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Abstract: In this paper, sufficient criteria that guarantee the existence of stochastic asymptotic stability of the zero

solution of the nonautonomous second-order stochastic delay differential equation (1.1) were established with the aid of

a suitable Lyapunov functional. Two examples are given in the last section to illustrate our main result.
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1. Introduction

It is well known that random fluctuations are abundant in natural or engineered systems. Therefore stochastic

modeling has come to play an important role in various fields such as biology, mechanics, economics, medicine,

and engineering (see [6, 20, 21]). Moreover, these systems are sometimes subject to memory effects, when their

time evolution depends on their past history with noise disturbance. Stochastic delay differential equations

(SDDEs) give a mathematical formulation for such systems. They can be regarded as a natural generalization

of stochastic ordinary differential equations by allowing the coefficients to depend on the past values. Lyapunov’s

direct method has been successfully used to investigate stability problems in deterministic/stochastic differential

equations and delay differential equations.

Many papers dealt with the delay differential equations and obtained many good results, for example,

[1, 15–19, 22]. Recently, the studies of stochastic differential equations have attracted considerable attention

among scholars. Many interesting results have been obtained over the last few years (see, for example,

[7, 9, 10, 23] and the references therein). Stability analysis is very important for stochastic delay systems,

as we like to know the impact of memory as well as noise. This motivates a lot of recent research; see, for

example, [2–5, 8, 11–14] and the references therein. In many references, the authors dealt with the problems by

considering Lyapunov functions or functionals and obtained the criteria for stability.

Here we consider the second-order stochastic delay differential equation of the following form:

ẍ(t) + a(t)ẋ(t) + b(t)f(x(t− r)) + g(t, x)ω̇(t) = 0, (1.1)
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where a(t) and b(t) are two positive and continuously differentiable functions on [0,∞), r is a positive constant,

and f(x) and g(t, x) are continuous functions with f(0) = 0. ω(t) ∈ Rm is a standard Wiener process.

Essentially, our subject is to establish some sufficient conditions for the stochastic asymptotic stability

of the zero solution of equation (1.1) by constructing a suitable Lyapunov functional.

2. Stability

Let (Ω,F , {F}t≥0,P) be a complete probability space with a filtration {F}t≥0 satisfying the usual conditions.

In other words, Ω is a set called the sample space, F is a σ -field of subsets of Ω (whence (Ω,F) is a measurable

space), and P is a probability measure on (Ω,F) (i.e. is closed with respect to the set-theoretic operations

executed a countable number of times). (Ω,F , {F}t≥0,P) is filtered by a nondecreasing right-continuous family

{F}t≥0 of sub-σ -fields of F .

Let B(t) = (B1(t), . . . , Bm(t)) be an m -dimensional Brownian motion defined on the probability space.

Consider an n -dimensional stochastic differential equation

dx(t) = f(t, x(t))dt+ g(t, x(t))dB(t) on t ≥ 0, (2.1)

with initial value x(0) = x0 ∈ Rn . As a standing condition, we assume that f : R+ × Rn → Rn and

g : R+ × Rn → Rn×m satisfy the local Lipschitz condition and the linear growth condition (see, for example,

[9, 23]). It is therefore known that equation (2.1) has a unique continuous solution on t ≥ 0, which is denoted

by x(t;x0) in this paper. Assume furthermore that f(t, 0) = 0 and g(t, 0) = 0, for all t ≥ 0. Hence the

stochastic differential equation admits the zero solution x(t; 0) ≡ 0.

Definition 2.1 The zero solution of the stochastic differential equation is said to be stochastically stable or

stable in probability, if for every pair of ε ∈ (0, 1) and r > 0 , there exists a δ = δ(ε, r) > 0 such that

P{|x(t;x0)| < r for all t ≥ 0} ≥ 1− ε,

whenever |x0| < δ . Otherwise it is said to be stochastically unstable.

Definition 2.2 The zero solution of the stochastic differential equation is said to be stochastically asymptotically

stable, if it is stochastically stable, and moreover for every ε ∈ (0, 1) , there exists a δ0 = δ0(ε) > 0 such that

P{ lim
t→∞

x(t;x0) = 0} ≥ 1− ε,

whenever |x0| < δ0 .

