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Abstract: This paper is concerned with the existence and stability of critical traveling waves (waves with minimal speed

c = c∗ ) for a nonmonotone spatially discrete reaction-diffusion equation with time delay. We first show the existence

of critical traveling waves by a limiting argument. Then, using the technical weighted energy method with some new

variations, we prove that the critical traveling waves ϕ(x + c∗t) (monotone or nonmonotone) are time-asymptotically

stable when the initial perturbations are small in a certain weighted Sobolev norm.
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1. Introduction

This article is devoted to the stability of critical traveling waves for the following spatially discrete reaction-

diffusion equation with time delay{
∂v(t,x)

∂t = ∆1v(t, x)− v(t, x) + g(v(t− τ, x)), t > 0, x ∈ R,
v(s, x) = v0(s, x), (s, x) ∈ [−τ, 0]× R,

(1.1)

where τ > 0 and

∆1v(t, x) = v(t, x+ 1)− 2v(t, x) + v(t, x− 1).

Equation (1.1) describes the spatiotemporal evolution of a single-species population [8, 13], where v(t, x)

represents the mature population at time t and location x , and τ is the maturation delay. The function

g : [0,∞) → (0,∞) is called the birth rate function, which is assumed to satisfy the following assumptions:

(H1) g(0) = g(K)−K = 0, g′(0) > 1 and g′(K) < 1.

(H2) There exists v∗ ∈ (0,K) such that g(·) is increasing in [0, v∗] and decreasing in [v∗,+∞), which also

implies g′(0) > 0 and g′(K) < 0.

(H3) g ∈ C2[0,∞), |g′(v)| < g′(0) for v ∈ [0,∞).

A specific function g(v) = pve−av with p > 0 and a > 0, which has been widely used in the mathematical

biology literature, satisfies the above conditions for a wide range of parameters p and a . The assumption (H1)
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shows that 0 and K are two equilibria of (1.1), and 0 is unstable and K is stable. Hence, (1.1) is a monostable

system. (H2) is a unimodality condition and implies that g(v) is not monotone for v ∈ [0,K] .

For the spatially discrete reaction-diffusion equations like (1.1), there has been growing interest in the

last decade; see Chen and Guo [2], Chen et al. [1], Guo and Zimmer [5, 6], Ma and Zou [13], and Wu and Zou

[19] for the traveling wavefronts and Guo and Morita [4] and Guo [7] for the entire solutions. As we know, the

study of traveling waves is important in many applications, since it can describe certain dynamical behavior of

the studied problem. A traveling wave of (1.1) connecting with two steady states 0 and K is a special solution

u(t, x) = ϕ(x+ ct) satisfying {
cϕ′(ξ)−∆1ϕ(ξ) + ϕ(ξ) = g(ϕ(ξ − cτ)),

ϕ(−∞) = 0, ϕ(+∞) = K,
(1.2)

where ξ = x+ ct , ′ = d
dξ , and c is the wave speed. Moreover, if ϕ(ξ) is monotone in ξ ∈ R , then it is called a

traveling wavefront. The existence of traveling wavefronts of (1.1) was first proved by Ma and Zou [13] under

the assumption that g(u) is increasing on the interval [0,K] . The methods they used are the upper-lower

solutions and Schauder’s fixed-point theorem. Recently, Yang et al. [20] studied the traveling waves of equation

(1.1) when g(u) is not increasing on the interval [0,K] . They obtained the existence of traveling wave solutions

with speeds c > c∗ by constructing two auxiliary discrete reaction-diffusion equations with quasi-monotonicity.

We need to point out that the existence of traveling waves with speed c = c∗ is unknown so far. Hence, in the

first part of this paper, we prove the existence of traveling waves with speed c = c∗ . In addition, the precise

asymptotic behavior of traveling waves at positive infinity is obtained.

Our main goal in this paper is to show the stability of critical traveling waves of (1.1). The stability of

traveling waves for the following delayed reaction-diffusion equation,

∂v(t, x)

∂t
=
∂2v(t, x)

