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Abstract: We study regularity properties for the solution of homogeneous boundary value problems for the anisotropic

hyperbolic heat equation in the case of infinitely differentiable coefficients but irregular distributions as internal heat
sources.
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1. Introduction and physical motivation

The hyperbolic heat conduction equation is a fundamental tool in many modern industrial applications such
as microelectronics and the processing of materials by irradiation with a laser beam of high intensity and very
short application times (see [4, 6, 12, 13] for instance). Usually the mathematical formulation of these problems
leads to the study of boundary value problems with data given by irregular distributions such as Heaviside’s

function or Dirac’s § distribution.
Real industrial materials frequently are neither isotropic (see [16] for instance for some concrete examples)

nor homogeneous. Assuming the density p and the specific heat ¢ to be constant in order to avoid more

complications, the hyperbolic heat equation in the open set Q occupied by the body is (see [2])

3 3 ,
_hz_laih ;khj(x) ngj(x,t) +pc<g‘tp(x,t)+r g;g(x,t)) _
—p<5(x,t)+7 aaf(x,t)>, W

where T'(x,t) is the temperature in the point x at the instant ¢, (kp;(x)) is the symmetric thermal conductivity
tensor of the material, 7 is the relaxation parameter, and S(x,t) denotes the internal heat sources in the body.
Moreover, the preservation of the second law of thermodynamics implies that the differential operator in (1)
must be strongly elliptic in Q. If knj = k for every 1 < h,j < 3 we obtain the hyperbolic heat equation for an

isotropic homogeneous body.
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The study of these problems with full generality is very ambitious and it is expected that a rigorous
and complete mathematical treatment will be quite long, difficult, and complex. In a first step to this goal,
we have studied in [10] the existence and regularity properties of the solutions of mixed initial and boundary
problems related to (1) when all involved data are regular. In a further step, the specific purpose of this paper is
to study existence, uniqueness, and reqularity theorems about solutions of homogeneous mized initial-boundary
value problems for the hyperbolic heat equation (1) in the case of infinitely differentiable coefficients up to the
closure Q of the spatial domain but with nonregular data distributions in its right side. Roughly speaking, after
the elimination of the temporal variable by Laplace transformation, we are concerned with a family of spatially
elliptic operators indexed by the Laplace transform variable. When these operators have ”regular” functional
spaces as domain and range we can obtain a quite precise estimation of the norm of the inverse operators, an
estimation that is essentially conserved after transposition, enlargement of the range space of the transposed
operators, and complex interpolation. In this way we arrive at the world of ”irregular” domain spaces for our
operators in such a way that we can to apply the Laplace inversion formula to obtain our solution functions
and to study their properties.

The paper is organized as follows. In this section we set the notation and give an account of the necessary
functional spaces to be used as well as some preliminary results. Section 2 settles the selected framework to
develop our study and presents various fundamental results in order to find quantitative information about the
operators we are concerned with. In section 3 we apply these previous results to get our main theorems on
existence and regularity properties of solutions in the case of irregular data.

Notation is standard in general. All used functions and vector spaces are assumed to be complex if not
clearly stated otherwise. E’ always denotes the dual space of the normed space E. Points (x1, s, ..., x,) € R®
are denoted by x in short. A bold Greek letter a € (N U {0})" will denote a multi-index for derivations.
The symbol ~ means "isomorphic”. We shall always consider an open bounded set Q@ C R™ n € N with
boundary 09 being a C*> manifold of dimension n — 1 such that § is locally on the same side of OS).
We refer to [8] for the definition and properties of the Sobolev spaces H" (), Hj (), H™*(Q2x]|Ty, Ti[) and
Hyo(2x]To, Thl), 7,5 € [0,00 (and analogous spaces defined on the boundary d€2) and its dual spaces as well
for basic facts about complex interpolation spaces [X, Y]y between Banach spaces X and Y. If m > k in [0, oo,
Ly : H™(Q) — H*(Q) will denote the continuous inclusion map. For simplicity we will use the notation
Qp = Qx] —T,T] for T > 0. Unless clearly stated otherwise, the restriction of G € D'(2 x R) to any open
subset of 2 x R will be denoted by the same symbol, G. We shall need the following lemma.

Lemma 1 Let 0 < ry <7y and 0 < s be real numbers. If 0 < p < 1 and T > 0 one has the continuous

inclusion maps

1) [H™( - TTLHA Q) H™ () - TTLHQ)] ) € HO-9m (] - 1,7 5 ().

2) [Hs G - T7 T[a H™ (Q))v HS(] - Tv T[v H™ (Q))]p C H*® (] - Tv T[v H(l_p)rﬁ_prz (Q))

Proof We apply the technique of complex interpolation (see [[8], chapter 1, section 14] ). Let Z = {§ +1in €
C | £€)0,1[,n € R} and given Banach spaces Y; C Y5, Y densein Y3, let 5")(2’7 Y1, YQ)) be the set of continuous
functions f: Z — Y5 such that f(ni) € L>°(R,Y1), f(1+ ni) € L>°(R,Y>2) and § is scalarly holomorphic in Z.

1) Take Yy := H™ (] - T,T[, H*(Q)) and Y5 : H™2(] — T, T[, H*(Q)). Given ¢ > 0 and z(x,t) € Z; :=
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Y7, Yg]p there is § € $(Z,Y1,Y2) such that z(x,t) = f(p)(x,t) and

max || £ (ni, x, t)HL“’(R,Yl)’ I+ ni’x’t)HL‘”(RYz)) < HZ(X7t)||Z1 te. (2)

Defining g(¢ + in,t) = ||f(¢ + in)(x,t)HHs(Q) € H(Z,H"(-T,T), H*(=T,T)) and writing X; = H"(] —
T,T[), X5 := H™(]—T,T[) and r := (1—p)ri +pra we have g(in,t) € L*°(R, X1) and g(1+in,t) € L®(R, X2).
As a consequence g(p,t) = [|f(p)(x, t)HHS(Q) € [X1,X2]p ~ H"(] - T,T[) (by [[8] chapter 1, theorem 9.6]).
Then z(x,t) = f(p)(x,t) € Zo := H"(] — T, T[, H*(2)) and there is M > 0 such that by (2) we have

2 (x, t)H22 = Hg(p’t)HHT(]fT,T[) < M||a(p. t)H[Xl,Xg]p

< Mmax([|gi, )|, xy0 [180 408, 0||  xyy) < M (26|, + )

and the continuity of the inclusion follows from the arbitrariness of € > 0.

