Proposition 4 If s < r and T > 0, the inclusion Ξr,r(ΩT ) ⊂ Ξs,s(ΩT ) is compact.

Proof First assume s ∈ N ∪ {0}, r ∈ N , and s < r. Given a bounded sequence {fm}∞m=1 in Ξr(Ω),

for every α such that |α| = r − 1 it turns out that the inclusions
{
d(x, ∂Ω)|α| ∂|α|fm

∂xα

}∞

m=1
⊂ L2(Ω) and{

d(x, ∂Ω)|α|+1 ∂
∂xj

(
∂|α|fm
∂xα

)}∞

m=1
⊂ L2(Ω), j = 1, 2, ..., n hold. Then, by

[
[5], theorem 2.7

]
there is a

subsequence
{
∂|α|fkm

∂xα

}∞

m=1
convergent in the weighted space L2(Ω, d(x, ∂Ω)|α|). After a finite and analogous

inductive process on |α| = r − k, 1 ≤ k ≤ r − 1 we conclude that the inclusion Ξr(Ω) ⊂ Ξr−1(Ω) is compact.
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Now, consider for every 0 ≤ j < r the Banach space

W r
j :=

{
f ∈ L2

(
]− T, T [, φjT0,T

,Ξr−j(Ω)
) ∣∣∣ ∂ f

∂ t
∈ L2

(
]− T, T [, φjT0,T

,Ξr−j−1(Ω)
)}

provided with the norm

∥∥∥f∥∥∥
W r

j

:=

(∥∥∥φjT0,T
f
∥∥∥2
L2(]−T,T [,Ξr−j(Ω))

+
∥∥∥φj−1

T0,T

∂ f

∂ t

∥∥∥2
L2(]−T,T [,Ξr−j−1(Ω))

) 1
2

.

As the map f −→ φjT0,T
f is an isometry from L2(] − T, T [, φjT0,T

,Ξr−j(Ω)) onto L2(] − T, T [,Ξr−j(Ω)), by

theorem 5.1, chapter 1 in [7] the inclusion W r
j ⊂ L2(]− T, T [, φjT0,T

,Ξr−j(Ω)) is compact for every 0 ≤ j ≤ s.

Since for every bounded sequence {fm}∞m=1 in Ξr,r(Ωt) and every 0 ≤ j ≤ s it turns out that
{
∂jfm
∂tj

}∞

m=1
is

bounded in W r
j the conclusion follows afterwards a finite inductive process, indexed by j = 0, 1, ..., s, selecting

in every step j a suitable subsequence of the previous one that converges in L2(]− T, T [, φjT0,T
,Φr−j(Ω)).

The proof for arbitrary real numbers 0 < s < r follows by classical compactness theorems of interpolated

operators due to Calderón (see [1]). 2

2. Auxiliary technical results

To achieve our results we shall always consider general operators

A := −X +
1

α

(
∂

∂t
+ τ

∂2

∂t2

)
, X :=

∑
|α|,|β|≤1

∂|α|

∂ xα

(
aαβ(x)

∂|β|

∂ xβ

)
,

where X is a self-adjoint strongly uniform elliptic operator in Ω (in the sense of Wloka, [17]) with real coefficients

aαβ(x) ∈ C∞(Ω) verifying

∀ x ∈ Ω, ∀ ξ = (ξ1, ..., ξn) ∈ Rn
∑

|α|=|β|=1

aαβ(x)ξ
αξβ ≥ KX

n∑
i=1

∣∣ξi∣∣2 (12)

for some 1 > KX > 0 (only dependent on Ω and X ). Moreover, by the theorem of traces
[
[8], chapter 1,

theorem 8.3
]
, we shall consider differential boundary operators with real coefficients f, g1, g2, g3 in C∞(∂Ω) of

type

B : h(x) ∈ H2(Ω) −→ B(h(x)) := f(x)h(x) +

3∑
i=1

gi(x)
∂h

∂xi
(x) ∈ L2(∂Ω). (13)

If we take formally the Schwartz–Laplace transform L with respect to t of a distribution A(U) we obtain

L
[
A(U)

]
(p) =

(
−X +

1

α

(
p+ τ p2

))
L[U ](p) =

τ

α

(
−α
τ
X − 1

4τ2
+
(
p+

1

2τ

)2)
L[U ](p),
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which leads us in a natural way to the introduction of the operators

A :=
α

τ
X +

1

4τ2
and Xp :=

τ

α

(
−A+

(
p+

1

2τ

)2
)
, p ∈ C. (14)

It follows from (12) and the argumentation in
[
[17], example 19.1

]
that A is H1

0 (Ω)-coercive and so there are

constants µX ≥ 1 and CX (only dependent on Ω and X ) such that Xp is an isomorphism from H1
0 (Ω) onto

H−1(Ω) when p lies in the half-space SµX :=
{
p ∈ C | Re(p+ 1

2τ ) > µX
}

and by
[
[17] theorem 17.10

]
∥∥X−1

p : H−1(Ω) −→ H1
0 (Ω)

∥∥ ≤ 1

CX
. (15)

Sometimes we shall need to consider the restriction to some Banach space F ⊂ H−1(Ω) of X−1
p or to consider

X−1
p as an operator with range larger than H1

0 (Ω). These new maps will be denoted by the same symbol X−1
p

unless a more formal representation is necessary.

The linear space

∀ r ∈ [0,∞[ Rr+2(Ω) :=
{
f ∈ Hr+2(Ω) ∩Hr+1

0 (Ω)
∣∣∣ B(f) = 0 and A(f) ∈ Hr

0 (Ω)
}
,

provided with the norm induced by Hr+2(Ω), will play an important role in the sequel. Since D(Ω) ⊂ Rr+2(Ω)

and D(Ω) is dense in L2(Ω), we have the natural inclusions Rr+2(Ω) ⊂ L2(Ω) ⊂
(
Rr+2(Ω)

)′ ⊂ D′(Ω) forming

a Gelfand triple. The continuous inclusion map Rr(Ω) ⊂ Hr(Ω) will be denoted by Rr.

Proposition 5 Let r ∈ [0,∞[.

1) Rr+2(Ω) is a Banach space.

2) Xp is an isomorphism from Rr+2(Ω) onto Hr
0 (Ω) for every p ∈ SµX and, in the case r − 1

2 /∈ Z,
there is Mr ≥ 0 (only dependent on Ω and X ) such that∥∥Rr+2X−1

p

∥∥ =
∥∥X−1

p

∥∥
L(Hr

0 (Ω),Hr+2(Ω))
≤Mr. (16)

Proof 1). It is enough to see that Rr+2(Ω) is closed in Hr+2(Ω). Let f = limm→∞ fm in Hr+2(Ω) with

{fm}∞m=1 ⊂ Rr+2(Ω). It turns out that {A(fm)}∞m=1 ⊂ Hr
0 (Ω) must be a Cauchy sequence in Hr(Ω) because

A ∈ L
(
Hr+2(Ω),Hr(Ω)

)
. Then A(f) = limm→∞ A(fm) ∈ Hr

0 (Ω) since Hr
0 (Ω) is a Banach space. In the same

way we have necessarily f = limm→∞ fm in Hr+1
0 (Ω). Finally, for every m ∈ N there is φm ∈ D(Ω) such that∥∥fm − φm

∥∥
Hr+2(Ω)

≤ 1
m and

∥∥B(φm)
∥∥
Hr+1

2 (∂Ω)
≤ 1

m . Then f = limm→∞ φm in Hr+2(Ω) and the continuity

of B gives us B(f) = 0 on ∂Ω. Hence f ∈ Rr+2(Ω).

2) Let p ∈ SµX . Obviously we have Xp ∈ L
(
Rr+2(Ω),Hr

0 (Ω)
)
and by the H1

0 (Ω)-coerciveness of Xp it

is injective. By the open map theorem we only need to show that Xp is surjective onto Hr
0 (Ω).