∂x2
− v(t, x) + g(v(t− τ, x)), (1.3)

has been widely studied by many authors [12, 14–17]. Recently, Huang et al. [9], Huang et al. [10], and Zhang

and Ma [21] respectively studied the stability of traveling waves of (1.3) with ∂2v(t,x)
∂x2 replaced by J ∗v−v , and

nonlocal nonlinearity. To the best of our knowledge, previous works on the stability of traveling waves to discrete

reaction-diffusion equations like (1.1) treated only the monotone case, which allowed the use of the comparison

principle, e.g., see [2, 6]. For our equation (1.1), the comparison principle does not hold. More recently, Yang

et al. [20] proved that all noncritical traveling waves ϕ(x+ ct) with the wave speed c > c∗ , including monotone

or nonmonotone ones, are time-exponentially stable, by the technical weighted-energy method. However, the

stability of the critical traveling waves ϕ(x+c∗t) still remains open. In the second part of this paper, we present

a solution for this open problem. We should point out that using the method in [20] directly cannot obtain the

stability of critical traveling waves. One crucial step for the stability proof in [20] is to get an energy estimate

for the perturbed equation in a weighted L2
w -space, that is

∥v(t)∥2L2
w
+

∫ t

0

∫
R
Aη,w(ξ)w(ξ)v

2(s, ξ) dξ ds

≤C∥v0(0)∥2L2
w
+O(1)

∫ t

0

∫
R
w(ξ)|v(s, ξ)||v(s− τ, ξ − c∗τ)|2dξ ds. (1.4)
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In (4.10) of [20], the authors estimated the function Aη,w(ξ):

Aη,w(ξ) ≥ C1 > 0 for ξ ∈ R, c > c∗,

where C1 is some positive constant. This estimate allows us to control the nonlinear term on the left-hand side

of inequality (1.4) when the initial perturbation is small enough and makes us derive the exponential decay for

the perturbed solution. However, when c = c∗ , we can only obtain

Aη,w(ξ) ≥ C1 = 0 for c = c∗,

which seems not enough to control the nonlinear term.

We remark that the stability of traveling waves for nonmonotone delayed reaction-diffusion equation

(1.3) has been studied recently; see, e.g., [3, 11, 18]. In particular, Chern et al. [3] proved the stability of

nonmonotone critical traveling waves of (1.3) by the weighted energy method with some development. It is

natural to ask if the method in [3] can be extended to the discrete delayed reaction-diffusion equation (1.1).

We shall give an affirmative answer. More precisely, by using the technical weighted energy method with some

new variations, we shall prove the asymptotic stability of critical traveling waves of (1.1), including monotone

and nonmonotone ones. It is remarked that there are some differences between equations (1.1) and (1.3) in

obtaining the stability of critical traveling waves. First, ∂2v(t,x)
∂x2 is more convenient than the discrete diffusion

operator ∆1v(t, x) = v(t, x+1)−2v(t, x)+ v(t, x−1) for obtaining the energy estimates in weighted space. We

shall take Young’s inequality to overcome the difficulties caused by the discrete diffusion operator ∆1 . Second,

in order to obtain that the solution of the perturbed equation for (1.3) belongs to Xloc(0, τ), the fundamental

solution of the perturbed equation plays an important role; see [3]. However, (1.1) and its perturbed equation

(3.1) do not have fundamental solutions. Motivated by the classical transport equation, we give new forms of

solutions of (3.1). It can help us to get the estimate in C - norm and the uniform limit of solutions.

Our paper is organized as follows. In Section 2, we establish the existence of critical traveling waves

of (1.1). Section 3 is devoted to proving the stability of the critical traveling waves of (1.1), which is divided

into three subsections. In Subsection 3.1, we obtain the global existence and uniqueness of the solution for

the perturbed equation, where the initial perturbation can be allowed to be arbitrarily large. In Subsection

3.2, when the initial perturbation is suitably small, the solution of the perturbed equation can be proved to be

uniformly bounded by the antiweighted energy method. Based on the uniform boundedness, we shall further

prove asymptotic stability in Subsection 3.3.

2. Existence of critical traveling waves

This section is devoted to the existence of critical traveling waves. The characteristic function for (1.2) with

respect to the trivial equilibrium 0 can be represented by

P(c, λ) = cλ− (eλ + e−λ − 2) + 1− g′(0)e−λcτ . (2.1)

Then the following result holds:

Lemma 2.1 Assume that g′(0) > 1 . Then there exist λ∗ > 0 and c∗ > 0 such that

P(c∗, λ∗) = 0,
∂

∂λ
P(c∗, λ)|λ=λ∗ = 0. (2.2)
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Furthermore, if c > c∗ , then P(c, λ) = 0 has two distinct positive real roots λ1(c) and λ2(c) with λ1(c) < λ∗ <

λ2(c) , and P(c, λ) > 0 for λ ∈ (λ1(c), λ2(c)) .

Proof Denote

Gc(λ) = cλ−
(
eλ + e−λ − 2

)
+ 1, Hc(λ) = g′(0)e−λcτ .

It is easy to see that

Gc(0) = 1, Hc(0) = g′(0) > 1.