2) Now consider Yy := H*(]| — T, T[,H™(Q)) and Yo := H*(] — T,T[,H™(Q)) and Z3 := [Yl,l@]p.
Since Y7 C Zs, given z(x,t) € Y7 there is f(§ + ni,x,t) € f)(Z,YhYg) such that z(x,t) = f(p,x,1),
flin,x,t) € LR, Y1), f(1+mni,x,t) € L*(R,Y3) and

max([| (1 3, )| o gy £ (A3 D] o g y5) < (2 )] 5, e (3)

Then there is a set Ty C] — T, T[ with Lebesgue measure 0 such that for every ¢ €] — T, T[\Tp, the function
9:(& +mi,x) = [+ i, x,t) € H(Z, H™(Q), H™=(Q)) verifies g:(ni,x) € L>=(R, H™ (), g:(1 + ni,x) €
L>°(R, H"2(12)). It follows that g,(p,x) € [H™(Q), H" (Q)}p ~ H"(Q) (by [[8] chapter 1, theorem 9.6] ), where
r:= (1 — p)ry + pra. Then there are M; > 0, Mz > 0 such that by (3) ||gt(p,x)||HT(Q) < M(Hz(x,t)”z3 +€)

and so

9603 1oy = |96 e <170 e

Hs(|-T,T Hs(-T,T])

< Ml(Hz(x,t)HZ3 +2Te) < My (Ma||2(x, t>HY1 + 2Te¢)

and by the arbitrariness of £ > 0 we obtain the continuity of the inclusion map Y; € H5(|—T,T[, H"(©2)). Since
Y1 is dense in Zz ([[8], chapter 1, remark 2.6]) the map can be continuously extended to the inclusion into
Z3 (because Zz C L?(Q27) and the convergence of a sequence in this space implies almost everywhere punctual
convergence of some subsequence). O

We shall need more involved spaces in order to take into account the boundary conditions of our problems.
Let d(x,09) := infycpq|/x — y|| be the (continuous) distance up to the boundary 9 of x €  function. Let
r € NU{0}. We define

olel ¢ 2 1

=r — 2 — |

=(0) = {/ € 13 \ 17|z (|z|<: Hd(x,am - (x)‘ LQ(Q)) < oo}, (4)
E"(Q2) endowed with the norm ||.[|zr(q) turns out to be a Banach space. We extend this definition to the case

r €]0,00[ by complex interpolation setting ="(Q) = [EkH(Q),E’“(Q)]kH_T for k <r <k+1,kec NU{0},
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endowed with any canonical norm of the interpolated space. It is easy to see that H"(Q) C Z"(2) for each
r > 0. Moreover, it can be shown (see [[8], chapter 2, formula (6.21)]) that in these cases D(2) is dense in
Z7(Q). Hence, if Z77(Q) := (2"(Q))" we have a Gelfand triple Z"(Q) C L*(Q) € E7"(Q) and the inclusions
=7(Q) € H7(Q) and E77(Q) € (H™())'.

In order to distinguish the behavior of temporal and spatial variables we introduce another space. Given

0 < T we fix a number Ty < L. Consider the function ¢z, 7 € C*°(R) with compact support [T, 7] defined
by

i S
e To-(HT-To? if —T<t<-T+Ty,
g (1) = i ] if —T+To<t<T-T,
05 T o T4
e T5-(-T+Tp)? if T—Ty<t<T
0 if t €] — o0, —T|UI[T, o0

Clearly |l¢r,7/lz®) = % independent on T. For every s < in NU{0} we define
="2(0r) = { f € 13 - T, T[,Z"(®)

6jf 2

Ty, 7( w <0

171]=-

=re(ar) Z

=0

L2(-T,T[E"~7(Q))

As above we define Z™%(Qr) for r € [0,00[ and s € N by interpolation and, in a second step, we define
2"5(Qr), r > 0,s > 0 by interpolation on s, providing all interpolated spaces with any standard interpolation

<PT0>T(t) —_ hmt T ‘PT0>T(t)

norm. Since lim;_,_ T N i

= 0, from [[8], chapter 4, proposition 9.1], we obtain that

D(Qr) is also dense in Z™°(Qr) and, defining for every r > s > 0 the space 2-"7°(Qr) := E™*(Qr)’, it turns

out that we have another Gelfand triple
=rS(Qp) C L2 (Qr) CE775(Qr) C D'(Q x R). (5)

=r at

An example that will be used later on: Given ¢(x) € E"(Q2) and « > 0, to estimate He_

o(x)|

ET’%+E(QT)7

O<e< % we note that

M
Q
!

T 2
”‘5’7CY tsﬁ(X)HET,O(QT) = (/T|62at|“@(x)”?(ﬂ) dt) = ||S0(X)| =

and
1
-« g —2a 042 —2at :
He f(p(X)’ =r1(Qr) < (/_T (e 2at + 672 e ) H(P(X ‘ . dt) <
a2 e20T _ o—2aT a2 6ocT
= H@(X”ET(Q)\/H@\/M < ez e
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Since =315 (Qp) = [E71(Qr), E (QT)] _» there is Q. > 0 such that

1
— 5te — 7—5
le™" = an e e()]12

ET'I(QT) = O(QT —

3+e
e T a2 2
) =@ 74 (\/ I+ ) : (6)

Finally we consider spaces of the latter type but with unbounded temporal intervals. We fix an unbounded

P ge oy < Qelle™ o)

< QEHSD(X

strictly increasing sequence {%,,}2°_, in ]0, oo[ such that Ty < ¥,;, — Tp,—1 for each m € N and let S, be the

map sending every measurable function in 2 X R to its restriction to Qx| —%,,, T,,[. Given 0 < r, s we define

= X R) {f xR R | [ = 59050z, < oo} . @)

.- Then fe
Zr5(QxR) and Sp(f) = f. As D(Qs, ) is dense in Z™*(Qs, ) it turns out that S, € L(Em*(QxR),E"*(Qs,,))
has a dense range and so the adjoint map S), € L(E7"*(Qg,,), (E™*(Q x R))) is injective. Then we
define =" *(Q x R) := U, _, S}, (E7""5(Qx,,)) provided with the topology induced by the norm topology of

(2m*(£2 x R))’. We shall identify each ¥ € E27"7%(Qg, ) with S/ (V) € E7"%(Q x R). The following lemma
holds:

For every f € D(Qz, ) let f € D(Q x R) be its extension by 0 on the complement of Qg

Lemma 2 Let ¥ € =" °(Q,R). There are m € N and a sequence pi(x,t) € D(Q x R), such that ¥ =
limys o0 r(x,t) in 27775(Q,R) and U, Supp(pr) C Qx,,..

Proof By definition of 27"7%(Q x R) there are m € N and ¢ € 27" %(Qg, ) such that ¥ = S/ (¢). By
(5) there is a sequence {pr}72; C D(fds,,) convergent to ¢ in Z~"7*(Qg, ). Then ¥ = limy_, S),(¢r) in
E"7%(Q x R). The fact that S}, (¢r) = @k, k € N ends the proof. O

For our concrete applications we note the important result:

n 1
If > 5 and v > s > 5 we have

75 x R). Moreover, for each ko € N

Proposition 3 Let xg € Q0 and f% < Ty < tg < Ty <

0(x—%0)®0(t—tg) € Z27"75(Qr) and so §(x —x¢) @ §(t — tp) €
there is Ky, () such that

T
5

1 1
sup{||5(x — x0) ® 8(t — to)| A(x0,09) > 1=, [to] < T~ 1?0} < Ky (T, Q).

== (Qp?
Proof Define Qp = {x e | d(x,090) %} k € N and choose ky € N such that xg € Q, and
[to] < T — é Fix functions p;(x) € D(Q) and pa(t) € D(] — T, T[) such that pi(x) =1 if x € Q,, p1(x) =0
if x € O\ Qo 4, and pa(t) = 1 ifte} T+ AT [ and pa(t) = 0 ifte}—T,—T—s—ﬁ[u}T—ﬁ,T[.