Let γ0 be the trace operator on ∂Ω. Given f ∈ Hr
0 (Ω) ⊂ L2(Ω) there is a unique Uf ∈ H1

0 (Ω) such

that Xp(Uf ) = f and γ0(Uf ) = 0 (by
[
[8], chapter 1, theorem 11.5

]
). In the same way, as ∂|α|f

∂xα ∈ H−1(Ω)

whenever |α| ≤ r + 1, there is Vα ∈ H1
0 (Ω) such that Xp(Vα) = ∂|α|f

∂xα . In such a case, for every φ ∈ D(Ω), we
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have ⟨
Vα, φ

⟩
=
⟨
(Xp)−1

(
∂|α|f

∂xα

)
, φ
⟩
=

⟨
∂|α|f

∂xα
,
(
X−1
p

)′
(φ)

⟩
=

= (−1)|α|
⟨
f,
∂|α|

∂xα

(
X−1
p

)′
(φ)

⟩
= (−1)|α|

⟨
Xp(Uf ),

∂|α|

∂xα

(
X−1
p

)′
(φ)

⟩
=

=

⟨
∂|α|

∂xα
Xp(Uf ),

(
X−1
p

)′
(φ)

⟩
=

⟨
Xp
(
∂|α|Uf
∂xα

)
,
(
X−1
p

)′
(φ)

⟩
=

⟨
∂|α|Uf
∂xα

, φ

⟩
and so

∂|α|Uf

∂xα = Vα ∈ H1
0 (Ω) and γ0

(
∂|α|Uf

∂xα

)
= 0. In particular, by

[
[8], chapter 1, theorem 11.5

]
we obtain

Uf ∈ Hr+2(Ω) ∩Hr+1
0 (Ω) and

∂Uf

∂xα = Vα ∈ H1
0 (Ω) when |α| = 1. By definition of B we obtain B(Uf ) = 0,

i.e. Uf ∈ Rr+2(Ω).

On the other hand, if f ∈ L2(Ω) by (15) we have

∥∥X−1
p (f)

∥∥2
R2(Ω)

=
∥∥X−1

p (f)
∥∥2
H1(Ω)

+
∑
|α|=2

∥∥∥∥∥∂2X−1
p (f)

∂xα

∥∥∥∥∥
2

L2(Ω)

≤

∥∥f∥∥2
H−1(Ω)

C2
X

+
∑
|α|=1

∥∥∥∥∥∂X−1
p (f)

∂xα

∥∥∥∥∥
2

H1(Ω)

≤

∥∥f∥∥2
L2(Ω)

C2
X

+
∑
|α|=1

∥∥∥∥X−1
p

(
∂f

∂xα

)∥∥∥∥2
H1(Ω)

≤

∥∥f∥∥2
L2(Ω)

C2
X

+
∑
|α|=1

1

C2
X

∥∥∥∥ ∂f∂xα

∥∥∥∥2
H−1(Ω)

≤

∥∥f∥∥2
L2(Ω)

C2
X

+
n

C2
X

∥∥f∥∥2
L2(Ω)

=M2
1

∥∥f∥∥2
L2(Ω)

obtaining (16) for r = 0. The proof for r ∈ N is analogous using induction on r. Finally the general

case r − 1
2 /∈ Z follows by interpolation since the isomorphisms Hr(Ω) ≈

[
Hk+1(Ω),Hk(Ω)

]
k+1−r and

Hr
0 (Ω) ≈

[
Hk+1

0 (Ω), Hk
0 (Ω)

]
k+1−r hold for r ∈]k, k + 1[\

{
k + 1

2

}
, k ∈ N ∪ {0}, (

[
[8], chapter 1, theorems

9.6 and 11.6
]
). 2

We have not been able to find fine estimates of
∥∥X−1

p : Hr
0 (Ω) −→ Rr+2(Ω)

∥∥ as a function of the

parameter p ∈ SµX . Fortunately, for our main purposes it will be enough to find these estimates if we replace

Rr+2(Ω) with some larger spaces. First we note the following result:

Theorem 6 Let r ∈ [0,∞[\
(
Z+ 1

2

)
. There is M(r) > 0 such that if p ∈ SµX the operator X−1

p considered an

operator from Hr
0 (Ω) into Hr(Ω) verifies

∥∥(Xp)−1
∥∥
L(Hr

0 (Ω),Hr(Ω))
=
∥∥Ir+2,rRr+2X−1

p

∥∥ ≤ M(r)∣∣Re (p+ 1
2 τ

)∣∣ ∣∣p+ 1
2 τ

∣∣ . (17)

Proof a) Let p ∈ SµX . By theorem 5, Xp is an isomorphism from R2(Ω) ⊂ L2(Ω) onto L2(Ω). If

Im
(
p+ 1

2τ

)
̸= 0, it follows from

[
[3], chapter 8, §1, proposition 2

]
that

∥∥X−1
p

∥∥
L(L2(Ω),L2(Ω))

≤ 1∣∣∣Im (p+ 1
2 τ

)2∣∣∣ = 1

2
∣∣Re (p+ 1

2τ

)
Im
(
p+ 1

2τ

)∣∣ . (18)
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If Arg
(
p+ 1

2τ

)
≤ π

4 we have

2

∣∣∣∣Re(p+ 1

2τ

)
Im

(
p+

1

2τ

)∣∣∣∣ = ∣∣∣∣p+ 1

2τ

∣∣∣∣2 ∣∣∣∣sin 2Arg(p+ 1

2τ

)∣∣∣∣
≥ 1√

2

∣∣∣∣p+ 1

2τ

∣∣∣∣2 ≥ 1√
2

∣∣∣∣p+ 1

2τ

∣∣∣∣ ∣∣∣∣Re(p+ 1

2τ

)∣∣∣∣
and

Arg

(
p+

1

2τ

)
≥ π

4
=⇒

∣∣∣∣Im(p+ 1

2τ

)∣∣∣∣ ≥ 1√
2

∣∣∣∣p+ 1

2τ

∣∣∣∣ .
Then (17) follows from (18) if r = 0 and Im

(
p+ 1

2τ

)
̸= 0.

If p0 ∈ SµX and Im
(
p0 +

1
2τ

)
= 0, taking a sequence {pm}∞m=1 ⊂ SµX \R such that p0 = limm→∞ pm,

we remark that, using (16) we can write

∥∥I2,0R2(X−1
pm −X−1

p0 )
∥∥ =

∥∥I2,0R2

(
X−1
p0 (Xp0 −Xpm)X−1

p

)∥∥
≤
∥∥X−1

p0

∥∥ ∥∥Xp0 −Xpm
∥∥ ∥∥X−1

pm

∥∥ ≤M2
0

τ

α

∣∣∣∣∣
(
pm +

1

2τ

)2

−
(
p0 +

1

2τ

)2
∣∣∣∣∣ .