Furthermore, we have

G′′
c (λ) = −

(
eλ + e−λ

)
< 0,

H ′′
c (λ) = (cτ)2g′(0)e−λcτ > 0.

Hence, there exists a unique c∗ = c∗(τ) > 0 such that the two graphs of Gc and Hc are tangent at λ∗ ,

Gc∗(λ∗) = Hc∗(λ∗), G′
c∗(λ∗) = H ′

c∗(λ∗),

namely,

P(c∗, λ∗) = c∗λ∗ −
(
eλ∗ + e−λ∗

)
+ 3− g′(0)e−λ∗c∗τ = 0,

∂

∂λ
P(c∗, λ)|λ=λ∗ = c∗ − (eλ∗ − e−λ∗) + c∗τg

′(0)e−λ∗c∗τ = 0.

Then we have that for c > c∗ , there exist two numbers 0 < λ1(c) < λ2(c) satisfying

cλi(c)−
(
eλi(c) + e−λi(c)

)
+ 3 = g′(0)e−λi(c)cτ for i = 1, 2

and

cλ(c)−
(
eλ(c) + e−λ(c)

)
+ 3 > g′(0)e−λ(c)cτ for λ(c) ∈ (λ1(c), λ2(c)).

The proof is completed. 2

We assume that there exists K∗ ≥ K such that K∗ ≥ max{g(u)|0 ≤ u ≤ K∗} . Let

K∗ := inf

{
u|u = inf

s∈(0,K∗]
{g(s)|g(s) ≤ s}

}
> 0.

Clearly, K∗ is well defined and g(u) > u for all u ∈ (0,K∗).

By constructing two auxiliary discrete reaction-diffusion equations with monotonicity, Yang et al. [20]

proved the existence of noncritical traveling waves (waves with speeds c > c∗ ) when g is a nonmonotone

function. That is,

Lemma 2.2 Assume that (H1)− (H3) hold. Let c∗ > 0 be defined as in Lemma 2.1. Then for every c > c∗ ,

(1.1) admits a traveling wave solution v(t, x) = ϕ(x+ ct) satisfying ϕ(−∞) = 0 and

0 < K∗ ≤ lim inf
ξ→+∞

ϕ(ξ) ≤ lim sup
ξ→+∞

ϕ(ξ) ≤ K∗.
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Proof Although the lemma was proved in [20], for the completeness of this paper, here we still give the proof.

Since K∗ > 0, then there eixsts a small ε0 ∈ (0,K∗) such that K∗ − ε > 0 for every ε ∈ [0, ε0] .

For any ε ∈ (0, ε0), define two monotone continuous functions as follows:

g∗(u) =

{
min{g′(0)u,K∗}, for u ∈ [0,K∗],

max{K∗, g(u)}, for u > K∗,

and

g∗(u) =

{
infη∈[u,K∗]{g(η),K∗ − ε}, for u ∈ [0,K∗],

min{g(u),K∗ − ε}, for u > K∗.

Consider the following two auxiliary wave profile equations:

cϕ′(ξ)−∆1ϕ(ξ) + ϕ(ξ) = g∗(ϕ(ξ − cτ)) (2.3)

and

cϕ′(ξ)−∆1ϕ(ξ) + ϕ(ξ) = g∗(ϕ(ξ − cτ)). (2.4)

It is easy to obtain that for each c ≥ c∗ , (2.3) and (2.4) have strictly increasing traveling waves ϕ∗(x+ct)

and ϕ∗(x+ ct), respectively, satisfying

ϕ∗(−∞) = ϕ∗(−∞) = 0, ϕ∗(+∞) = K∗, ϕ∗(+∞) = K∗ − ε

and

lim
ξ→−∞

ϕ∗(ξ)e−λ1(c)ξ = lim
ξ→−∞

ϕ∗(ξ)e
−λ1(c)ξ = 1. (2.5)

Let a1 > 0 be such that eλ1(c)a1 ≥ 3. Then

lim
ξ→−∞

ϕ∗(ξ + a1)e
−λ1(c)ξ = eλ1(c)a1 ≥ 3.

Therefore, there exists M1 > 0 such that

ϕ∗(ξ + a1)e
−λ1(c)ξ > 2 > ϕ∗(ξ)e

−λ1(c)ξ for all ξ ≤ −M1 . (2.6)

Since ϕ∗(+∞) = K∗ > K∗ − ε = ϕ∗(+∞), we choose a2 > 0 sufficiently large so that

ϕ∗(x+ a2) > ϕ∗(ξ) for all ξ ≥ −M1 . (2.7)

Let a0 = max{a1, a2} . Since ϕ∗(·) is nondecreasing, it follows from (2.6) and (2.7) that

ϕ∗(ξ + a0) > ϕ∗(ξ) for all ξ ∈ R .