The map u € E"*(Qdr) — p1pou € H*(] — T,T[, H"(2)) is continuous and there is M > 0 (only
depending on p1(x), p2(t), ko, 7, s and @7, 7(t)) such that

YVueZ"(Qr) le P2 u‘

<M Hu .
H*(]-T,T[,H"(Q)) Eme(Qr)
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In fact, if r,s are in N and u € D(Qr) it is straightforward to check (8) using Leibnitz’s rule on derivative of
products. The general result follows by density and can be extended to arbitrary 0 < r,s by interpolation and
application of lemma 1.
On the other hand, since r > %, by Sobolev’s embedding theorem we have H"(Q) C C(2) and there is
K1 > 0 such that for every u € D(2r) we have
VTt |mbouten], <K [moouten] ;
o0 ulx.t)|, o < Ko o uin], )
In the same way, since s > %, by the vector valued version of [[8]7 chapter 1, theorem 9.8] (the proof is exactly

the same as that in the scalar valued case) we obtain H*(] — T,T[, H"(Q)) C C([-T,T], H"(R2)) and there is
K5 > 0 such that

V feH(—T,T[,H (Q H x,tH <K H x,t‘ . 10
rem(-rrim@) |reol, <k, (10)
Hence, by (9), (10), and (8) we obtain for every u € D(Qr)
[ o8¢ = x0) @ 6t — 10) )| = o 0)] <~ || () e, t0)]| <
p1(x0) c@)
o | | 1
< Qe <Kl <
i) 19109 wb )| o) < Ko @ 1P 2 ey oy
K| K
< 2oy o < M Ky K [Ju
p1(x0) p2(to) H# (=T T[,H" () =re(Qr)
and hence, by density of D(Qr) in Z™°(Q7) we obtain finally
1
sup{||5(x —%0) @ 8(t — t0)|| 5. (3, X0 € Dy [fo] < T = 1?0} < Ky (T, Q) (11)
where Ky, (T,€) is increasing with . O

In the next theorem we need weighted spaces. Given a measurable real function g : Q@ —]0,00]
we define the normed weighted space L?(f2,g) as the set of measurable functions f : § — R such that
HfHLQ(Q o= ||fg||L2(Q) < 0. If E is a Banach space, the vector E-valued weighted space L2(Q,g, E) is the

set of strongly measurable functions f: ) — E such that HfHLQ(Q’g B = H||f||EHL2(Q,g)< oo}.

Proposition 4 If s <r and T >0, the inclusion Z""(Qr) C E9°(Qr) is compact.
Proof First assume s € NU {0}, € N, and s < r. Given a bounded sequence {f,}>_; in Z"(Q),

o 0o
for every a such that |a] = r — 1 it turns out that the inclusions {d(x,aﬂ)w%} C L3(Q2) and
m=1

{d(x)aQ)laH-l % (a‘alfm)}oo Cc L?*(Q), j = 1,2,..,n hold. Then, by [ [5], theorem 2.7] there is a

Ix> _
m=1
lex| oo
subsequence {%} convergent in the weighted space L?(Q,d(x,0Q)Il). After a finite and analogous
m=1

inductive process on |a| =7 —k,1 <k <r — 1 we conclude that the inclusion ="(Q) C Z"~(f2) is compact.
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Now, consider for every 0 < j < r the Banach space

wy :={feL2(]—T,T[ e = @) | U e (-1l 0 0 1(9))}

provided with the norm

I, = (I

As the map f — QDJfO)T f is an isometry from L2(] — T, T, <pTO 7 E779(Q)) onto L*(] —T,T[,E"9(Q)), by

1
2

H“” —1 0 f?
2(]-T,T[E—9(Q)) To.T g ¢

L2(]-T,T[,Er—J-1 (Q))>

theorem 5.1, chapter 1 in [7] the inclusion W} C L*(] - T,T], LmeT, E7(Q)) is compact for every 0 < j < s.

; oo
Since for every bounded sequence {fn,}50_; in Z""(Q;) and every 0 < j < s it turns out that {a(;{]m }m:1 is
bounded in W} the conclusion follows afterwards a finite inductive process, indexed by j = 0,1, ..., s, selecting
in every step j a suitable subsequence of the previous one that converges in L?(] — T, T], ‘F’Jfo,T’ Or=I(Q)).

The proof for arbitrary real numbers 0 < s < r follows by classical compactness theorems of interpolated

operators due to Calderén (see [1]). O

2. Auxiliary technical results

To achieve our results we shall always consider general operators

1708 o2 ol 918l
A=—-X+= <8t+ a2>’ Xi= > W(aaﬁ(x)a)(ﬁ),

lee],|BI<1

where X is a self-adjoint strongly uniform elliptic operator in Q (in the sense of Wloka, [17]) with real coefficients

aap(x) € C(Q) verifying

VXED VE=(E1,n&) ERY Y aap(x)E%€7 > Kx > |6 (12)

|| =|B]=1 i=1

for some 1 > Ky > 0 (only dependent on Q and X). Moreover, by the theorem of traces [[8], chapter 1,
theorem 8.3], we shall consider differential boundary operators with real coefficients f, g1, g2, 93 in C*(99Q) of

type

B h(x) € HX(Q) — B(h(x)) := )+ Z gi(x ) € L(09). (13)

If we take formally the Schwartz—Laplace transform £ with respect to ¢ of a distribution A(U) we obtain
1 9 T/ « 1 2
S[AW] () = (=2 + — (p+ 7)) LUI) = (- SX = 5 + (p+5-) ) LU,
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which leads us in a natural way to the introduction of the operators

(67

1 T 1)\?
A:=—X+— d &, =—|-2 — C. 14
T +47'2 o P a( —|—<p+27>>, Pe (14)
It follows from (12) and the argumentation in [[17], example 19.1] that 2 is H{(Q)-coercive and so there are
constants py > 1 and Cx (only dependent on © and X') such that X, is an isomorphism from H{(£2) onto
H~*(2) when p lies in the half-space S, := {p € C| Re(p+ =) > px} and by [[17] theorem 17.10]

121 - H7H Q) — Hy ()] < - (15)

Sometimes we shall need to consider the restriction to some Banach space F' C H~'(Q) of X, or to consider

X;l as an operator with range larger than HE (). These new maps will be denoted by the same symbol XP*I
unless a more formal representation is necessary.

The linear space
Vre0,00] RN = {f e H™2(Q) N HIPY(Q) | B(f) =0and A(f) € Hg(Q)},

provided with the norm induced by H"*2(Q), will play an important role in the sequel. Since D(£2) C R"T2()
and D(Q) is dense in L?(Q2), we have the natural inclusions R"+2(Q) C L?(Q) C (%T+2(Q))/ C D'(Q) forming
a Gelfand triple. The continuous inclusion map R"(2) C H"(2) will be denoted by R,.

Proposition 5 Let r € [0, o0].

1) R"+2(Q) is a Banach space.