Let C1,2(R+ × Rn;R+) denote the family of nonnegative functions V (t, x) defined on R+ × Rn , which

are once continuously differentiable in t and twice continuously differentiable in x .

Define an operator L acting on C1,2(R+ × Rn;R+) functions by

LV (t, x) = Vt(t, x) + Vx(t, x).f(t, x) +
1

2
trace[gT (t, x)Vxx(t, x)g(t, x)], (2.2)

where Vx = (Vx1 , . . . , Vxn) and Vxx = (Vxixj )n×n . Moreover, let K denote the family of all continuous

nondecreasing functions ρ : R+ → R+ such that ρ(0) = 0 and ρ(r) > 0, if r > 0.
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Theorem 2.1 [10] Assume that there exist V ∈ C1,2(R+ × Rn;R+) and ρ ∈ K such that

V (t, 0) = 0, ρ(|x|) ≤ V (t, x),

and

LV (t, x) ≤ 0, for all (t, x) ∈ R+ × Rn.

Then the zero solution of the stochastic differential equation is stochastically stable.

Theorem 2.2 [10] Assume that there exist V ∈ C1,2(R+ × Rn;R+) and ρ1, ρ2 , ρ3 ∈ K such that

ρ1(|x|) ≤ V (t, x) ≤ ρ2(|x|),

and

LV (t, x) ≤ −ρ3(|x|), for all (t, x) ∈ R+ × Rn.

Then the zero solution of the stochastic differential equation is stochastically asymptotically stable.

Now we present the main stability result of (1.1).

Theorem 2.3 Suppose that a(t) and b(t) are two continuously differentiable functions on [0,∞) and the

following conditions are satisfied:

(i) A ≥ a(t) ≥ a0 > 1
2 and B ≥ b(t) ≥ b0 > 0 , for t ∈ [0,∞) .

(ii) f(0) = 0 , f(x)
x ≥ f0 > 0 (x ̸= 0) and f ′(x) ≤ f1 , for all x .

(iii) g(t, x) ≤ Cx for positive constant C .

(iv) a′(t) ≤ α and b′(t) ≤ β for positive constants α, β .

(v) b0f0 ≥ 3
4 and 2βf1 + α+ 2C2 < 3

2 .

Then the zero solution of (1.1) is stochastically asymptotically stable, provided that

r < min

{
2b0f0 − 2βf1 − α− 2C2

2Bf1
,
2a0 − 1

5Bf1

}
.

3. Proof of Theorem 2.3

We can write equation (1.1) in the following equivalent system:

ẋ = y,

ẏ = −a(t)y − b(t)f(x) + b(t)

∫ t

t−r

f ′(x(s))y(s)ds− g(t, x)ω̇(t).
(3.1)

We define the Lyapunov functional V (t, xt, yt) as

V (t, xt, yt) = 2b(t)

∫ x

0

f(ξ)dξ +
1

2
a(t)x2 + xy + y2 + λ

∫ 0

−r

∫ t

t+s

y2(θ)dθds, (3.2)
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where xt = x(t+ s), s ≤ 0 and λ is a positive constant, which will be determined later.

Thus from (3.2), (3.1) and by using It ô formula, we get

LV (t, xt, yt) =2b′(t)

∫ x

0

f(ξ)dξ +
1

2
a′(t)x2 + λry2 − λ

∫ t

t−r

y2(s)ds+ y2

− b(t)f(x)x− 2a(t)y2 + (x+ 2y)b(t)

∫ t

t−r

f ′(x(s))y(s)ds

+ g2(t, x).

(3.3)

Since b(t) ≤ B , f ′(x) ≤ f1 and by using the inequality 2uv ≤ u2 + v2 , we have

b(t)x

∫ t

t−r

f ′(x(s))y(s)ds ≤ Bf1

∫ t

t−r

x(t)y(s)ds ≤ 1

2
Bf1rx

2 +
1

2
Bf1

∫ t

t−r

y2(s)ds,

2b(t)y

∫ t

t−r

f ′(x(s))y(s)ds ≤ 2Bf1

∫ t

t−r

y(t)y(s)ds ≤ Bf1ry
2 +Bf1

∫ t

t−r

y2(s)ds.

