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Abstract: The Schrödinger equation for the eigenvalues of the infinitely deep square well potential is solved within the

class of generalised functions. It is found that the ground state consists of a step function like eigenfunction with the

eigenvalue zero.
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1. Introduction

The basic problem of quantum mechanics is the solution of the eigenvalue equation

L1uλ(x) = λuλ(x) (1)

Here L1 is a self-adjoint operator in one dimension of the type L1 = − d2

dx2 +V (x), λ = 2mE/ℏ2 is the eigenvalue

with E the energy parameter, and m and ℏ are particle mass and Planck constant, respectively. The function

V (x) is related to the potential Vp(x) by V (x) = 2mVp(x)/ℏ2 . Since equation (1) is of second order, there

must be some data about the sought eigenfunction uλ(x) itself and about its derivative u′
λ(x) on the system

boundaries. Although the shape of V (x) for the infinitely deep square well (IDSW) is very simple, satisfaction

of boundary conditions (BCs) proved to be difficult [2]. The presently known solution, what I call the old one,

uses ordinary functions, satisfies the BC for uλ(x), but does not satisfy the BC for u′
λ(x). The old solution of

IDSW problem is given in almost every physics book [5,6] on quantum mechanics and every mathematics book

[1] on partial differential equations and boundary value problems. They, in fact, repeat a wrong result about the

ground state energy that was found long time ago [7,8]. The earliest solution [8] dates back to 1929 and states

that the ground state energy, or the lowest eigenvalue, is nonzero. This result causes a certain dissatisfaction

among physicists; nevertheless, it continues to be accepted in the physics [4] and mathematics [3] literature,

due to lack of a better solution.

This work resolves all the difficulties about the BCs by employing generalised functions [9]. Setting up

suitable BCs needs special attention on the one hand and choosing the class of solution functions on the other.

These two points deserve thorough discussion, which is done in section 2. Section 3 is for setting up the model

and writing the differential equation for generalised functions. Section 4 is for obtaining the complete set of

eigenfunctions and eigenvalues and finally section 5 is for discussing the results.
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2. Solution function class

The function V (x) is shown schematically in Figure 1a. Mathematically it reads

V (x) =

{
0, if 0 ≤ x ≤ L

∞, otherwise
(2)

Thus, equation (1) to be solved for uλ(x) is necessarily restricted to the allowed region, 0 ≤ x ≤ L , and has

the form

− d2

dx2
uλ(x)− λuλ(x) = 0 (3)

together with suitable BCs about uλ(x), u′
λ(x) at x = 0 and x = L . The solution of equation (3) may be

sought in the form of a generalised function by writing

gλ(x) = [H(x)−H(x− L)]uλ(x). (4)

Now we remove any restrictions on uλ(x), because the step function-like factor in square brackets takes care

of it. This is why the schematic drawings in Figure 1b have been extended beyond x = 0, L . This, in turn,

means that there are no BCs on uλ(x) except that we may use some symmetry arguments to be sensible. The

wave function uλ(x) may be present inside the well region by any amount near the walls. Furthermore, the

presence of uλ(x) outside the well is prevented by the square bracket term. If we can write an equation for

gλ(x) and solve it, then it will carry the square bracket term and the eigenfunction uλ(x) in it. Since gλ(x) is

a generalised function, the value of it at one point, like x = 0 or x = L , is not important [9]. Its integral effect

over the range 0 ≤ x ≤ L is what is important.

Figure 1. a) Square well, b) new eigenfunctions, c) old eigenfunctions.

In Figure 1c the first two eigenfunctions of the old solution are shown schematically to allow comparison.

3. Equation for generalised function

Obtaining the equation for gλ(x) is accomplished, as explained in [9] on page 371, by adding a generalised

function g2(x) to the right-hand side of equation (3)

− d2

dx2
gλ(x)− λgλ(x) = g2(x),−∞ < x < ∞. (5)

To determine g2(x), let us take first and second derivatives of −gλ(x).