Define
H∗[ϕ](ξ) := ∆1ϕ(ξ)− ϕ(ξ) + g∗(ϕ(ξ − cτ)) + cγϕ(ξ), ξ ∈ R,

and
H∗[ϕ](ξ) := ∆1ϕ(ξ)− ϕ(ξ) + g∗(ϕ(ξ − cτ)) + cγϕ(ξ), ξ ∈ R,
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where γ > 3+g′(0)
c . Then for any ϕ, ψ ∈ C(R, [0,K∗]) with ϕ(ξ) ≥ ψ(ξ), ξ ∈ R , we have

H∗[ϕ](ξ) ≥ H∗[ψ](ξ) and H∗[ϕ](ξ) ≥ H∗[ψ](ξ) for all ξ ∈ R . (2.8)

For any λ ∈ (0,min{λ1(c), λ2(c)}), let

Xλ =

{
ϕ ∈ C(R,R)

∣∣∣∣∣∣∣∣∣∣∣∣ sup
ξ∈R

|ϕ(ξ)|e−λξ < +∞

}
, ∥ϕ(ξ)∥λ = sup

ξ∈R
|ϕ(ξ)|e−λξ.

Then (Xλ, ∥ · ∥λ) is a Banach space. Since ϕ∗(ξ) ≤ ϕ∗(ξ + a0) for all ξ ∈ R , it is easy to see that the set

Γ :=

{
ϕ ∈ C(R, [0,K∗])

∣∣∣∣∣∣∣∣∣∣∣∣ (i)ϕ∗(ξ) ≤ ϕ(ξ) ≤ ϕ∗(ξ + a0) for all ξ ∈ R;
(ii)|ϕ(ξ1)− ϕ(ξ2)| ≤ 2γK∗|ξ1 − ξ2| for all ξ1, ξ2 ∈ R

}
is nonempty, convex, and compact in Xλ .

Define F : Γ → C(R, [0,K∗]) by

F (ϕ)(ξ) =
1

c

∫ +∞

ξ

e−γ(y−ξ)H[ϕ](y)dy,

where

H[ϕ](ξ) = ∆1ϕ(ξ)− ϕ(ξ) + g(ϕ(ξ − cτ)) + cγϕ(ξ), ξ ∈ R. (2.9)

Clearly, for any ϕ ∈ Γ ⊂ C(R, [0,K∗]) , it follows from (2.8) that

0 ≤ H∗[ϕ](ξ) ≤ H[ϕ](ξ) ≤ H∗[ϕ](ξ) ≤ −K∗ + g∗(K∗) + cγK∗ = cγK∗ (2.10)

for all ξ ∈ R . Then we further obtain

0 ≤ F (ϕ)(ξ) ≤ cγK∗

c

∫ +∞

ξ

e−γ(y−ξ)dy = K∗,

and hence, F : Γ → C(R, [0,K∗]) is well defined. Furthermore, it is easily seen that a fixed point of F is a

solution of the first equation of (1.2).

For any ϕ, ψ ∈ Γ, we have

|H[ϕ]−H[ψ]|e−λξ

=|∆1(ϕ− ψ)− (ϕ− ψ) + (g(ϕ)(ξ − cτ)− g(ψ)(ξ − cτ)) + cγ(ϕ− ψ)|e−λξ

=|(ϕ(ξ + 1)− ψ(ξ + 1)) + (ϕ(ξ − 1)− ψ(ξ − 1)) + (cγ − 3)(ϕ(ξ)− ψ(ξ))

+ (g(ϕ)(ξ − cτ)− g(ψ)(ξ − cτ))|e−λξ

≤|(ϕ(ξ + 1)− ψ(ξ + 1))|e−λξ + |(ϕ(ξ − 1)− ψ(ξ − 1))|e−λξ

+ (cγ − 3)|ϕ(ξ)− ψ(ξ)|e−λξ + g′(0)|ϕ(ξ − cτ)− ψ(ξ − cτ)|e−λξ

≤[(eλ + e−λ − 2)− 1 + g′(0)e−λcτ + cγ] sup
ξ∈R

|ϕ(ξ)− ψ(ξ)|e−λξ

≤L∥ϕ− ψ∥λ,
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where L := c(λ+ γ). Therefore, we have

|F (ϕ)(ξ)− F (ψ)(ξ)|e−λξ

=

∣∣∣∣1c
∫ +∞

ξ

e−γ(y−ξ)(H[ϕ](y)−H[ψ](y))dy

∣∣∣∣ e−λξ,

≤e
−λξ

c

∫ +∞

ξ

e−γ(y−ξ)|H[ϕ](y)−H[ψ](y)| dy

≤L
c

∫ +∞

ξ

e−γ(y−ξ) dy||ϕ− ψ||λ

=
L

cγ
||ϕ− ψ||λ,

which implies that F : Γ → C(R, [0,K∗]) is continuous.