This implies that limm→∞
∥∥I2,0R2(X−1

pm −X−1
p0 )

∥∥ = 0 and by the previous result

∥∥X−1
p0

∥∥
L(L2(Ω),L2(Ω))

= lim
m→∞

∥∥X−1
pm

∥∥
L(L2(Ω),L2(Ω))

≤ lim
m→∞

M(0)∣∣Re (pm + 1
2 τ

)∣∣ ∣∣pm + 1
2 τ

∣∣ = M(0)∣∣Re (p0 + 1
2 τ

)∣∣ ∣∣p0 + 1
2 τ

∣∣ .
b) If r ∈ N given |α| ≤ r, for every f ∈ Hr

0 (Ω), we have Xp
(
∂|α|

∂xαX−1
p (f)

)
= ∂|α|

∂xα

(
Xp(X−1

p (f)
)

=

∂|α|f
∂xα ∈ H

r−|α|
0 (Ω) ⊂ L2(Ω) and, by proposition 5

X−1
p

(
∂|α|f

∂ xα

)
=
∂|α|

∂xα

(
X−1
p (f)

)
∈ Rr−|α|+2(Ω). (19)

By part a) one has

M(0)∣∣Re (p+ 1
2τ

)∣∣ ∣∣p+ 1
2τ

∣∣
∥∥∥∥∂|α|f

∂xα

∥∥∥∥
L2(Ω)

≥
∥∥∥∥X−1

p

(
∂|α|f

∂xα

)∥∥∥∥
L2(Ω)

and summing over all multi-indexes |α| ≤ r it turns out that (17) holds.

c) Finally the general case r ∈ [1,∞[\
(
N + 1

2

)
follows from part b) by interpolation (as in the second

part of proposition 5). 2

As a consequence we obtain
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Corollary 7 Let 0 < r < m in R such that r − 1
2 /∈ Z,m − 1

2 /∈ Z. Then, if p ∈ SµX we have X−1
p ∈

L
(
Hr

0 (Ω),H
r(1+ 2

m )(Ω)
)
and there is A(r,m) > 0 independent of p such that

∥∥X−1
p

∥∥
L
(
Hr

0 (Ω),H
r(1+ 2

m )(Ω)
) ≤ A(r,m)∣∣Re (p+ 1

2 τ

)∣∣1− r
m
∣∣p+ 1

2τ

∣∣1− r
m
. (20)

Proof It follows from
[
[8], chapter 1, theorems 11.6 and 12.4

]
that Hr

0 (Ω) ≈
[
Hm

0 (Ω), L2(Ω)
]
1− r

m

and[
Hm+2(Ω), L2(Ω)

]
1− r

m

≈ Hr(1+ 2
m )(Ω). Interpolating the operators Rm+2X−1

p ∈ L
(
Hm

0 (Ω),Hm+2(Ω)
)

and

I2,0R2X−1
p ∈ L

(
L2(Ω), L2(Ω)

)
we obtain X−1

p ∈ L
(
Hr

0 (Ω), H
r(1+ 2

m )(Ω)
)
and there is c(r,m) > 0 such that

∥∥X−1
p

∥∥
L
(
Hr

0 (Ω),H
r(1+ 2

m )(Ω)
) ≤ c(r,m)

∥∥X−1
p

∥∥ r
m

L(Hm
0 (Ω),Hm+2(Ω))

∥∥X−1
p

∥∥1− r
m

L(L2(Ω),L2(Ω))

and by (16) and (18) the result follows. 2

3. Existence and regularity results for the operator A with nonregular right side

It is known (see [ [8], chapter 1,§12.5]) that for every s ≥ 0,m ≥ 0 there is a natural linear embedding

Us,m : f ∈ Hs(Ω) −→ Us,m(f) ∈
(
Hm(Ω)

)′
, where

∀ g ∈ Hm(Ω)
⟨
Us,m(f), g

⟩
=

∫
Ω

f(x)g(x) dx.

There is also a natural inclusion map Js,m : Hs
0(Ω) −→

(
Rm(Ω)

)′
such that ⟨Js,m(f), g⟩ = ⟨Us,m(f), Rm(g)⟩,

i. e. Js,m = R′
mUs,m. Then we have

Proposition 8 Let p ∈ SµX and r ∈ [0,∞[.

a) The adjoint isomorphism (Xp)′ : H−r(Ω) −→
(
Rr+2(Ω)

)′
is an extension of Xp : Rr+2(Ω) −→ Hr

0 (Ω)

and (X ′
p)

−1 :
(
Rr+2(Ω)

)′ −→ H−r(Ω) is an extension of X−1
p : Hr

0 (Ω) −→ Rr+2(Ω).

b) The adjoint map (Rr+2X−1
p )′ ∈ L

(
(Hr+2(Ω))′,H−r(Ω)

)
is an extension of the map Rr+2X−1

p ∈

L
(
Hr

0 (Ω),H
r+2(Ω)

)
.

Proof a) Let f ∈ Rr+2(Ω) and g ∈ D(Ω). We have, A being self-adjoint,

⟨
(Xp)′(f), g

⟩
=
⟨
f,A(g) +

(
p+

1

2τ

)2

g
⟩
=

∫
Ω

f

(
A(g) +

(
p+

1

2τ

)2

g

)
dx

=

∫
Ω

(
A(f) +

(
p+

1

2τ

)2

f

)
g dx =

⟨
Xp(f), g

⟩
.

Thus ∣∣∣⟨X ′
p(f), g

⟩∣∣∣ = ∣∣∣⟨Xp(f), g⟩∣∣∣ ≤ ∥∥∥Xp(f)∥∥∥
Hr

0 (Ω)

∥∥∥g∥∥∥
H−r(Ω)
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and by density of D(Ω) in H−r(Ω) it follows that X ′
p(f) ∈ Hr

0 (Ω) and X ′
p(f) = Xp(f) ∈ Hr

0 (Ω).

b) Recall that R′
r+2Ur,r+2 = Jr,r+2. Then it is enough to remark that, by the result in a), for every

f ∈ Hr
0 (Ω) and g ∈ Hr+2(Ω) we have⟨

(Rr+2X−1
p )′Ur,r+2(f), g

⟩
=
⟨
(X−1

p )′Jr,r+2(f), g
⟩
=
⟨
X−1
p (f), g

⟩
.

2

Theorem 9 Let 0 < α < m in R such that α− 1
2 /∈ Z,m− 1

2 /∈ Z, 0 ≤ r < α
(
1 + 2

m

)
, ±

(
2α
m − r

)
− 1

2 /∈ N∪{0}

and p ∈ SµX . Then (X−1
p )′ ∈ L

((
Hr(Ω)

)′
,H

2α
m −r(Ω)) and there is B(α,m, r) > 0 independent of p such that

∀ p ∈ SµX

∥∥(X−1
p )′

∥∥
L((Hr(Ω))′,H

2α
m

−r(Ω))
≤ B(α,m, r)∣∣Re (p+ 1

2 τ

)∣∣1− α
m
∣∣p+ 1

2τ

∣∣1− α
m
. (21)

Proof We have Hα+2(Ω) ⊂ Hα(1+ 2
m )(Ω) ⊂ L2(Ω) ⊂ H−α(Ω). The map

(
Iα+2,α(1+ 2

m )Rα+2X−1
p

)′ ∈

L((Hα(1+ 2
m ))′,H−α(Ω)) is nothing other than (X−1

p )′ considered as an operator from (Hα(1+ 2
m ))′ into

H−α(Ω). It follows from the result of part b) in proposition 8 that its restriction to Hα
0 (Ω) is Iα+2,α(1+ 2

m )Rα+2

X−1
p ∈ L(Hα

0 (Ω),H
α(1+ 2

m )(Ω)), i.e. the operator X−1
p considered as a map from Hα

0 (Ω) into Hα(1+ 2
m )(Ω).

Then
∥∥(X−1

p )′
∥∥
L(Hα

0 (Ω),Hα(1+ 2
m

)(Ω))
=
∥∥X−1

p

∥∥
L(Hα

0 (Ω),Hα(1+ 2
m

)(Ω))
and we can interpolate the operators X−1

p ∈

L
(
Hα

0 (Ω), H
α(1+ 2

m )(Ω)
)
and (X−1

p )′ ∈ L((Hα(1+ 2
m )(Ω))′,H−α(Ω)). By

[
[8], chapter 1, theorem 12.6

]
we have

(Hr(Ω)
)′ ≈ [Hα

0 (Ω),
(
Hα(1+ 2

m )(Ω)
)′]

η
where η = m(α+r)

2α(m+1) . As (1− η)α(1 + 2
m )− ηα = 2α

m − r, it follows from[
[8], chapter 1, theorem 12.4

]
that (X−1

p )′ ∈ L
((
Hr(Ω)

)′
, H

2α
m −r(Ω)). By interpolation properties we have∥∥(X−1

p )′
∥∥
L((Hr(Ω))′,H

2α
m

−r(Ω))
≤

≤ c2(m,α, r)
∥∥(X−1

p )′
∥∥1−η
L(Hα

0 (Ω),Hα(1+ 2
m

)(Ω))

∥∥(X−1
p )′

∥∥η
L((Hα(1+ 2

m
)(Ω))′,H−α(Ω))

.