2) X, is an isomorphism from R"T(Q) onto H{(Q) for every p € S,, and, in the case v — 3 ¢ Z,
there is M, > 0 (only dependent on Q and X ) such that

12ty | = (|4, M. (16)

g n.miaay <
Proof 1). It is enough to see that R"T2(Q) is closed in H™"2(Q). Let f = lim,, o0 frn in H™2(Q) with
{fm ¥, C R™T2(Q). Tt turns out that {A(f,)}%_; C HF(Q) must be a Cauchy sequence in H"(£2) because
A€ L(H™2(Q),H"(Q)). Then A(f) = limy,—00 A(fm) € Hf () since H{(Q) is a Banach space. In the same
way we have necessarily f = lim,, ;o0 frn in Hy (). Finally, for every m € N there is ¢, € D(Q) such that
Hfm - SOmHHT+2(Q) <L and HEB(gom)HH,.Jr%(aQ) < % Then f = limyy, 00 @m in H™T2(Q) and the continuity

of B gives us B(f) =0 on 9. Hence f € R"2(Q).
2) Let p € S,,. Obviously we have X, € L(R"2(2), H{(Q)) and by the H}(Q)-coerciveness of X, it
is injective. By the open map theorem we only need to show that X, is surjective onto H(€2).

Let 7o be the trace operator on 9. Given f € H{(Q) C L*(Q2) there is a unique Uy € H}(2) such
that X,(Uy) = f and v0(Uy) = 0 (by [[8], chapter 1, theorem 11.5]). In the same way, as 9ot e H=1(Q)

Ox

whenever |a| <+ 1, there is Vo € H}(2) such that X, (Vy) = 9/ Insuch a case, for every ¢ € D(Q), we

Ox
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have

= 0 (1 20 Y @) = (0 (0, S (47 () =

_ <g;|‘XP(Uf)’ (Xpl)’(¢)> - <Xp (8';('?) 7 (Xpl)'(w)> — <5§gf,<p>
alelyy

||
and so 5L =V, € Hj(Q) and o (M) = 0. In particular, by [[8], chapter 1, theorem 11.5] we obtain

ox™
Ur € HT2(Q) N H;T™(Q) and gxi,ﬁ = Vq € H}(2) when |a| = 1. By definition of B we obtain B(Uy) = 0,
i.e. Uf S 9%”2(9).
On the other hand, if f € L?(Q) by (15) we have

x|

x

12 (P llsz ey = 1% O sy + O

|a|=2

L2(Q)

2 2 2
171 90X (/) 1717 of \|I
o) » L2(Q) 1 [ 9f
< 20 —» -’ < Xt 2L
< s | TP <y e (0]
|a|=1 H(Q) la|=1 ()
2 2
17117 1 || of | 17117
Q) L2(Q) n 2 e
<O S < D | £l = MEN S
C?{ |,§;1 C/ZY ox H-1(@) 0/2\,’ C/—ZYH HL2(Q) 1|| ||L2(Q)
obtaining (16) for r = 0. The proof for r € N is analogous using induction on r. Finally the general
case 7 — 5 ¢ Z follows by interpolation since the isomorphisms H"(Q) ~ [H*(Q), H*(Q)],,, , and
Hj(Q) ~ [H§+1(Q)7H§(Q)}k+l_T hold for r €lk,k + 1\ {k+ 3} .k € NU{0}, ([[8], chapter 1, theorems

9.6 and 11.6] ). o
We have not been able to find fine estimates of ||X;! @ HJ(2) — R"2(Q)|| as a function of the

parameter p € S,,,. Fortunately, for our main purposes it will be enough to find these estimates if we replace

R"+2(Q) with some larger spaces. First we note the following result:

Theorem 6 Let r € [0,00\(Z + 3). There is M(r) > 0 such that if p € Sy, the operator X; " considered an
operator from H{(QY) into H"(Q) wverifies

M(r)
|[Re (p+35) | [P+ 55|
Proof a) Let p € S,,. By theorem 5, X, is an isomorphism from R*(Q) C L*(Q) onto L2*(Q). If
Im (p+ 5) #0, it follows from [[3], chapter 8, §1, proposition 2] that

Rt < (17)

H(Xp)_lHz:(Hg;(sz),Hr(sz)) = HIT+2)T

1

-1 _
1% etwaen.am < Im(p+ )7 2R+ ) Im(p+ 5[

(18)
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If Arg (p+ %) < 7 we have
1 1 1 . 1
2|Re (p+—|Im|p+—)|=|p+ —| [sin24rg(p+ —
2T 2T 27 2T

+12>1 +1R +i
27 _\/ip or | [T\ T 27

2

d

>

and

Arg (p+ 5 S N R N | e
r - m — — —1.
I\P =1 Pror )l =2 lP e
Then (17) follows from (18) if 7 =0 and Im (p+ 5 ) # 0.

If po € Sy and Im (po + ﬁ) = 0, taking a sequence {pn,}oo_; C S, \R such that py = lim,, oo D,

we remark that, using (16) we can write

[ L2.0R2(X, 1 = X, D)|| = [[T2.0R2 (X (X, — X, )X, )|

+12 +12
mor Po 2r ) |

This implies that lim,, oo ||T2 0R2(X;F — X 1)|| = 0 and by the previous result
’ Pm Po

< 12 e = X5,

12, < M5~

||Xp;1||L(L2(Q),L2(Q)) = mlgHOOH Pom ||L(L2(Q),L2(Q))

< lim M(O) = M(0) :
—moe [Re (pm+ 55) [[pm + 57 [Re (po+ 55)[[po + 55

b) If r € N given |af < r, for every f € H{(Q2), we have &, (g;‘prl(f)) = %(Xp(ijl(f)) =

o~y o H71*l(Q) c L2(Q) and, by proposition 5

ox™

olel ¢ Hled
-1 _ —1 r—|al+2
XP (8 xo ) - 8xo¢ (XP (f)) € m (Q) (19)
By part a) one has
| Re (p+ 2i |p + g7 | Il Ox° PN Ox g

and summing over all multi-indexes || < r it turns out that (17) holds.
c) Finally the general case 7 € [1,00[\(N + 1) follows from part b) by interpolation (as in the second
part of proposition 5). O

As a consequence we obtain
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Corollary 7 Let 0 < r < m in R such that r f% ¢ Z,m f% ¢ Z. Then, if p € S, we have Xp’l €
L(H{(Q), HT(H%)(Q)) and there is A(r,m) > 0 independent of p such that

_ A(r,m)
X, < 20
I o)) = TR o ) B o 2T 0
Proof It follows from [[8], chapter 1, theorems 11.6 and 12.4] that H{(Q) ~ [H{"(Q), L*(Q)] and

i

[H™T2(Q), L2(Q)],_. ~ HT(H%)(Q). Interpolating the operators Ry, 2X, ' € L(H§ (), H™?(Q2)) and

1—r

m

LR Xt € L(L*(Q), L*(Q)) we obtain X, € E(HS(Q),HT‘(H%)(Q)) and there is ¢(r,m) > 0 such that

[ o e

<c(r,m HX L£(L2(2),L2(Q))

r(Q),H" (1 )(Q))

and by (16) and (18) the result follows. O

3. Existence and regularity results for the operator 4 with nonregular right side
It is known (see [[8], chapter 1,§12.5]) that for every s > 0,m > 0 there is a natural linear embedding
Usm o f € H(Q) — Us o (f) € (Hm(Q))/, where

Ve H™Q) (Usm(f)g) = / F(®)g(x) dx

There is also a natural inclusion map Js., : H§(2) — (%m(Q))/ such that (Js.m(f),9) = (Usm(f), Rm(9)),
i. e. Jsm = R, Us . Then we have

Proposition 8 Let p€ S, and r € [0, 00][.

a) The adjoint isomorphism (X,) : H™"(2) — (%T"’?(Q))/ is an extension of X, : R™2(Q) — H{(Q)
and (X))7": (SW""Z(Q))I — H7"(Q) is an extension of X, ' : Hj(Q) — R"T2(Q).

b) The adjoint map (Rri2X, ') € L((H™2(Q)), H™"()) is an extension of the map R,2X; " €
L(H(Q), H™2(Q)).
Proof a) Let f € R"2(Q) and g € D(Q2). We have, 2 being self-adjoint,

2

(@ ra) = (1.3 + (p+5-) a)= [ 1 (m<g>+ (v ;)g> i
:/Q (Ql(f) + (p+ ;T)Qf> gdx = <Xp(f),g>.