Next, we shall show that F (Γ) ⊆ Γ. Since ϕ∗(ξ) is the solution of (2.4), we have

ϕ∗(ξ) =
1

c

∫ +∞

ξ

e−γ(y−ξ)H∗[ϕ∗](y)dy. (2.11)

For any ϕ ∈ Γ, we have 0 ≤ ϕ∗(ξ) ≤ ϕ(ξ) ≤ ϕ∗(ξ + a0) ≤ K∗ for all ξ ∈ R . Therefore, it follows from

(2.8)–(2.11) that

F (ϕ)(ξ) =
1

c

∫ +∞

ξ

e−γ(y−ξ)H[ϕ](y) dy

≥ 1

c

∫ +∞

ξ

e−γ(y−ξ)H∗[ϕ](y) dy

≥ 1

c

∫ +∞

ξ

e−γ(y−ξ)H∗[ϕ∗](y) dy

= ϕ∗(ξ).

Since ϕ∗(ξ+ a0) is a solution of (2.3), by using a similar argument, we can show that F (ϕ)(ξ) ≤ ϕ∗(ξ+ a0) for

all ξ ∈ R . For any ϕ ∈ Γ and ξ1, ξ2 ∈ R with ξ1 < ξ2 , it follows from (2.10) that

|F (ϕ)(ξ1)− F (ϕ)(ξ2)|

=
1

c

∣∣∣∣∫ +∞

ξ1

e−γ(y−ξ1)H[ϕ](y) dy −
∫ +∞

ξ2

e−γ(y−ξ2)H[ϕ](y) dy

∣∣∣∣
≤1

c

{
eγξ1

∣∣∣∣∣
∫ ξ2

ξ1

e−γyH[ϕ](y) dy

∣∣∣∣∣+ (eγξ2 − eγξ1)

∫ +∞

ξ2

e−γyH[ϕ](y) dy

}

≤1

c
sup
ξ∈R

H[ϕ](ξ)

{
eγξ1

∣∣∣∣∣
∫ ξ2

ξ1

e−γy dy

∣∣∣∣∣+ eγξ2(1− eγ(ξ1−ξ2))

∫ +∞

ξ2

e−γy dy

}

≤ 2

cγ
(cγK∗)

∣∣∣e−γ(ξ2−ξ1) − 1
∣∣∣

≤2γK∗|ξ1 − ξ2|.
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Therefore, we conclude that F (ϕ) ∈ Γ for all ϕ ∈ Γ. By virtue of Schauder’s fixed point theorem, it follows

that F has a fixed point ϕ in Γ ⊂ Xλ , which satisfies

ϕ(ξ) =
1

c

∫ +∞

ξ

e−γ(y−ξ)H[ϕ](y)dy

and

ϕ∗(ξ) ≤ ϕ(ξ) ≤ ϕ∗(ξ + a0) for all ξ ∈ R . (2.12)

Taking the limit ξ → −∞ and ξ → +∞ in (2.12), respectively, we get ϕ(−∞) = 0 and

K∗ − ε ≤ lim inf
ξ→+∞

ϕ(ξ) ≤ lim sup
ξ→+∞

ϕ(ξ) ≤ K∗.

Since ϕ(ξ) is independent of ε , taking the limit as ε→ 0+ in the last inequality, we get

K∗ ≤ lim inf
ξ→+∞

ϕ(ξ) ≤ lim sup
ξ→+∞

ϕ(ξ) ≤ K∗.

The proof is completed. 2

Now we further show that the traveling wave with critical speed also exists.

Theorem 2.3 Assume that (H1)− (H3) hold. Then (1.1) admits a traveling wave solution v(t, x) = ϕ(x+c∗t)

such that

0 < K∗ ≤ lim inf
ξ→+∞

ϕ(ξ) ≤ lim sup
ξ→+∞

ϕ(ξ) ≤ K∗.