−g′λ(x) = −[δ(x)− δ(x− L)]uλ(x)− [H(x)−H(x− L)]u′
λ(x) (6)
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−g′′λ(x) = [−δ′(x) + δ′(x− L)]uλ(x) + [−δ(x)u′
λ(0) + δ(x− L)u′

λ(L)]

−[δ(x)u′
λ(0)− δ(x− L)u′

λ(L)]− [H(x)−H(x− L)]u′′
λ(x) (7)

In the first square brackets in equation (7), we can use

−δ′(x)uλ(x) + δ′(x− L)uλ(x)

= −{uλ(0)δ
′(x)− u′

λ(0)δ(x)}+ {uλ(L)δ
′(x− L)− u′

λ(L)δ(x− L)}. (8)

This is due to the general relation [9],

g(x)δ(k)(x) =
k∑

j=0

(−1)jg(j)(0)δ(k−j)(x) (9)

about the effect of the k th derivative of δ(x) on the function g(x). Using the result (8), we can write equation

(7) as

−g′′λ(x) = [−uλ(0)δ
′(x) + uλ(L)δ

′(x− L)]

+[−u′
λ(0)δ(x) + u′

λ(L)δ(x− L)]− [H(x)−H(x− L)]u′′
λ(x). (10)

If we put this into equation (5), and if we take g2(x) as the sum of first two square brackets in equation (10),

we arrive at

−g′′λ(x)− λgλ(x) = [−uλ(0)δ
′(x) + uλ(L)δ

′(x− L)] + [−u′
λ(0)δ(x) + u′

λ(L)δ(x− L)]. (11)

This looks like the inhomogeneous form of equation (3), only that both sides have been multiplied from the left

by [H(x) −H(x − L)] = 1. This multiplying prefactor is present inherently on the left side in equation (11),

while it is not shown on the right side. However, it does not matter anyway; we can put it if we wish. When

the terms on the right are allowed to cancel, the corresponding terms on the left of equation (11) are equivalent

to

[H(x)−H(x− L)]{−u′′
λ(x)− λuλ(x)} = 0, (12)

which is very similar to equation (3). Therefore, the solution of equation (11) may help us in finding uλ(x).

Once we find gλ(x), it will carry the factor [H(x)−H(x− L)] and dropping this factor we will have uλ(x) as

the remaining terms.

Now giving some BCs about uλ(x) itself or its derivative u′
λ(x) simplifies the right side of equation (11).

For example, if we require

uλ(0) = uλ(L) (13)

u′
λ(0) = u′

λ(L) = 0, (14)

then the second square bracket on the right of equation (11) is dropped

−g′′λ(x)− λgλ(x) = −uλ(0)δ
′(x) + uλ(L)δ

′(x− L). (15)
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The interpretation of these BCs is as follows. The condition (13) reflects the symmetry of the two walls. Later

on, we shall see that it is necessary for the occurrence of [H(x) − H(x − L)] in the solution. If we take for

example uλ(0) = −uλ(L) we can again produce such a factor but this will be a different problem. The study of

this different problem leads to odd integer values for n and gives a nonzero ground state energy. Hence, we are

bound to use the condition (13). In equation (13) we are not giving a numerical value to uλ(x) because it can

take any value on the walls as stated in section 2. The particle may be present inside the walls and may come

as close as possible to them, like water in a glass, only that it cannot escape through. No current is allowed to

pass through the walls as mentioned in the previous section. Equation (14) is also plausible because it expresses

a way of preventing escape of flux through the walls. There may be other ways of doing this but this condition

has been employed here and meaningful results have been found.

4. Eigenfunctions

Direct solution of equation (15) may be obtained by taking the Fourier transform of both sides with the

parameter k1

(k21 − λ)G(λ, k1) = −ik1uλ(0) + ik1uλ(0)e
−ik1L. (16)

Then the inverse transform becomes

gλ(x) = uλ(0)
1

i2π

∫ ∞

−∞

eik1x

k21 − λ
k1dk1 − uλ(0)

1

i2π

∫ ∞

−∞

eik1(x−L)

k21 − λ
k1dk1. (17)

There may also exist terms of the C1δ(k1−
√
λ) and C2δ(k1+

√
λ) types with C1, C2 arbitrary constants. They

are dropped because they involve the solution of the homogeneous form of (16). To evaluate the two integrals