[(%0.9)] = [{510.9)] <)

Thus

2,(0)|

Y -
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and by density of D(2) in H~"(2) it follows that X)(f) € Hy(Q2) and X (f) = X,(f) € Hy(£2).
b) Recall that R, oUy,y2 = Jprq2. Then it is enough to remark that, by the result in a), for every
f € H() and g € H™2(Q2) we have

<(Rr+2X T‘T’+2 g> < rr+2(f)ag> = <Xp71(f)7g>'

Theorem 9 Let 0 < a <m in R such that a—% ¢ Zim—% ¢ Z, 0<r <a(l+2), £ (22 —r)—1 ¢ NU{0}
and p € S,.,. Then (X, 1) € £((HT(Q))/,H%_T(Q)) and there is B(a, m,r) > 0 independent of p such that

P

1y B(a,m,r)
V€ Sue N ey e oy |Re(p+55)| 7 [p+ &%

(21)

Proof We have H*™2(Q) C HO‘(H%)(Q) C L*Q) ¢ H *(Q). The map (I,

N/
a+2,a(1+%)Ra+2Xp 1) <

E((H‘X(H%))’,H_Q(Q)) is nothing other than (X, ')’ considered as an operator from (HQ(H%))’ into

H=(€). It follows from the result of part b) in proposition 8 that its restriction to Hg'(2) is I, a(1t2 )Ra+2

e E(H[?(Q),HO‘(H%)(Q)), i.e. the operator X! considered as a map from Hg () into H“(HW)(Q).

Then H(Xp_1 /||C(HE§‘(Q)7HM1+%)(Q)) H P 1” HQ(Q) o0+ 2) () and we can interpolate the operators X! €
L(HG(Q), H*OT3)(Q)) and (X, 1) € L((H*O+%)(Q))', H=*(Q)). By [[8], chapter 1, theorem 12.6] we have
(H"(Q)) =~ [Hg (), (Ha(1+m)((2))/]n where 1 = 2”;5212) As (1-n)a(l+ 2) —na =22 —r, it follows from

[[8], chapter 1, theorem 12.4] that (X, 1) € L((H"(Q ), H*=7()). By interpolation properties we have

H (‘Xp_l)/||[;((Hr(g))/,H%T'f*"'(Q)) <

X*l)/H"]

< cz(m,a r H Hﬁ(H"‘(Q H°‘(1+ (Q))H( P L((H"‘(l+%)(ﬂ))’,H*a(Q))'

Since an operator and its adjoint map have the same norm the result follows easily from (20). O

Since %‘1 — r can be positive, theorem 9 is the key to obtain regularity results for the solutions U of
the equation X/(U) = ¥ with irregular elements ¥ € (H "(€))". However, to assure moreover the condition
B(U) = 0 we need to consider a space smaller than (H ’”(Q))/. That is the reason to deal with the space
() C (HT(Q))I considered in section 1. Note that R"2(Q2) ¢ H"™2(Q) c H"(Q) C =Z"(Q),r > 0
with continuous inclusions. As D(Q) C R"2(Q) and D(Q) is dense in =7(2), we obtain the inclusion

=77(Q) C (WT2(Q))". Then by [[8], chapter 2, theorems 6.5 and 7.3], for every 0 < r, the space

(1]

Ty @) = {U e HQ) | 0) € 27(Q) € (RHHQ)) and B) =0}

is well defined. We provide 7,7 "*2(2) with the norm

VU T, Q) [Ull 7o) = 1Ulreage) + 1 20)

S (22)
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Remark that || X)) : 7,72(Q) — Z77(Q)|| < 1. We have

Theorem 10 Let p € Sy, and r € [0,00[. Then J;""?(Q) is a Banach space and the restriction H, to
Ty "2(Q) of X is an isomorphism from J;"T2(Q) onto E7"(Q). Moreover, if 0 < o < m i, [0, 00[\ (N + 1,
O<r<a(l+2) and (22 —7r) - ¢ NU{0} there is M(o,m,r) >0 independent of p such that

< M(a,m, 1) _

< — — (23)
DT Re(p+ &) p+ £

H (ng)_l H[;(E—T(Q),H*’f*zﬁ(

Proof Let {fn}p—; be a Cauchy sequence in J,"2(€2). There exists f = lim,, o0 frn in H~"7?(Q) and

1

g = limy, o0 &) (frn) in E77(Q). Then g = limy, 00 A (frn) in (%TH(Q))/. As H""2(Q) ¢ H™"(Q), by
proposition 8 we have f = limy, oo frn in H77(Q) and &} (f) = limp oo X (frn) in (9%”2(9))/. It follows
that g = X)(f) and so X)(f) € E7"(Q), i.e. fe T, "2(Q) and J, ""2(Q) becomes a Banach space.

The continuity of H, follows from (22). Given f € Z7"(Q), by [[8], chapter 2, theorems 5.4 (for the
case v = 0), 6.7 and 7.4] there is U € H ""2(Q) such that X,(U) = f and B(U) = 0. By proposition 8
X,(U) = X)(U) and then U € J,"7(Q) and H,, : T, "72(Q) — E77(2) is bijective and continuous. By the
open map theorem #, is an onto isomorphism. Since =~"(Q2) C (H"(Q2))’, an application of theorem 9 finishes
the proof. O

Proposition 8 can be improved in the following way:

Corollary 11 If p € S, and r € [0,00], the adjoint isomorphism (X,) : H™"(Q) — (9%7’4'2(9))/2'3 an
extension of X, : T, "2 (Q) — E77(Q).

Proof As E"(Q) C L*(Q) C E77() is a Gelfand triple, given f € 7, "2(Q) there is a sequence {@m}p—; C
D(Q) such that g := A)(f) = limy, 00 m in Z77(2). As a consequence g = lim,, o0 o in H77(£2) holds.
We have ¢, € H5(Q) for every k and m € N. By proposition 5 X; ! (¢,,) € H¥2(Q), ie. X' (om) € C(Q)

P

(Sobolev’s embedding theorem). By theorem 10 we have f = (X))"'(g) = limp 00 (X)) om) in T, "2()

and in H="*2(Q) indeed. By proposition 8 we obtain f = limy, 00 (X)) (@m) = limpm 00 (Xp) " (om) in
H="2(Q). Then X,(f) = limyy— 00 Xp(Xy) "1 (pm) = limyy 00 @ in H77(£2) obtaining X,(f) = g = X (f)-

O

Lemma 12 Let 0 < o <m in [0,00\ (N+ 1), 0<r<a(1+2) and £ (22 —r) — 1 ¢ NU{0}. The map

2a

G:pe S, — (X)) e LET(Q),Hn"(Q)) is holomorphic.