Since an operator and its adjoint map have the same norm the result follows easily from (20). 2

Since 2α
m − r can be positive, theorem 9 is the key to obtain regularity results for the solutions U of

the equation X ′
p(U) = Ψ with irregular elements Ψ ∈

(
Hr(Ω)

)′
. However, to assure moreover the condition

B(U) = 0 we need to consider a space smaller than
(
Hr(Ω)

)′
. That is the reason to deal with the space

Ξ−r(Ω) ⊂
(
Hr(Ω)

)′
considered in section 1. Note that Rr+2(Ω) ⊂ Hr+2(Ω) ⊂ Hr(Ω) ⊂ Ξr(Ω), r ≥ 0

with continuous inclusions. As D(Ω) ⊂ Rr+2(Ω) and D(Ω) is dense in Ξr(Ω), we obtain the inclusion

Ξ−r(Ω) ⊂
(
Rr+2(Ω)

)′
. Then by

[
[8], chapter 2, theorems 6.5 and 7.3

]
, for every 0 < r, the space

J−r+2
p (Ω) =

{
U ∈ H−r+2(Ω)

∣∣∣ X ′
p(U) ∈ Ξ−r(Ω) ⊂ (Rr+2(Ω))′ and B(U) = 0

}
is well defined. We provide J−r+2

p (Ω) with the norm

∀ U ∈ J−r+2
p (Ω)

∥∥U∥∥J−r+2
p (Ω)

=
∥∥U∥∥

H−r+2(Ω)
+
∥∥X ′

p(U)
∥∥
Ξ−r(Ω)

. (22)
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Remark that
∥∥X ′

p : J−r+2
p (Ω) −→ Ξ−r(Ω)

∥∥ ≤ 1. We have

Theorem 10 Let p ∈ SµX and r ∈ [0,∞[. Then J−r+2
p (Ω) is a Banach space and the restriction Hp to

J−r+2
p (Ω) of X ′

p is an isomorphism from J−r+2
p (Ω) onto Ξ−r(Ω). Moreover, if 0 < α < m in [0,∞[\

(
N+ 1

2

)
,

0 < r < α
(
1 + 2

m

)
and ±

(
2α
m − r

)
− 1

2 /∈ N ∪ {0} there is M(α,m, r) > 0 independent of p such that

∥∥(X ′
p)

−1
∥∥
L(Ξ−r(Ω),H−r+2α

m (Ω))
≤ M(α,m, r)∣∣Re (p+ 1

2 τ

)∣∣1− α
m
∣∣p+ 1

2τ

∣∣1− α
m
. (23)

Proof Let {fm}∞m=1 be a Cauchy sequence in J−r+2
p (Ω). There exists f = limm→∞ fm in H−r+2(Ω) and

g = limm→∞ X ′
p(fm) in Ξ−r(Ω). Then g = limm→∞ X ′

p(fm) in
(
Rr+2(Ω)

)′
. As H−r+2(Ω) ⊂ H−r(Ω), by

proposition 8 we have f = limm→∞ fm in H−r(Ω) and X ′
p(f) = limm→∞ X ′

p(fm) in
(
Rr+2(Ω)

)′
. It follows

that g = X ′
p(f) and so X ′

p(f) ∈ Ξ−r(Ω), i.e. f ∈ J−r+2
p (Ω) and J−r+2

p (Ω) becomes a Banach space.

The continuity of Hp follows from (22). Given f ∈ Ξ−r(Ω), by
[
[8], chapter 2, theorems 5.4 (for the

case r = 0), 6.7 and 7.4
]
there is U ∈ H−r+2(Ω) such that Xp(U) = f and B(U) = 0. By proposition 8

Xp(U) = X ′
p(U) and then U ∈ J−r+2

p (Ω) and Hp : J−r+2
p (Ω) −→ Ξ−r(Ω) is bijective and continuous. By the

open map theorem Hp is an onto isomorphism. Since Ξ−r(Ω) ⊂ (Hr(Ω))′, an application of theorem 9 finishes

the proof. 2

Proposition 8 can be improved in the following way:

Corollary 11 If p ∈ SµX and r ∈ [0,∞[, the adjoint isomorphism (Xp)′ : H−r(Ω) −→
(
Rr+2(Ω)

)′
is an

extension of Xp : J−r+2
p (Ω) −→ Ξ−r(Ω).

Proof As Ξr(Ω) ⊂ L2(Ω) ⊂ Ξ−r(Ω) is a Gelfand triple, given f ∈ J−r+2
p (Ω) there is a sequence {φm}∞m=1 ⊂

D(Ω) such that g := X ′
p(f) = limm→∞ φm in Ξ−r(Ω). As a consequence g = limm→∞ φm in H−r(Ω) holds.

We have φm ∈ Hk
0 (Ω) for every k and m ∈ N. By proposition 5 X−1

p (φm) ∈ Hk+2(Ω), i.e. X−1
p (φm) ∈ C∞(Ω)

(Sobolev’s embedding theorem). By theorem 10 we have f = (X ′
p)

−1(g) = limm→∞(X ′
p)

−1(φm) in J−r+2
p (Ω)

and in H−r+2(Ω) indeed. By proposition 8 we obtain f = limm→∞(X ′
p)

−1(φm) = limm→∞(Xp)−1(φm) in

H−r+2(Ω). Then Xp(f) = limm→∞ Xp(Xp)−1(φm) = limm→∞ φm in H−r(Ω) obtaining Xp(f) = g = X ′
p(f).

2

Lemma 12 Let 0 < α < m in [0,∞[\
(
N+ 1

2

)
, 0 < r < α

(
1 + 2

m

)
and ±

(
2α
m − r

)
− 1

2 /∈ N ∪ {0}. The map

G : p ∈ SµX −→ (X ′
p)

−1 ∈ L(Ξ−r(Ω),H
2α
m −r(Ω)) is holomorphic.

Proof Let p1 ∈ SµX and δ > 0 such that if |p − p1| ≤ δ then p ∈ SX . Let Ip : J−r+2
p (Ω) −→ H−r+ 2α

m (Ω)

be the inclusion map. The composition map IpHp is nothing other than the operator (X ′
p)

−1 considered as a

map from Ξ−r(Ω) into H−r+ 2α
m (Ω). Recall that X ′

p ∈ L
(
H−r(Ω), (Rr+2(Ω))′

)
is an isomorphism (proposition

8) and that H−r+ 2α
m (Ω) ⊂ H−r(Ω). Since ∥Ip∥ ≤ 1, by (22), (14) and directly by definition of Xp one has∥∥X ′

p1 −X ′
p

∥∥
L(H−r(Ω),(Rr+2(Ω))′)

=
∥∥Xp1 −Xp

∥∥
L(Rr+2(Ω),Hr

0 (Ω))
≤
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≤
∣∣∣ τ
α

∣∣∣ ∣∣∣∣∣
(
p+

1

2 τ

)2

−
(
p1 +

1

2 τ

)2
∣∣∣∣∣ . (24)

Then we have ∥∥IpHp − Ip1Hp1

∥∥ =
∥∥(X ′

p)
−1 − (X ′

p1)
−1
∥∥
L(Ξ−r(Ω),H−r+2α

m (Ω))
=

=
∥∥(X ′

p1)
−1(X ′

p1 −X ′
p)IpHp

∥∥
L(Ξ−r(Ω),H−r+2α

m (Ω))

≤
∥∥∥(X ′

p1)
−1
∥∥∥ ∥∥∥X ′

p −X ′
p1

∥∥∥
L(H−r(Ω),(Rr+2(Ω))′)

sup
|q−p1|≤δ

∥∥IqHq

∥∥
and the continuity of G in p1 ∈ SµX follows easily from (24) and theorem 10. Then our result is a consequence

of resolvent’s identity and the chain rule (see
[
[8], chapter 4, theorem 3.1

]
for details). 2

The next theorem contains the main results of the paper about regularity properties of the solutions of

A(Z) = Ψ when Ψ is an irregular distribution.