Proof Choose a sequence {ci}i≥1 ⊂ (c∗,+∞) such that limi→+∞ ci = c∗. By Lemma 2.2, it follows that (1.1)

has a traveling wave v(t, x) = ϕi(x+ cit) such that ϕi(−∞) = 0 and

0 < K∗ ≤ lim inf
ξ→+∞

ϕi(ξ) ≤ lim sup
ξ→+∞

ϕi(ξ) ≤ K∗.

Without loss of generality, we assume that ϕi(0) =
1
2K∗ > 0, ∀i ≥ 1. It is easy to see that ϕ satisfies (1.2) if

and only if ϕ satisfies

ϕ(ξ) =
1

c

∫ ∞

0

e−γxH[ϕ](ξ + x)dx,

where H[ϕ](ξ) is defined in (2.9). Note that

ϕi(ξ) =
1

c

∫ ∞

0

e−ϵxH[ϕi](ξ + x)dx, ∀ξ ∈ R, i ≥ 1. (2.13)
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Note that 0 < H(ϕ)(ξ) ≤ cγK∗ for ξ ∈ R . It follows that for any ξ1, ξ2 ∈ R , and i ≥ 1,

|ϕi(ξ1)− ϕi(ξ2)|

=

∣∣∣∣1c
∫ ∞

0

e−γxH[ϕi](ξ1 + x)dx− 1

c

∫ ∞

0

e−γxH[ϕi](ξ2 + x)dx

∣∣∣∣
=

∣∣∣∣1c
∫ ∞

ξ1

e−γ(x−ξ1)H[ϕi](x)dx− 1

c

∫ ∞

ξ2

e−γ(x−ξ2)H[ϕi](x)dx

∣∣∣∣
=

1

c

∣∣∣∣∣
∫ ξ2

ξ1

e−γ(x−ξ1)H[ϕi](x)dx+

∫ ∞

ξ2

e−γ(x−ξ1)H[ϕi](x)dx−
∫ ∞

ξ2

e−γ(x−ξ2)H[ϕi](x)dx

∣∣∣∣∣
=

1

c

∣∣∣∣∣
∫ ξ2

ξ1

e−γ(x−ξ1)H[ϕi](x)dx+

∫ ∞

ξ2

(
e−γ(x−ξ1) − e−γ(x−ξ2)

)
H[ϕi](x)dx

∣∣∣∣∣
≤ 1

c

{∣∣∣∣∣
∫ ξ2

ξ1

e−γ(x−ξ1)H[ϕi](x)dx

∣∣∣∣∣+
∫ ∞

ξ2

∣∣∣e−γ(x−ξ1) − e−γ(x−ξ2)
∣∣∣H[ϕi](x)dx

}

≤ 1

c

{
1

γ

∣∣∣e−γ(ξ2−ξ1) − 1
∣∣∣+ ∣∣eγξ1 − eγξ2

∣∣ ∫ ∞

ξ2

e−γxdx

}
sup
x∈R

H[ϕi](x)

≤ 2K∗
∣∣∣e−γ(ξ2−ξ1) − 1

∣∣∣ .
Hence, the family of function {ϕi : i ≥ 1} is uniformly bounded and equicontinuous in ξ ∈ R. Thus, there

exists ik → +∞ and ϕ ∈ C(R,R) such that limk→+∞ ϕik(ξ) = ϕ(ξ) uniformly for ξ in any compact subset of

R . Clearly, ϕi(0) =
1
2K∗ > 0. Let i = ik → +∞ in (2.13). Then using the dominated convergence theorem,

we obtain

ϕ(ξ) =
1

c∗

∫ ∞

0

e−γxH[ϕ](ξ + x)dx, ∀ξ ∈ R,

and hence ϕ(ξ + c∗t) is a traveling wave of (1.1). The proof is completed. 2

Theorem 2.4 Assume that (H1)− (H3) hold. For any c ≥ c∗ , if equation (1.2) has no other solution W with

0 < K∗ ≤ W ≤ K∗ and W ̸≡ K , then limξ→+∞ ϕ(ξ) = K .

Proof For any c ≥ c∗, let ϕ be a traveling wave of (1.2) satisfying

0 < K∗ ≤ lim inf
ξ→+∞

ϕ(ξ) ≤ lim sup
ξ→+∞

ϕ(ξ) ≤ K∗.