Proof Let p; € S,, and 6 > 0 such that if |[p —pi| < J then p € Sy. Let I, : jp’”z(Q) — H"H55(Q)

be the inclusion map. The composition map I,H, is nothing other than the operator (X;)_l considered as a

map from Z77(€) into H~"+% (). Recall that X/ e LIH™"(Q),(R"2(Q))’) is an isomorphism (proposition
8) and that H~"+3% (Q) ¢ H~"(Q). Since ||L,]| < 1, by (22), (14) and directly by definition of X, one has

X, <

||Xz§1 (2 XPHﬁ(S‘iT‘*’"’(Q),Hg(Q)) =

- XI;HL(H—T(QL(DV*'?(Q))') - ”
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Then we have

1oty = LM, || = (67" = () 7 L oy 22 ) =

=[x )" (X, — X;)Ip”'lp\}g(g—r(m,}ﬂ”ﬁm))

sup ||Iq7-Lq||

<l - ;
(%,) PPl L(H=(9),(R+2(9))) q—py|<5

and the continuity of & in p; € S, follows easily from (24) and theorem 10. Then our result is a consequence
of resolvent’s identity and the chain rule (see [[8], chapter 4, theorem 3.1] for details). O

The next theorem contains the main results of the paper about regularity properties of the solutions of

A(Z) = U when U is an irregular distribution.

Theorem 13 Let T > 0 and let 0 < a < m in R such that {o,m} C [0,00[\(N+3), 0<r<a(1+2)

and + (22 —r) — 2 ¢ NU{0}. Assume ¥ € Z"""(Q x R), and that there are K >0 and —co < p< 1 -2
such that the Schwartz—Laplace transform L£[¥](x,p) verifies
Vpe S, L¥(x,p) ec=""() and HS[\D] (x,p)HE,T(Q) < K|p|p. (25)
Then there exists V € R and a unique Z € D'(Q x R) such that
a) A(Z)(x,t) =W(x,t) in QxR (26)
b)  B(Z(x,1) =0 in xR and Z(x,t)=0 in Qx]—o0,V]. (27)

¢) The restriction to Qr of Z wverifies Z € H*(] =T, T|, H‘“‘%(Q)) Jor every 0< s < 35— % —p.
Proof Part 1. Existence and uniqueness of Z. By theorem 10 and corollary 11, for every p € S,

there is a unique G(x,p) € J, () C H"*(Q) C H7%~7(Q) € H"(Q) such that

%,(0) = X(0) = A(G) +  (p+797)G = £[V] (28)
and B(G(x,p) = 0 in 9Q. By lemma 12 the map & : p € S, — (X))7! € E(E_T(QLH%_T(Q)) is
holomorphic in S, and moreover, by theorem 10, & is slowly increasing with respect to p. As a consequence
(see [[15], chapter I, §3, page 79, proposition 22| and [[14], chapter 8, section 4, remark 2]) there exists
the inverse Laplace-Schwartz transform § := (£71[&])(x,t) € D'(R,L(E7"(Q), H= (%)) as well as some
V € R such that $ =0 on | — oo, V[. Denote the convolution with respect to the ¢-variable by the symbol x*.

By definition of =777 (2 x R) there is a € N such that ¥ € =="~?(Q«_). Then the convolution product § * ¥
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of vector valued distributions is well defined. As it follows from (28) that G = (X))~ ! (L[¥](x,p) € J, "T2(Q),
by the convolution theorem (see [[15], chapter II, §7, proposition 43} ) and corollary 11 we have

LA * ©))(p) = T, (2[5 V](p) = Z 2, (<l5](p) (£[¥](x. )))

= g(Xp &(p) (£[7](x, p)) = gxp((xlg)—l(sm/](x, p))

T _
= ()7 (Ll¥](x,p)) = £[T](x,p) (29)
and by the uniqueness of the Laplace-Schwartz transform we obtain A($H) * ¥) = U, ie. Z := $ x U verifies

(26) and (27). Moreover, from proposition 8, (29), and (28) we deduce
£[2] =G = (X)) (L[¥](x,p)) € T, "THQ) € H"H2(Q) € H% ~"(Q). (30)

Take p =1 +iv € S,,. As a < m we have H ""%(Q) C H%~"(€) continuously. By theorem 10

we obtain (X, 1) € L(E77(Q), 7(Q)) and the map v € R — H i L) becomes

L(E=(Q),H 7 7 (@)
continuous.

Let F[](p) denote the Fourier transform with respect to ¢. If 0 < s < 2 — 2 — p, by theorems 10 and 6
and (25) we have for some C' > 0 independent of p

2

/Oo (1+|w+i,,|2)5H]__{efw tZ(X,t):| (”)H N b —

oo Hm ~"(Q)

:/0;(1+¢+iV|2)SHS[Z(X,#,)}W.HV)HzZQ 0 —

w7 (Q)

=[G i) () (st s i) s, <

(oo}

< [ (i) T35 [ gt 80+ 9)]

—0o0

2
dv <

=-7(Q)

1+¢+ |2 P
<c/ | W|) [v+iv] dv (31)

o . 2(1—«
[ 2O i g OR)
and since % — 2% — p > s, it turns out that the integral (31) is convergent. By the vector valued version

of Plancherel’s theorem (see [[8], chapter 4, §3.2] for instance) one has e ¥'Z € H*(R, H% ~"(Q)) and so
Z = ewt(e*wtz) € H* (] — T, T[ (Q)).
Concerning the uniqueness of Z, if there would be Z! and Z? verifying the previous conditions, by (30)

we would have S[Z ! ZQ] = 0 and hence, by the uniqueness of the inverse Laplace transform Z! = Z2.

Part 2). Existence and computation of B(7Z)(x,t) in 92 x R. By lemma 2 there are a € N and a
sequence {Wy(x,1)}72; C D(Q x R) such that ¥ = limy_, Uy in E7"7"(Q x R) and Jpo; Supp(¥y) C Qx,.
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6‘5\+h\p
oOxPoth

For every |B| > 0 and h € N we have W,‘fl’h = L€ D(Qz,) and S[W,‘f"h] (x,p) € D() C HJ(2)

for every v > 0 and p € S, . Moreover,

SW1P (x, p) [ / WP (x, €) de <x,p>=%£[w,i""h“]<x7p>. (32)

In particular, (32) implies that £ |23

| (x,p) € 277(Q) if £[Wk](x,p) € E77(Q).
By theorem 6, using the same argumentation of part a) it turns out that there exists Zf: =« W,L’B LA

verifying A(Zf’h)(x,t) = W,lf"h in QxR and
L[z, p) = 27 (£ [ W] (p)) € Q) € HU(Q) (33)
for every p € S,,, and v € N. As a consequence we have
B(L[Z,")(x,p)) = LIB(ZM](x,p) =0 in 02 (34)
In the sequel, to simplify, we put Zj := Z,S’O and Wy, := W,S’O =V, keN. O

Claim 1. For every v € N, B(Zy)(x,t) =0 in 9Q x R.

Proof As v > 0 is arbitrary, Sobolev’s embedding theorem gives us E[Z,f’h](x,p) €C>® () C HY () C C(Q)
for every v > 4 with continuous inclusions. It follows that there is €y > 0 such that for every p = ¢ +iv as

above in part a), for every x € Q, t € R, and every m, € N such that v < m, we obtain

ePt Xgl (2 {Wiﬁl’h} (X,p))’ <e¥t?