Theorem 13 Let T > 0 and let 0 < α < m in R such that {α,m} ⊂ [0,∞[\
(
N+ 1

2

)
, 0 < r < α

(
1 + 2

m

)
and ±

(
2α
m − r

)
− 1

2 /∈ N ∪ {0}. Assume Ψ ∈ Ξ−r,−r(Ω× R), and that there are K > 0 and −∞ < ρ < 1
2 − α

m

such that the Schwartz–Laplace transform L[Ψ](x, p) verifies

∀ p ∈ SµX L[Ψ](x, p) ∈ Ξ−r(Ω) and
∥∥L[Ψ](x, p)∥∥

Ξ−r(Ω)
≤ K

∣∣p∣∣ρ. (25)

Then there exists V ∈ R and a unique Z ∈ D′(Ω× R) such that

a) A(Z)(x, t) = Ψ(x, t) in Ω× R. (26)

b) B
(
Z(x, t)

)
= 0 in ∂Ω× R and Z(x, t) = 0 in Ω×]−∞, V [. (27)

c) The restriction to ΩT of Z verifies Z ∈ Hs
(
]− T, T [,H−r+ 2α

m (Ω)
)
for every 0 ≤ s < 1

2 − α
m − ρ.

Proof Part 1. Existence and uniqueness of Z . By theorem 10 and corollary 11, for every p ∈ SµX

there is a unique G(x, p) ∈ J−r+2
p (Ω) ⊂ H−r+2(Ω) ⊂ H

2α
m −r(Ω) ⊂ H−r(Ω) such that

Xp(G) = X ′
p(G) = A(G) + 1

α

(
p+ τ p2

)
G = L[Ψ] (28)

and B(G(x, p) = 0 in ∂Ω. By lemma 12 the map G : p ∈ SµX −→ (X ′
p)

−1 ∈ L
(
Ξ−r(Ω),H

2α
m −r(Ω)

)
is

holomorphic in SµX and moreover, by theorem 10, G is slowly increasing with respect to p. As a consequence

(see
[
[15], chapter I, §3, page 79, proposition 22

]
and

[
[14], chapter 8, section 4, remark 2

]
) there exists

the inverse Laplace–Schwartz transform H :=
(
L−1[G]

)
(x, t) ∈ D′(R,L(Ξ−r(Ω),H

2α
m −r(Ω)

))
as well as some

V ∈ R such that H = 0 on ]−∞, V [. Denote the convolution with respect to the t-variable by the symbol ∗.
By definition of Ξ−r,−v(Ω×R) there is a ∈ N such that Ψ ∈ Ξ−r,−v(ΩTa). Then the convolution product H∗Ψ
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of vector valued distributions is well defined. As it follows from (28) that G = (X ′
p)

−1(L[Ψ](x, p
)
∈ J−r+2

p (Ω),

by the convolution theorem (see
[
[15], chapter II, §7, proposition 43

]
) and corollary 11 we have

L[A(H ∗Ψ)](p) =
τ

α
Xp
(
L[H ∗Ψ](p)

)
=
τ

α
Xp
(
L[H](p)

(
L[Ψ](x, p)

))
=
τ

α

(
Xp G(p)

(
L[Ψ](x, p)

)
=
τ

α
Xp
(
(X ′

p)
−1(L[Ψ](x, p

))
=
τ

α
X ′
p

(
(X ′

p)
−1(L[Ψ](x, p

))
= L[Ψ](x, p) (29)

and by the uniqueness of the Laplace–Schwartz transform we obtain A(H ∗ Ψ) = Ψ, i.e. Z := H ∗ Ψ verifies

(26) and (27). Moreover, from proposition 8, (29), and (28) we deduce

L[Z] = G =
(
X ′
p

)−1
(L[Ψ](x, p)) ∈ J−r+2

p (Ω) ⊂ H−r+2(Ω) ⊂ H
2α
m −r(Ω). (30)

Take p = ψ + i ν ∈ SµX . As α < m we have H−r+2(Ω) ⊂ H
2α
m −r(Ω) continuously. By theorem 10

we obtain (X−1
p )′ ∈ L

(
Ξ−r(Ω),H

2α
m −r(Ω)

)
and the map ν ∈ R −→

∥∥∥(X−1
ψ+i ν

)′∥∥∥
L(Ξ−r(Ω),H

2α
m

−r(Ω))
becomes

continuous.

Let F [.](p) denote the Fourier transform with respect to t. If 0 ≤ s < 1
2 − α

m − ρ, by theorems 10 and 6

and (25) we have for some C > 0 independent of p∫ ∞

−∞

(
1 + |ψ + i ν|2

)s ∥∥∥F[e−ψ tZ(x, t)](ν)∥∥∥2
H

2α
m

−r(Ω)
dν =

=

∫ ∞

−∞

(
1 + |ψ + i ν|2

)s ∥∥∥L[Z(x, t)](ψ + i ν)
∥∥∥2
H

2α
m

−r(Ω)
dν =

=

∫ ∞

−∞

(
1 + |ψ + i ν|2

)s∥∥∥(X−1
ψ+i ν

)′(
L[Ψ](ψ + i ν)

)∥∥∥2
H

2α
m

−r(Ω)
dν ≤

≤
∫ ∞

−∞

(
1 + |ψ + i ν|2

)s∥∥∥(X−1
ψ+i ν

)′∥∥∥2
L(Ξ−r(Ω),H

2α
m

−r(Ω))

∥∥∥L[Ψ](ψ + i ν)
)∥∥∥2

Ξ−r(Ω)
dν ≤

≤ C

∫ ∞

−∞

(
1 + |ψ + i ν|2

)s
∣∣ψ + 1

2 τ

∣∣2(1− α
m )

∣∣ψ + i ν
∣∣2 ρ∣∣ψ + i ν + 1

2 τ

∣∣2(1− α
m )

dν (31)

and since 1
2 − α

m − ρ > s, it turns out that the integral (31) is convergent. By the vector valued version

of Plancherel’s theorem (see
[
[8], chapter 4, §3.2

]
for instance) one has e−ψ tZ ∈ Hs(R,H 2α

m −r(Ω)) and so

Z = eψ t
(
e−ψ tZ

)
∈ Hs

(
]− T, T [,H−r+ 2α

m (Ω)
)
.

Concerning the uniqueness of Z, if there would be Z1 and Z2 verifying the previous conditions, by (30)

we would have L
[
Z1 − Z2

]
= 0 and hence, by the uniqueness of the inverse Laplace transform Z1 = Z2.

Part 2). Existence and computation of B(Z)(x, t) in ∂Ω×R. By lemma 2 there are a ∈ N and a

sequence {Ψk(x, t)}∞k=1 ⊂ D(Ω×R) such that Ψ = limk→∞ Ψk in Ξ−r,−r(Ω×R) and
∪∞
k=1 Supp(Ψk) ⊂ ΩTa .
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For every |β| ≥ 0 and h ∈ N we have W
|β|,h
k := ∂|β|+hΨk

∂xβ∂th
∈ D(ΩTa) and L

[
W

|β|,h
k

]
(x, p) ∈ D(Ω) ⊂ Hv

0 (Ω)

for every v ≥ 0 and p ∈ SµX . Moreover,

L[W
|β|,h
k ](x, p) = L

[∫ t

−∞
W

|β|,h+1
k (x, ξ) dξ

]
(x, p) =

1

p
L[W

|β|,h+1
k ](x, p). (32)

In particular, (32) implies that L
[
∂Ψk

∂t

]
(x, p) ∈ Ξ−r(Ω) if L

[
Ψk
]
(x, p) ∈ Ξ−r(Ω).