Then by substituting in (3.3) we obtain

LV ≤2b′(t)

∫ x

0

f(ξ)dξ +
1

2
a′(t)x2 + λry2 − λ

∫ t

t−r

y2(s)ds+ y2 − b(t)f(x)x

− 2a(t)y2 +
1

2
Bf1rx

2 +Bf1ry
2 +

3

2
Bf1

∫ t

t−r

y2(s)ds+ g2(t, x).

Since f ′(x) ≤ f1 and f(0) = 0, then by using the mean-value theorem, we obtain f(x) ≤ f1x . From this and

conditions (i)− (iv) of Theorem 2.3 we get

LV ≤ 2β

∫ x

0

f1ξdξ +
1

2
αx2 + λry2 − λ

∫ t

t−r

y2(s)ds+ y2 − b0f0x
2

− 2a0y
2 +

1

2
Bf1rx

2 +Bf1ry
2 +

3

2
Bf1

∫ t

t−r

y2(s)ds+ C2x2

≤ −(b0f0 − βf1 −
1

2
α− 1

2
Bf1r − C2)x2 − (2a0 − 1−Bf1r − λr)y2

+ (
3

2
Bf1 − λ)

∫ t

t−r

y2(s)ds.

If we take λ = 3
2Bf1 , then we find

LV ≤ −(b0f0 − βf1 −
1

2
α− 1

2
Bf1r − C2)x2 − (2a0 − 1− 5

2
Bf1r)y

2.

Therefore, if

r < min

{
2b0f0 − 2βf1 − α− 2C2

2Bf1
,
2a0 − 1

5Bf1

}
,

we have

LV (t, xt, yt) ≤ −D1(x
2 + y2), for some D1 > 0. (3.4)
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Since
∫ 0

−r

∫ t

t+s
y2(θ)dθds is nonnegative, then we obtain

V (t, xt, yt) ≥ 2b(t)

∫ x

0

f(ξ)dξ +
1

2
a(t)x2 + xy + y2.

Since a(t) ≥ a0, b(t) ≥ b0 , and
f(x)
x ≥ f0 , therefore we have

V ≥ b0f0x
2 +

1

2
a0x

2 + xy + y2

=

(
b0f0 +

a0
2

)
x2 +

(
x+

1

2
y

)2

− x2 − 1

4
y2 + y2

≥
(
b0f0 +

a0
2

− 1

)
x2 +

3

4
y2.

However, b0f0 +
a0

2 > 1; thus we can get

V (t, xt, yt) ≥ D2(x
2 + y2), for some D2 > 0. (3.5)

Now since f(x) ≤ f1x and from the condition (i) of Theorem 2.3, we find

V (t, xt, yt) ≤ Bf1x
2 +

1

2
Ax2 + xy + y2 + λ

∫ 0

−r

∫ t

t+s

y2(θ)dθds. (3.6)

However, ∫ 0

−r

∫ t

t+s

y2(θ)dθds =

∫ t

t−r

(θ − t+ r)y2(θ)dθ

≤ ∥y∥2
∫ t

t−r

(θ − t+ r)dθ =
r2

2
∥y∥2,

then by substituting in (3.6) and by using the inequality uv ≤ 1
2 (u

2 + v2), we have

V ≤
(
Bf1 +

1

2
A

)
x2 +

1

2
(x2 + y2) + y2 + λ

r2

2
∥y∥2

≤
{
Bf1 +

1

2
(A+ 1)

}
∥x∥2 + λr2 + 3

2
∥y∥2.

Hence we can get

V (t, xt, yt) ≤ D3(x
2 + y2), for some D3 > 0. (3.7)

Therefore from (3.4), (3.5), and (3.7) all the assumptions of Theorem 2.2 are satisfied and so the zero solution

of (1.1) is stochastically asymptotically stable. Thus the proof of Theorem 2.3 is now complete.