Xol(e [Wfiﬁ"h} (y,p))Hc@ <

S Cledj ¢

% (2 [ 60 | e ) @

X_l

SClewt‘ P

HS [W;‘f"h} (y,p)H : (35)

HaHg(m,H”(”m*)(ﬂ» H(9)

Now remark that for every p € N™ such that |p| < v, by Fubini’s theorem and Holder’s inequality we have

= sup
LQ(Q) ”gHLZ(Q)Sl

H glel

prl [W'm h} (y.p)

/ L [Wzlm”"h} (y,p)g(y)dy‘ =
Q

= sw [ Se w1 gty <
QP

HQHL’A’(Q)Sl

1 oo
<  sup 7/ eVt </ ‘W;Lﬁerl’hH(y,t)g(y)‘dy) it <
loll 2y <1 P /-, a

e

|ﬁ+p| ht1 H
C(QxR)
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where |Q| denotes the Lebesgue measure of (). It follows that there is M, ,’fv > 0 such that

1811 M,

¢ (WP (g, 0 +i ‘ < kv 36

i‘éﬁ” { k }(yzﬁ w) Hy(@) ~ [ +ivy (36)
and then, by (35), (20), since v < m,,
/ ettt (2 W] (v + i) )| dv <

00 Mﬂl Pt

< / kvh © dv < (37)
|1/)+21/| W—l—w—i— £ ’

turns out to be a uniformly convergent integral in every bounded closed neighborhood of (x,t) € Q x R. That
means we can apply the inversion formula for Laplace—Schwartz transforms [[18] } obtaining for every k € N
and t >V

1
271

> v - h .
Bl > 0.¥h >0 ZPh = / et 7l (2 W (kv +iw)) dv =

oIBl+h 7,

_ - ARt (btiv) 1 o\Plwy, , _
= 27Ti/_oo (Y+iv)e X¢+w(£ 5xB (x,z/J—i—zu)) dv = B (x,t) (38)

by the uniform convergence of the involved integrals and (19). Then by (33) and (34) we obtain easily

V(x,t) € 00 xR B(Z)(x,t) = 2; / T lrineg [B(Z1)] (x,% + iv) dv = 0. (39)

O

Define 8 by the equality « (1 + %) +1=p (1 + m—ﬂ) . Then, by the assumptions about « and m,

after elementary operations, we see that o < 8 and
(m 4+ 1)(m + a(m + 2)) 2 208

1, —>-14— 40
m(m + 3) m L ” +m—|—1 (40)

2
7‘+1<B<1++1> /B:

Remark that by (37) and the last computations, Z, € C*°(Q x R) ¢ H~"~17"=2(Q7) and, moreover, A(Z;,) =
T, € 27777(Q x R) ¢ 2-0+3):=("43)(Q x R). On the other hand, by (40) we have the continuous inclusions

HY (=T, T[ H "% (Q)) ¢ H* (|- T,T[, H " "*#+1(Q)) ¢

cL? (] - T,T[,H—(r+1)(Q)) c H—(T+1),—(T+2)(QT)

because, for every P € L? (] —T,T], H*(TH)(Q)), by Hélder’s inequality one has
T
Y ft) € HiG @) | [ (et fxit))g di| <
-7
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T
< [ 6Dl PO Oy 0 < s o o)

Since A(Z) =W € E7"77(Qp) C 2+ -0H3(Qr), by [[11], theorem 4] in order that B(Z) be defined it

is enough to see that limy_, Z, = Z in the Lebesgue-Bochner space L*(] — T, T, Hr e (Q)) and then
part b) will follow directly from (34).

Claim 2. Define Dy (¢) := supueRHE[\Pg’l] (x, 1/)—|—il/)—£[\1/2’1] (x,Y+iv)

). Then 1imk7h_>oo th(d)) =

0.
Proof It follows from the definition of ¥ and {¥,}32, in E7""5H75(Q x R) that %—‘f = limg_, W,S’l in
E-7L=571(Qg,). Then there is K;(T,) > 0 such that for every ¢(x) in the closed unit ball of Z"F1(Q)

sup <£[W£’1 — W (x, 9 + iv), w(X)>‘ =

— sup <<ng1 — WP (. t), p(x)e”Crm by <t>>\

veR
0,1 _ 1p/0.1 e~ (tiv)t
<[ = 8l O O
0,1 0,1
< =Wy
> Kl(ga) HWk Wh E-r-L-r=1(Qg,) z2r+i(Q)

< K1(%a) HW,S’l — w0t

U

and the claim follows from the density of D(Q2<,) in =17+ (Qg,). 0

Claim 3. We have limy .o, Z = Z in L2(] — T,T[, H """ %+1(Q)).

Proof We have £(¥) — U,)(x,¢ + vi) € D() C Z7"71(Q) for every k,h in N and v € R. On the

other hand, it follows from (40) corollary 11 that for every v € R, the restriction to Z2~"~1(Q) of (Xwiw)’

E((D‘V"‘?’(Q))’,H_T_H%) is the map ijw € E(E_T_l(Q),H_T_H%(Q)). Let B be the closed unit ball
of (H_T_Hmzifil(ﬁ))/. By (32), since D(Q) is dense in H_"_Hmzifl(ﬁ) C (H_T_Hmzifl(ﬂ))/, by [[17], example
17.2] for every t €] —T,T[ and k and h in N there is T} in B and a sequence {g}(x)}72, C D(€) in B such

that T = limj_, o, g5(x) in (H_T_H‘%(Q))/ and

H(Zk—Zh)(XJ)HH_ 25 = |((Zk — Zn)(x,1), TF")| Zg{}oK(Zk—Zh)(X,t)>gﬁ(X)>|

TTHmI(Q)

/Q (/C: S+ V)t)(w_iw(S[\I/k —U](x, % + V) d,/> ! (x) dx

dv

/ ok (B[0k — W3], + ) g () dx
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N U A —1 .
= gim g [ e [ (e - o+ )i i
1 [ . ‘
< % eth(Xw"!‘iu)/ (2[\I/k — \I/h](X,’ll) + ZV)||H7T71+%(Q) dv

1 o0
= e’l‘bt

1y (o [0% 0, _
z/z+z’1/( vrin) (g[ ot ot (e, +iv) T e () v

— 0o

Pt > 1
<o buw [ (el

2 dv < 00
oo |w+i1/|

LE-r-L @) H T (@)

(by (32), (23) and the fact that 8 < m+ 1). It follows easily from claim 2 that {Z;}¢°, is a Cauchy sequence
in L?(] - T,T], H7T71+%(Q)) and so there exists W = limj,_,0c Z), in L2(] — T,T[,H7T71+%(Q)).