By theorem 6, using the same argumentation of part a) it turns out that there exists Zβ,h
k := H ∗W |β|,h

k

verifying A(Zβ,h
k )(x, t) =W

|β|,h
k in Ω× R and

L[Zβ,h
k ](x, p) = X−1

p

(
L
[
W

|β|,h
k

]
(x, p)

)
∈ Rv+2(Ω) ⊂ Hv+2(Ω) (33)

for every p ∈ SµX and v ∈ N. As a consequence we have

B(L[Zβ,h
k ](x, p)) = L[B(Zβ,h

k )](x, p)) = 0 in ∂Ω. (34)

In the sequel, to simplify, we put Zk := Z0,0
k and Wk :=W 0,0

k = Ψk, k ∈ N. 2

Claim 1. For every v ∈ N, B(Zk)(x, t) = 0 in ∂Ω× R.

Proof As v ≥ 0 is arbitrary, Sobolev’s embedding theorem gives us L[Zβ,h
k ](x, p) ∈ C∞(Ω) ⊂ Hv(Ω) ⊂ C(Ω)

for every v > n
2 with continuous inclusions. It follows that there is C1 > 0 such that for every p = ψ + iν as

above in part a), for every x ∈ Ω, t ∈ R, and every mv ∈ N such that v < mv we obtain∣∣∣ept X−1
p

(
L
[
W |β|,h
v

]
(x, p)

)∣∣∣ ≤ eψ t
∥∥∥X−1

p

(
L
[
W |β|,h
v

]
(y, p)

)∥∥∥
C(Ω)

≤

≤ C1e
ψ t
∥∥∥X−1

p

(
L
[
W

|β|,h
k

]
(y, p)

)∥∥∥
H

v(1+ 2
mv )(Ω)

≤

≤ C1 e
ψ t
∥∥∥X−1

p

∥∥∥
L(Hv

0 (Ω),H
v(1+ 2

mv )(Ω))

∥∥∥L [W |β|,h
k

]
(y, p)

∥∥∥
Hv

0 (Ω)
. (35)

Now remark that for every ρ ∈ Nn such that |ρ| ≤ v, by Fubini’s theorem and Hölder’s inequality we have

∥∥∥∥ ∂|ρ|∂xρ
L
[
W

|β|,h
k

]
(y, p)

∥∥∥∥
L2(Ω)

= sup
∥g∥L2(Ω)≤1

∣∣∣∣∫
Ω

L
[
W

|β+ρ|,h
k

]
(y, p)g(y)dy

∣∣∣∣ =
= sup

∥g∥L2(Ω)≤1

∣∣∣∣∫
Ω

1

p
L
[
W

|β+ρ|,h+1
k

]
(y, p)g(y)dy

∣∣∣∣ ≤
≤ sup

∥g∥L2(Ω)≤1

1∣∣p∣∣
∫ ∞

−Ta

e−ψ t
(∫

Ω

∣∣∣W |β+ρ|,h+1
k (y, t)g(y)

∣∣∣ dy) dt ≤
≤
√∣∣Ω∣∣ eψ Ta

ψ
∣∣p∣∣

∥∥∥W |β+ρ|,h+1
k

∥∥∥
C(Ω×R)
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where
∣∣Ω∣∣ denotes the Lebesgue measure of Ω. It follows that there is Mψ

kv > 0 such that

sup
ν∈R

∥∥∥L [W |β|,h
k

]
(y, ψ + iν)

∥∥∥
Hv

0 (Ω)
≤

Mψ
kvh∣∣ψ + i ν

∣∣ (36)

and then, by (35), (20), since v < mv∫ ∞

−∞

∣∣∣e(ψ+iν)tX−1
p

(
L
[
W

|β|,h
k

]
(x, ψ + iν)

)∣∣∣ dν ≤

≤
∫ ∞

−∞

Mψ
kvh e

ψt∣∣ψ + i ν
∣∣ ∣∣ψ + iν + 1

2τ

∣∣1− v
mv

dν <∞ (37)

turns out to be a uniformly convergent integral in every bounded closed neighborhood of (x, t) ∈ Ω× R. That
means we can apply the inversion formula for Laplace–Schwartz transforms

[
[18]

]
obtaining for every k ∈ N

and t ≥ V

∀|β| ≥ 0, ∀h ≥ 0 Zβ,h
k =

1

2 π i

∫ ∞

−∞
et (ψ+i ν) X−1

ψ+i ν

(
L
[
W

|β|,h
k

]
(x, ψ + i ν)

)
dν =

=
1

2 π i

∫ ∞

−∞
(ψ + i ν)het (ψ+i ν) X−1

ψ+i ν

(
L

[
∂|β|Ψk
∂xβ

]
(x, ψ + i ν)

)
dν =

∂|β|+hZk
∂xβ∂th

(x, t) (38)

by the uniform convergence of the involved integrals and (19). Then by (33) and (34) we obtain easily

∀(x, t) ∈ ∂Ω× R B(Zk)(x, t) =
1

2πi

∫ ∞

−∞
e(ψ+iν)tL [B(Zk)] (x, ψ + iν) dν = 0. (39)

2

Define β by the equality α
(
1 + 2

m

)
+ 1 = β

(
1 + 2

m+1

)
. Then, by the assumptions about α and m,

after elementary operations, we see that α < β and

r + 1 < β

(
1 +

2

m+ 1

)
, β =

(m+ 1)(m+ α(m+ 2))

m(m+ 3)
< m+ 1,

2α

m
> −1 +

2β

m+ 1
. (40)

Remark that by (37) and the last computations, Zk ∈ C∞(Ω× R) ⊂ H−r−1,−r−2(ΩT ) and, moreover, A(Zk) =

Ψk ∈ Ξ−r,−r(Ω× R) ⊂ Ξ−(r+3),−(r+3)(Ω× R). On the other hand, by (40) we have the continuous inclusions

Hs
(
]− T, T [,H−r+ 2α

m (Ω)
)
⊂ Hs

(
]− T, T [,H−r−1+ 2β

m+1 (Ω)
)
⊂

⊂ L2
(
]− T, T [,H−(r+1)(Ω)

)
⊂ H−(r+1),−(r+2)(ΩT )

because, for every P ∈ L2
(
]− T, T [, H−(r+1)(Ω)

)
, by Hölder’s inequality one has

∀ f(x, t) ∈ Hr+1,r+2
0,0 (ΩT )

∣∣∣∣∣
∫ T

−T

⟨
P (x, t), f(x, t)

⟩
Ω
dt

∣∣∣∣∣ ≤
477
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≤
∫ T

−T

∥∥f(x, t)∥∥
Hr+1

0 (Ω)

∥∥P (x, t)∥∥
H−(r+1)(Ω)

dt ≤
∥∥f∥∥

Hr+1,r+2(ΩT )

∥∥P∥∥
L2
(
]−T,T [,H−r−1(Ω)

).
Since A(Z) = Ψ ∈ Ξ−r,−r(ΩT ) ⊂ Ξ−(r+3),−(r+3)(ΩT ), by

[
[11], theorem 4

]
in order that B(Z) be defined it

is enough to see that limk→∞ Zk = Z in the Lebesgue–Bochner space L2
(
]− T, T [,H−r−1+ 2β

m+1 (Ω)
)
and then

part b) will follow directly from (34).

Claim 2. Define Dkh(ψ) := supν∈R

∥∥∥L[Ψ0,1
k

]
(x, ψ+iν)−L

[
Ψ0,1
h

]
(x, ψ+iν)

∥∥∥
Ξ−r−1(Ω)

. Then limk,h→∞Dkh(ψ) =

0.