4. Examples

In this section we provide two examples to illustrate the application of the result we obtained in the previous

section.
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Example 1 let

a(t) = e−
1
2 t +

11

20
, b(t) =

1

t+ 1
+

3

4
, f(x) =

x

x2 + 1
+ x and g(t, x) = x

t

t2 + 1
.

Since
31

20
≥ a(t) = e−

1
2 t +

11

20
≥ 11

20
>

1

2
, for t ∈ [0,∞),

we can take A = 31
20 and a0 = 11

20 . As a result, we have

a′(t) = −1

2
e−

1
2 t ≤ 0, for t ∈ [0,∞).

Thus we can take α = 0.001× 10−3 . Moreover, since

7

4
≥ b(t) =

1

t+ 1
+

3

4
≥ 3

4
, for t ∈ [0,∞),

then we can take B = 7
4 and b0 = 3

4 . It follows that

b′(t) = − 1

(t+ 1)2
≤ 0, for t ∈ [0,∞),

and hence we can take β = 0.001. Next we can note that

f(x)

x
=

1

x2 + 1
+ 1 ≥ 1, for all x,

then we can take f0 = 1. As a result, we have

f ′(x) =
1− x2

(x2 + 1)2
+ 1 ≤ 2, for all x;

thus we can take f1 = 2. We also have

g2(t, x) = x2 t2

(t2 + 1)2
≤ 1

4
x2, for t ∈ [0,∞);

then we can take C = 1
2 .

Therefore we can prove that condition (v) of Theorem 2.3 is satisfied. Note that

2b0f0 − 2βf1 − α− 2C2

2Bf1
≃ 0.1423,

and
2a0 − 1

5Bf1
≃ 0.0057.

Hence the zero solution of the following equation

ẍ(t) +
(
e−

1
2 t +

11

20

)
ẋ(t) +

( 1

t+ 1
+

3

4

){ x(t− r)

x2(t− r) + 1
+ x(t− r)

}
+
( xt

t2 + 1

)
ω̇(t) = 0,
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is stochastically asymptotically stable, provided that r = 0.0057.

Example 2 let

a(t) =
2√
t+ 1

+
3

5
, b(t) =

1

t2 + 1
+ 4, f(x) = sinx+

3

5
x and g(t, x) =

1

4
x e−

1
2 t.

Since
13

5
≥ a(t) =

2√
t+ 1

+
3

5
≥ 3

5
>

1

2
, for t ∈ [0,∞),

we can take A = 13
5 and a0 = 3

5 . It follows that

a′(t) = − 1

(t+ 1)
3
2

≤ 0, for t ∈ [0,∞);

thus we can take α = 0.1. Furthermore, since

5 ≥ b(t) =
1

t2 + 1
+ 4 ≥ 4, for t ∈ [0,∞),

then we can take B = 5 and b0 = 4. Therefore

b′(t) = − 2t

(t2 + 1)2
≤ 0, for t ∈ [0,∞);

hence we can take β = 0.01. Next we can see that

f(x)

x
=

sinx

x
+

3

5
≥ 1

5
, for all x;

then we can take f0 = 1
5 . As a result, we obtain

f ′(x) = cosx+
3

5
≤ 8

5
, for all x;

thus we can take f1 = 8
5 . We also have

g2(t, x) =
1

16
x2e−t ≤ 1

16
x2, for t ∈ [0,∞);

then we can take C = 1
4 .

Then we can show that condition (v) of Theorem 2.3 is satisfied. Note that

2b0f0 − 2βf1 − α− 2C2

2Bf1
≃ 0.084,

and
2a0 − 1

5Bf1
= 0.005.
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Hence the zero solution of the following equation

ẍ(t) +
( 2√

t+ 1
+

3

5

)
ẋ(t) +

( 1

t2 + 1
+ 4

){
sinx(t− r) +

3

5
x(t− r)

}
+

1

4
x e−

1
2 t ω̇(t) = 0,

is stochastically asymptotically stable, provided that r = 0.005.
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