Choose a sequence {αn}n∈N with αn > 0 and limn→∞ αn = ∞ . Let Wn = ϕ(ξ + αn). By the translation

invariance of the solutions of (1.2), it follows that

cW ′
n(ξ) = ∆1Wn(ξ)−Wn(ξ) + g(Wn(ξ − cτ)). (2.14)

Since 0 < K∗ ≤ lim infξ→+∞ ϕ(ξ) ≤ lim supξ→+∞ ϕ(ξ) ≤ K∗, Wn is uniformly bounded by K∗ . From equation

(2.14), we see that there exists a M0 > 0 such that |W ′
n(ξ)| ≤ M0, ∀n ∈ N. Thus, Wn is uniformly bounded
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and equicontinuous. We now prove that W ′
n(ξ) is equicontinuous. For any ξ1, ξ2 ∈ R , n ∈ N, we have

|W ′
n(ξ1)−W ′

n(ξ2)|

=c−1|∆1Wn(ξ1)−∆1Wn(ξ2)− (Wn(ξ1)−Wn(ξ2))

+ g(Wn(ξ1 − cτ))− g(Wn(ξ2 − cτ))|

=c−1|∆1(Wn(ξ1)−Wn(ξ2))− (Wn(ξ1)−Wn(ξ2))

+ g′(ϕ)(Wn(ξ1 − cτ)−Wn(ξ2 − cτ))|

≤c−1
[
|Wn(ξ1 + 1)−Wn(ξ2 + 1)|+ |Wn(ξ1 − 1)−Wn(ξ2 − 1)|

+ 3|Wn(ξ1)−Wn(ξ2)|+ g′(0)|Wn(ξ1 − cτ)−Wn(ξ2 − cτ)|
]
.

Thus, W ′
n(ξ) is equicontinuous since Wn(ξ) is equicontinuous. Then by the Arzelà–Ascoli theorem, we can see

that there exist subsequences of Wn(ξ) that converge pointwise to W̃ (ξ) as n→ ∞ in R , which satisfies

cW̃ ′(ξ) = ∆1W̃ (ξ)− W̃ (ξ) + g(W̃ (ξ − cτ)).

Since 0 < K∗ ≤ lim infξ→+∞ ϕ(ξ) ≤ lim supξ→+∞ ϕ(ξ) ≤ K∗, it follows that 0 < K∗ ≤ lim infξ→+∞ W̃ (ξ) ≤

lim supξ→+∞ W̃ ξ) ≤ K∗. By the hypothesis, W̃ ≡ K. Thus, we obtain that limn→∞Wn(ξ) = W̃ (ξ) = K for

any ξ ∈ R . Hence, limξ→+∞ ϕ(ξ) = K . The proof is completed. 2

3. Stability of critical traveling waves

In order to prove the stability of critical traveling waves, we reformulate (1.1) to a perturbed equation around

the critical wave.

Let ϕ(x+ c∗t) = ϕ(ξ), ξ = x+ c∗t be a given traveling wave, and define

u(t, ξ) = v(t, ξ − c∗t)− ϕ(ξ), u0(s, ξ) = v0(s, ξ)− ϕ(x+ c∗s).

Then it is easy to see that u(t, ξ) satisfies


∂u
∂t + c∗

∂u
∂ξ −∆1u(t, ξ) + u(t, ξ)

= P (u(t− τ, ξ − c∗τ)), (t, ξ) ∈ R+ × R,
u(s, ξ) = u0(s, ξ), s ∈ [−τ, 0], ξ ∈ R,

(3.1)

where

P (u(t− τ, ξ − c∗τ)) := g(ϕ+ u)− g(ϕ), (3.2)

with u = u(t− τ, ξ − c∗τ) and ϕ = ϕ(ξ − c∗τ). Furthermore, by linearizing the delay term, we obtain


∂u
∂t + c∗

∂u
∂ξ −∆1u(t, ξ) + u(t, ξ)− g′(ϕ(ξ − c∗τ))u(t− τ, ξ − c∗τ)

= Q(u(t− τ, ξ − c∗τ)), (t, ξ) ∈ R+ × R,
u(s, ξ) = u0(s, ξ), s ∈ [−τ, 0], ξ ∈ R,

(3.3)
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where

Q(u(t− τ, ξ − c∗τ)) := g(ϕ+ u)− g(ϕ)− g′(ϕ)u, (3.4)

and satisfies, by Taylor’s formula,

Q(u) = O(1)|u|2. (3.5)

Before stating our stability results, we introduce some notations. Throughout this paper, C > 0 always

denotes a generic constant, and Ci > 0 (i = 1, 2, · · · ) represents a specific positive constant. Let L2(R) denote

the space of the square integrable functions, Hk(R) the Sobolev space, and C(R) the space of the bounded

continuous functions equipped with the sup norm. Let T > 0 be a number and B be a Banach space.