Proof It follows from the definition of Ψ and {Ψk}∞k=1 in Ξ−r−1,−s(Ω × R) that ∂Ψ
∂t = limk→∞W 0,1

k in

Ξ−r−1,−s−1(ΩTa). Then there is K1(Ta) > 0 such that for every φ(x) in the closed unit ball of Ξr+1(Ω)

sup
ν∈R

∣∣∣⟨L[W 0,1
k −W 0,1

h

]
(x, ψ + iν), φ(x)

⟩∣∣∣ =
= sup

ν∈R

∣∣∣⟨(W 0,1
k −W 0,1

h )(x, t), φ(x)e−(ψ+iν) tχ
[−Ta,Ta]

(t)
⟩∣∣∣

≤
∥∥∥W 0,1

k −W 0,1
h

∥∥∥
Ξ−r−1,−r−1(ΩTa )

sup
ν∈R

∥∥∥φ(x) e−(ψ+iν) tχ
[−Ta,Ta]

(t)
∥∥∥
Ξr+1,r+1(ΩTa )

≤ K1(Ta)
∥∥∥W 0,1

k −W 0,1
h

∥∥∥
Ξ−r−1,−r−1(ΩTa )

∥∥∥φ∥∥∥
Ξr+1(Ω)

≤

≤ K1(Ta)
∥∥∥W 0,1

k −W 0,1
h

∥∥∥
Ξ−r−1,−r−1(ΩTa )

(41)

and the claim follows from the density of D(ΩTa) in Ξr+1,r+1(ΩTa). 2

Claim 3. We have limk→∞ Zk = Z in L2
(
]− T, T [, H−r−1+ 2β

m+1 (Ω)
)
.

Proof We have L(Ψk − Ψh)(x, ψ + νi) ∈ D(Ω) ⊂ Ξ−r−1(Ω) for every k, h in N and ν ∈ R. On the

other hand, it follows from (40) corollary 11 that for every ν ∈ R, the restriction to Ξ−r−1(Ω) of (X−1
ψ+νi)

′ ∈

L
(
(Rr+3(Ω))′,H−r−1+ 2β

m+1
)
is the map X−1

ψ+νi ∈ L(Ξ−r−1(Ω),H−r−1+ 2β
m+1 (Ω)). Let B be the closed unit ball

of
(
H−r−1+ 2β

m+1 (Ω)
)′
. By (32), since D(Ω) is dense in H−r−1+ 2β

m+1 (Ω) ⊂
(
H−r−1+ 2β

m+1 (Ω)
)′
, by

[
[17], example

17.2
]
for every t ∈]−T, T [ and k and h in N there is Υkht in B and a sequence {gtb(x)}∞b=1 ⊂ D(Ω) in B such

that Υkht = limb→∞ gb(x) in
(
H−r−1+ 2β

m+1 (Ω)
)′

and

∥∥(Zk − Zh)(x, t)
∥∥
H

−r−1+
2β

m+1 (Ω)
=
∣∣⟨(Zk − Zh)(x, t),Υ

kh
t

⟩∣∣ = lim
b→∞

∣∣⟨(Zk − Zh)(x, t), g
t
b(x)

⟩∣∣
= lim
b→∞

1

2π

∣∣∣∣∫
Ω

(∫ ∞

−∞
e(ψ+i ν)tX−1

ψ+iν

(
L[Ψk −Ψh](x, ψ + iν)

)
dν

)
gtb(x) dx

∣∣∣∣
≤ lim
b→∞

1

2π

∫ ∞

−∞
eψt
∣∣∣∣∫

Ω

X−1
ψ+iν

(
L[Ψk −Ψh](x, ψ + iν)

)
gtb(x) dx

∣∣∣∣ dν
478
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= lim
b→∞

1

2π

∫ ∞

−∞
eψt
∣∣∣∣∫

Ω

(X−1
ψ+iν)

′(L[Ψk −Ψh](x, ψ + iν)
)
gtb(x) dx

∣∣∣∣ dν
≤ 1

2π

∫ ∞

−∞
eψt
∥∥(X−1

ψ+iν)
′(L[Ψk −Ψh](x, ψ + iν)

∥∥
H

−r−1+
2β

m+1 (Ω)
dν

=
1

2π

∫ ∞

−∞
eψt
∥∥∥∥ 1

ψ + iν
(X−1

ψ+iν)
′
(
L

[
∂Ψk
∂t

− ∂Ψh
∂t

]
(x, ψ + iν)

)∥∥∥∥
H

−r−1+
2β

m+1 (Ω)

dν

≤ eψt

2π
Dkh(ψ)

∫ ∞

−∞

1∣∣ψ + iν
∣∣∥∥(X−1

ψ+iν)
′∥∥

L(Ξ−r−1(Ω),H
−r−1+

2β
m+1 (Ω))

dν <∞

(by (32), (23) and the fact that β < m+ 1). It follows easily from claim 2 that {Zk}∞k=1 is a Cauchy sequence

in L2
(
]− T, T [,H−r−1+ 2β

m+1 (Ω)
)
and so there exists W = limk→∞ Zk in L2

(
]− T, T [,H−r−1+ 2β

m+1 (Ω)
)
.

A similar argumentation to the used one in (41) shows that L[W ](x, p) = limk→∞ L[Zk](x, p) and

L[Ψ](x, p) = limk→∞ L[Ψk](x, p) in Ξ−r(Ω) and so in Ξ−r−1(Ω). Arguing as in (29), as Ξ−r−1(Ω) ⊂ (Hr+1(Ω))′,

by theorem 9 (with parameters r + 1, β,m+ 1) and (30), taking the limits in H−r−1+ 2β
m+1 (Ω) we have

L[W ](x, p) = lim
k→∞

L[Zk](x, p) = lim
k→∞

L[H ∗Ψk](x, p) = lim
k→∞

G(p)
(
L[Ψk](x, p)

)
= lim
k→∞

X−1
p

(
L[Ψk](x, p)

)
= lim
k→∞

(X ′
p)

−1
(
L[Ψk](x, p)

)
= (X ′

p)
−1
(
L[Ψ]((x, p

)
= L[Z](x, p

)
and so Z =W. 2

We present some examples of application of theorem 13:

Corollary 14 Let 0 < η < ξ < 1
2 , ε > 0 and T > 0. If (x0, t0) ∈ Ω×R and Ψ := δ(x− x0)⊗ δ(t− t0), there

is a unique G ∈ D′(Ω× R) verifying (26) and (27) for some V ∈ R and such that

a) If n = 1 we have G(x, t) ∈ H
1
2−η
(
]− T, T [, H

1
2−ξ(Ω)

)
. In particular G(x, t) ∈ L2(ΩT ).

b) If n ∈ N, we have G(x, t) ∈ Hη
(
]− T, T [,H−(n

2 −1+ε+2ξ)(Ω)
)
.

c) If n ∈ N, and Ψ := δ(x− x0)⊗H(t− t0) (where H(t) is the Heaviside function) we have G(x, t) ∈

H1+η
(
]− T, T [,H−(n

2 −1+ε+2ξ)(Ω)
)
.

Proof We use the same notations of theorem 13. By proposition 3 we can take r = n
2 + ε, and clearly ρ = 0.

We can choose α = r and m = 2 α + ι with arbitrary ι > 0 in order that the hypothesis of theorem 13 be

fulfilled.

a) Let n = 1. We have limι→0

(
1
2 − α

m

)
= 0 uniformly with respect to ε > 0 and

lim
ι→0

(
r − 2α

m

)
=

2 ε2 − 1
2

1 + 2 ε
.

Hence, choosing ε > 0 small enough, by theorem 13 it turns out that G(x, t) ∈ H
1
2−η
(
] − T, T [,H

1
2−ξ(Ω)

)
and so G(x, t) ∈ L2(ΩT ).