I1(x) =
1

i2π

∫ ∞

−∞

eik1x

k21 − λ
k1dk1, I2(x) =

1

i2π

∫ ∞

−∞

eik1(x−L)

k21 − λ
k1dk1

we go to the complex z plane with z = k1 + ik2 and consider the real axis parts of the integrals I1(z), I2(z)

along two suitable contours C1 and C2 . As usual, C1 consists of a semicircle in the upper half plane for x > 0,

and similarly C2 is the same circle considered for x−L > 0. There are half contributions from the two residues

at z =
√
λ , z = −

√
λ and the result is

I1 =
1

2

e−i
√
λx

2
+

1

2

ei
√
λx

2
(18)

I2 =
1

2

e−i
√
λ(x−L)

2
+

1

2

ei
√
λ(x−L)

2
(19)

Using these in equation (17), we have

gλ(x) =
uλ(0)

2

1

2
[ei

√
λx + e−i

√
λx]H(x)− uλ(0)

2

1

2
[ei

√
λxe−i

√
λL + e−i

√
λxei

√
λL]H(x− L). (20)

If we have √
λL = 2πn, n = 0, 1, ..,∞
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ÜNAL/Turk J Math

the last square brackets become the same as the first ones

gn(x) = [H(x)−H(x− L)]
un(0)

2
cos

n2π

L
x, n = 0, 1..,∞. (21)

Since λ = 2mE/ℏ2 = n2(2π)2/L2 , eigenenergies and eigenfunctions are given by

En =
ℏ2

2m

(2π)2

L2
n2, n = 0, 1, 2, ...,∞ (22)

g0(x) = [H(x)−H(x− L)]
u0(0)

2
, n = 0 (23)

gn(x) = [H(x)−H(x− L)]un(0) cos
n2π

L
x, n = 1, 2, ...,∞. (24)

Validity of this solution can be checked by direct substitution to equation (15), together with taking into account

equation (14). Each member of the eigenfunctions set need not be normalized to unity. It is only necessary

that this set satisfies the completeness relation by a suitable choice of normalization constants.

The complete set of eigenfunctions of equation (3) are

un(x) =

√
2

L
cos

n2π

L
x, n = 0,∓1,∓2, ...,∓∞ (25)

and they satisfy the relation

∞∑
−∞

un(x)un(x
′) =

2

L

∞∑
−∞

cos
n2π

L
x cos

n2π

L
x′ = δ(x− x′) + δ(x+ x′). (26)

Here the second delta function is dropped since x, x′ are positive. For comparison the old solutions using

un(0) = 0, un(L) = 0 at the walls are

un(x) =

√
2

L
sin

nπ

L
x, n = 1, 2, ...,∞ (27)

En =
ℏ2

2m

π2

L2
n2, n = 1, 2, ...,∞. (28)

The derivatives, u′
n(0) = (nπ/L)(2/L)1/2 , u′

n(L) = (−1)n(nπ/L)(2/L)1/2 , are neither equal nor continuous

across the boundaries. This result has been subject to criticism [2].

5. Discussion and conclusions

In the old solution the lowest eigenenergy is nonzero. This causes great problems in our understanding of

the real world. Depending on it, widespread comments exist stating the impossibility of a quantum particle’s

energy being zero. The new solution found the ground state energy as zero, which obeys the reality much better.

Accordingly new interpretations of the subject may be expected to come. Spacing of subsequent energy levels

also changed in the new solution, although the n2 dependence remained the same.
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It is wanted that particles do not escape through the walls. This requires flux density j(x) to be zero

on each of them. For real eigenfunctions, since j(x) ∼ un(x)u
′
n(x), there are two ways of making j = 0. First

un(x) is zero on the walls, which is what the old solution uses, and second is u′
n(0) = 0 = u′

n(L) as also given

by equation (14), which is used in this work. In reference [4] they tried, using the first way, to place a linear

eigenfunction of a triangle type inside the well but they did not succeed in obtaining an eigenvalue.

The use of generalised functions in the solution of differential equations has been described in [9] on page

371. This method has been applied to the solution of the IDSW problem for first time in this work and new

eigenfunctions and eigenvalues have been found.
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