A similar argumentation to the used one in (41) shows that £[W](x,p) = limg_ oo £[Zk](x,p) and
L£[V](x,p) = limg 00 £[¥x](x,p) in 277(Q) and soin Z7"71(Q). Arguing as in (29), as 2-""1(Q) C (H"T1(Q))’,

by theorem 9 (with parameters r 4+ 1, 8, m + 1) and (30), taking the limits in Hr e () we have

EW](x,p) = lim £[Z;](x,p) = lim L[5+ WyJ(x,p) = lim &(p)(L[T](x,p))

= lim X1 (L[W](x,p)) = lim (X))~ (L[Wk](x, p)) = (X))~ (L[L)((x,p) = £[Z](x,p)

k—o0 k—oo® P p

and so Z =W. O

We present some examples of application of theorem 13:

Corollary 14 Let 0 <n< &< i, >0 and T > 0. If (x0,t9) € QxR and ¥ := §(x —x0) @ §(t — tg), there
is a unique G € D'(Q2 x R) werifying (26) and (27) for some V € R and such that

a) If n =1 we have G(x,t) € H%*”(] ~T,T[,Hz~ (Q)). In particular G(x,t) € L*(Qr).

b) If n €N, we have G(x,t) € H'(] — T,T[, H (5 71+=+2) (q)).

c¢)IfneN, and ¥ :=06(x —x0) ® H(t —to) (where H(t) is the Heaviside function) we have G(x,t) €
H (] - T,T[,H*(%A*E”g)(())).
Proof We use the same notations of theorem 13. By proposition 3 we can take r = % + ¢, and clearly p = 0.

We can choose o = r and m = 2 a + ¢ with arbitrary ¢ > 0 in order that the hypothesis of theorem 13 be
fulfilled.

a) Let n=1. We have lim, ¢ (% — %) = 0 uniformly with respect to € > 0 and

. 2 252—%
lim (r— — ) = —F7=.
1—0 m 1+2¢

Hence, choosing & > 0 small enough, by theorem 13 it turns out that G(x,t) € Hz ™" (]-1,1], Héfﬁ(ﬂ))
and so G(x,t) € L*(Q7).
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b) Let n > 2. If we fix € > 0, 5 — = is an increasing function of ¢ convergent to 0 if + approaches 0 and with
limit 4 5 if ¢+ approaches oo. Then we can write 1 5 — 7 =& for arbitrary 0 < ¢ < 5. On the other hand, we
obtain 7 — 2% =2 — 1 + ¢4 2 ¢ and by theorem 13, G(x,t) € H"(] — T,T[,H‘(%_”g”f)(Q)) for every

0<n<{<i.

¢) The proof is analogous noting that in this case we can take p = —1.

O
For the proof of the following corollary we introduce some new notation in order to simplify the expression
of the formulas that will appear. For every (xo,%0) € Qr we set Uy, 4, := 6(x—%0)@0(t—10), ¥x, := 6(x—x%0)

and Ay, ::||\le0”5—(%+5)(9)' First, we establish a lemma

Lemma 15 Let (Xo,%) — (X0,t0) in @ xR and 0 <e < 3. Then

lim v

(Xo,t0) = (%0,t0)

=Wyt and lim Q[qjioia] (p,x) = 2[\11,(0,%] (p,x)

Xo,to -
’ (X0,to)—(x0,t0)

in the spaces Z —(5+2)-(3+ )(QT) and E_(%+E)(Q) respectively.

Proof a) Choose 0 < ¢’ < e. By proposition 3, Uy, 4 € E —(5+) -0+ )(Q x R) for each (xg,t9) € Q x R.
Fixed (xo,t0) and T' > 0, by proposition 3 there is a neighborhood W' of (xo,?o) such that {¥y 7 | (Xo,10) €

W} is bounded in =~ (1)~ (37<') (7). Since for each » € D(Qr) we have

lim <<)07 \Ijig,fo (X7t)> = lim (p(io,fo) = @(Xo,to) = <§03 ‘leo»t0>a

(Xo ,zo)*)(xo ,to) (Xo ,fg)*}(xo ,to)

we obtain by density that Wy 7 — Wy, s, weakly in Ef(%JrE/)’*(%Jra/)(QT). The inclusion Ef(%“/)’*(%“/)(QT) C
= (3+e)~(3+ )(QT) is compact by proposition 4 and Schauder’s theorem and so Vg 7 — Wy, 4, in the norm
of ==(5+e)=(5+¢) ().

b) For every p € S, and every k > 0 there is ¢x, x,(x) in the open unit ball of E(%H)(Q) such that

HQ(\Pio,zo - \Ijxoqto)(p’ X)HEi(%JrE)(Q)

< He_pzo (\ijo - \I/xo) ’|E_(%+E)(Q) + H(e_Pfo —e P to) ||__ s Q)

= |e*p¥0| (|<<p§07x0(x),\1120 — \le0>| + K) + Ax, |e*pz" —eP t0| =

|<e*Re(P)t VA >| +re” (P)(ZO*to)E*Re(P)to + AXO|6*IDEO — e~ Plo
0,to

Pxo,%0> qjig to

and by (6) there is B:(Re(p),T) > 0 such that x > 0 being arbitrary we obtain

) @)

||£(\Ij§07fo - \IJXOvtO)(p’ X)H 7(%+s)(9) (Re ||\IIX0 to \I/x07tOHE (
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+Ax0 (|€7Re(p)fo _ efRe(p)t()’ + efRe(p)tU eflm(p)fg i eflm(p)tg 'LD (42)

which approaches 0 if (Xp,t9) — (Xo,%0) by part a). O

Proposition 16 Given (xg,ty) € Q x R, let Gx,.1,(X,t) be the unique function verifying A(Gx,.t,(X,t)) =
Usoto 0 QXR, B(Gxyto(%,8) =0 in 02 xR and Gx, 1, (x,t) =0 in Qx] — 00, V] for some V € R. Given
O<n<§<%, €>0 and T > 0 one has

lim G

(Xo,to) = (x0,t0)

(%,) = Gxg o (x,8) in H'(] = T,T[, H~ (314426 (). (43)

X0,t0

Proof By corollary 14 we have G(x,t,x0,to) € H"(] — T, T], H_(%_1+E+25)(Q)) for every (xg,%p) € @ xR
such that |tg] < T. Arguing as in theorem 13, formula (31), and using its notations as well as those of corollary

14, part b, and writing Ry 7 (x,t) := (Gg, 7, (X, 1) — Gxo.t, (%, 1)), by Hélder’s inequality we have

/OO (1164 P) " || & [ R 0)] (0 V)Hj{_(%_w) dv <

—o0 («)

dv

o (1+|¢+w|2)n||£[\1u 20— Voo (0 i 1))
S C / Xo,t0 X0,t0

ooy ] o +iv+ 5[

T

and by (42) and Holder’s inequality

0 (1 + |+ V|2)n I (U 70 — Usorto) (W +i v, t)||2

<3C B:(y,T)? / T =5 dv+ (44)
R R
(1 + )Y+ u|2>77
—_ 8] d
+3CAZ eVl — 0| / - - + (45)
X 1 1+2¢ . 1 114+2¢
—o0 |’¢+ 35 ”Q/J-i-l v+ b
pot oo<1+|w+zu\> 4 (46)
+3Ce™ 0/ dv. 46
oo et AT fp iy AT

Since 1+ 2€ — 21 > 1, by lemma 15, we can choose (Xq, %) close enough to (xg,%p) in order that (44),
(45), and (46) be arbitrarily small, finishing the proof. O

It is important to note that the results of theorem 13 cannot essentially be improved. In fact, in [9] there
is an example for n = 2 such that for every ¢ in a set of positive measure of | — T, T[,T > 0, the function
G(x,t) ¢ L*(Q) and hence G ¢ L?(Q7).
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