479
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b) Let n ≥ 2. If we fix ε > 0, 1
2 −

α
m is an increasing function of ι convergent to 0 if ι approaches 0 and with

limit 1
2 if ι approaches ∞. Then we can write 1

2 − α
m = ξ for arbitrary 0 < ξ < 1

2 . On the other hand, we

obtain r − 2 α
m = n

2 − 1 + ε + 2 ξ and by theorem 13, G(x, t) ∈ Hη
(
] − T, T [, H−(n

2 −1+ε+2ξ)(Ω)
)
for every

0 < η < ξ < 1
2 .

c) The proof is analogous noting that in this case we can take ρ = −1.

2

For the proof of the following corollary we introduce some new notation in order to simplify the expression

of the formulas that will appear. For every (x0, t0) ∈ ΩT we set Ψx0,t0 := δ(x−x0)⊗δ(t−t0), Ψx0 := δ(x−x0)

and Ax0 :=
∥∥Ψx0

∥∥
Ξ

−(n
2

+ε)(Ω)
. First, we establish a lemma

Lemma 15 Let (x0, t0) −→ (x0, t0) in Ω× R and 0 < ε < 1
2 . Then

lim
(x0,t0)→(x0,t0)

Ψx0,t0
= Ψx0,t0 and lim

(x0,t0)→(x0,t0)
L
[
Ψx0,t0

]
(p,x) = L

[
Ψx0,t0

]
(p,x)

in the spaces Ξ−(n
2 +ε),−( 1

2+ε)(ΩT ) and Ξ−(n
2 +ε)(Ω) respectively.

Proof a) Choose 0 < ε′ < ε. By proposition 3, Ψx0,t0 ∈ Ξ−(n
2 +ε′),−( 1

2+ε
′)(Ω× R) for each (x0, t0) ∈ Ω× R.

Fixed (x0, t0) and T > 0, by proposition 3 there is a neighborhood W of (x0, t0) such that {Ψx0,t0

∣∣ (x0, t0) ∈

W} is bounded in Ξ−(n
2 +ε′),−( 1

2+ε
′)(ΩT ). Since for each φ ∈ D(ΩT ) we have

lim
(x0,t0)→(x0,t0)

⟨
φ,Ψx0,t0

(x, t)
⟩
= lim

(x0,t0)→(x0,t0)
φ(x0, t0) = φ(x0, t0) =

⟨
φ,Ψx0,t0

⟩
,

we obtain by density that Ψx0,t0
−→ Ψx0,t0 weakly in Ξ−(n

2 +ε′),−( 1
2+ε

′)(ΩT ). The inclusion Ξ−(n
2 +ε′),−( 1

2+ε
′)(ΩT ) ⊂

Ξ−(n
2 +ε),−( 1

2+ε)(ΩT ) is compact by proposition 4 and Schauder’s theorem and so Ψx0,t0
−→ Ψx0,t0 in the norm

of Ξ−(n
2 +ε),−( 1

2+ε)(ΩT ).

b) For every p ∈ SµX and every κ > 0 there is φx0,x0(x) in the open unit ball of Ξ(
n
2 +ε)(Ω) such that

∥∥L(Ψx0,t0
−Ψx0,t0

)
(p,x)

∥∥
Ξ

−(n
2

+ε)(Ω)

≤
∥∥e−p t0(Ψx0

−Ψx0

)∥∥
Ξ

−(n
2

+ε)(Ω)
+
∥∥(e−p t0 − e−p t0

)
Ψx0

∥∥
Ξ

−(n
2

+ε)(Ω)

=
∣∣e−p t0 ∣∣ (∣∣⟨φx0,x0(x),Ψx0 −Ψx0

⟩∣∣+ κ
)
+Ax0

∣∣e−p t0 − e−p t0
∣∣ =

=
∣∣⟨e−Re(p)tφx0,x0 ,Ψx0,t0

−Ψx0,t0

⟩∣∣+ κ e−Re(p)(t0−t0)e−Re(p)t0 +Ax0

∣∣e−pt0 − e−pt0
∣∣

and by (6) there is Bε(Re(p), T ) > 0 such that κ > 0 being arbitrary we obtain∥∥L(Ψx0,t0
−Ψx0,t0

)
(p,x)

∥∥
Ξ

−(n
2

+ε)(Ω)
≤ Bε(Re(p), T )

∥∥Ψx0,t0
−Ψx0,t0

∥∥
Ξ

−(n
2

+ε)(Ω)
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+Ax0

(∣∣e−Re(p)t0 − e−Re(p)t0
∣∣+ e−Re(p)t0

∣∣e−Im(p)t0 i − e−Im(p)t0 i
∣∣) (42)

which approaches 0 if (x0, t0) → (x0, t0) by part a). 2

Proposition 16 Given (x0, t0) ∈ Ω × R, let Gx0,t0(x, t) be the unique function verifying A(Gx0,t0(x, t)) =

Ψx0,t0 in Ω× R, B(Gx0,t0(x, t) = 0 in ∂Ω× R and Gx0,t0(x, t) = 0 in Ω×]−∞, V ] for some V ∈ R. Given

0 < η < ξ < 1
2 , ε > 0 and T > 0 one has

lim
(x0,t0)→(x0,t0)

Gx0,t0
(x, t) = Gx0,t0(x, t) in Hη

(
]− T, T [,H−(n

2 −1+ε+2ξ)(Ω)
)
. (43)

Proof By corollary 14 we have G(x, t,x0, t0) ∈ Hη
(
] − T, T [,H−(n

2 −1+ε+2ξ)(Ω)
)
for every (x0, t0) ∈ Ω × R

such that |t0| < T. Arguing as in theorem 13, formula (31), and using its notations as well as those of corollary

14, part b, and writing Rx0,t0
(x, t) :=

(
Gx0,t0

(x, t)−Gx0,t0((x, t)), by Hölder’s inequality we have

∫ ∞

−∞

(
1 + |ψ + i ν|2

)η ∥∥∥L[Rx0,t0
(x, t)

]
(ψ + i ν)

∥∥∥2
H

−(n
2

−1+ξ)(Ω)
dν ≤

≤ C

∫ ∞

−∞

(
1 + |ψ + i ν|2

)η
∣∣ψ + 1

2 τ

∣∣1+2ξ

∥∥L[Ψx0,t0
−Ψx0,t0

]
(ψ + i ν)

∥∥2∣∣ψ + i ν + 1
2 τ

∣∣1+2ξ
dν

and by (42) and Hölder’s inequality

≤ 3 C Bε(ψ, T )
2

∫ ∞

−∞

(
1 + |ψ + i ν|2

)η
∣∣ψ + 1

2 τ

∣∣1+2ξ

∥∥(Ψx0,t0
−Ψx0,t0

)
(ψ + i ν, t)

∥∥2∣∣ψ + i ν + 1
2 τ

∣∣1+2ξ
dν+ (44)

+3CA2
x0

∣∣e−ψt0 − e−ψ)t0
∣∣2 ∫ ∞

−∞

(
1 + |ψ + i ν|2

)η
∣∣ψ + 1

2 τ

∣∣1+2ξ

dν∣∣ψ + i ν + 1
2 τ

∣∣1+2ξ
+ (45)

+3 Ce−2ψt0

∫ ∞

−∞

(
1 + |ψ + i ν|2

)η
∣∣ψ + 1

2 τ

∣∣1+2ξ

4∣∣ψ + i ν + 1
2 τ

∣∣1+2ξ
dν. (46)

Since 1 + 2ξ − 2η > 1, by lemma 15, we can choose (x0, t0) close enough to (x0, t0) in order that (44),

(45), and (46) be arbitrarily small, finishing the proof. 2

It is important to note that the results of theorem 13 cannot essentially be improved. In fact, in [9] there

is an example for n = 2 such that for every t in a set of positive measure of ] − T, T [, T > 0, the function

G(x, t) /∈ L2(Ω) and hence G /∈ L2(ΩT ).
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