We define a weight function

w(ξ) := e−2λ∗ξ, ξ ∈ R. (3.6)

Since λ∗ > 0, we can see that lim
ξ→−∞

w(ξ) = +∞, lim
ξ→+∞

w(ξ) = 0. Define

Cunif [−τ, T ] :={v(t, x) ∈ C([−τ, T ]× R) such that

lim
x→+∞

v(t, x) exists uniformly in t ∈ [−τ, T ] }. (3.7)

Denote

X0(−τ, 0) :={u(t, ξ) ∈ C([−τ, 0]× R) ∩ Cunif [−τ, 0],
√
wu ∈ C([−τ, 0];H1(R)),

√
wu ∈ L2([−τ, 0];H1(R))}, (3.8)

with

N 2
0 := sup

t∈[−τ,0]

(
||u(t)||2C(R) + ||

√
wu(t)||2H1(R)

)
+

∫ 0

−τ

||(
√
wu)(s)||2H1(R)ds, (3.9)

and

Xloc(0,∞) :={u(t, ξ) ∈ Cloc([0,∞)× R) ∩ Cunif [0,∞),

√
wu ∈ Cloc([0,∞);H1(R)),

√
wu ∈ L2

loc([0,∞);H1(R))}. (3.10)

We further define

X(0,∞) :={u(t, ξ) ∈ C([0,∞)× R) ∩ Cunif [0,∞),

√
wu ∈ C([0,∞);H1(R)),√
ϕwu ∈ L2([0,∞);L2(R))}, (3.11)

with

N 2
∞ := sup

t∈[0,∞)

(
||u(t)||2C(R) + ||

√
wu(t)||2H1(R)

)
+

∫ ∞

0

||
√
ϕwu(s)||2L2(R)ds+

∫ ∞

0

||∂ξ(
√
wu)(s)||2L2(R)ds. (3.12)

Now we state the global existence, uniqueness, uniform boundedness, and stability for the solution to

(1.1).
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Theorem 3.1 (Global existence and uniqueness) Assume that (H1)− (H3) hold. Let ϕ(x + c∗t) = ϕ(ξ)

be any given critical traveling wave and the initial perturbation u0(s, ξ) := v0(s, ξ) − ϕ(ξ) ∈ X0(−τ, 0) be

arbitrary; then the solution u(t, ξ) of the perturbed equation (3.3) globally and uniquely exists in Xloc(0,∞) .

Theorem 3.2 (Uniform boundedness) Under the condition of Theorem 3.1, if the initial perturbation u0 ∈
X0(−τ, 0) is small enough, namely there exists a constant δ0 > 0 such that N0 ≤ δ0 , then the solution u(t, ξ)

of the perturbed equation (3.3) satisfies u ∈ X(0,∞) , and u(t, ξ) is uniformly bounded in X(0,∞) ,

N 2
∞ ≤ CN 2

0 . (3.13)

Theorem 3.3 (Stability) Under the condition of Theorem 3.2, it holds that

lim
t→∞

sup
ξ∈R

|u(t, ξ)| = 0. (3.14)

3.1. Global existence and uniqueness

In this subsection, we shall prove Theorem 3.1, namely the global existence and uniqueness of the solution for

the Cauchy problem (3.1).

Proof [Proof of Theorem 3.1] In order to establish the energy estimate, sufficient regularity of the solution to

(3.1) is required. We thus mollify the initial data as

u0ε(s, ξ) = (Jε ∗ u0)(s, ξ) ∈ C
(
[−τ, 0];H2

w(R) ∩H2(R)
)
,

where Jε(ξ) is the mollifier. Let uε(t, ξ) be the solution to (3.1) with the initial data u0ε(s, ξ). We consider

this mollification, with solution

uε(t, ξ) ∈ C
(
[0,∞);H2

w(R) ∩H2(R)
)
, (3.15)

and then take the limit ε→ 0 to obtain the corresponding energy estimate for the original solution u(t, ξ). For

the sake of simplicity, we use u(t, ξ) to establish the desired energy estimates.

We first consider t ∈ [0, τ ] . If u0 ∈ X0(−τ, 0), then we shall prove u ∈ Xloc(0, τ). Multiplying the

equation (3.1) by w(ξ)u(t, ξ) yields

w(ξ)u(t, ξ)
∂u

∂t
+ w(ξ)u(t, ξ)c∗

∂u

∂ξ
− w(ξ)u(t, ξ)∆1u(t, ξ) + w(ξ)u2(t, ξ)

= w(ξ)u(t, ξ)P (u0(t− τ, ξ − c∗τ)).

Integrating the equation above both sides with respect to ξ over R , and noting that

{c∗
2
wu2

}∣∣∣∣∣∣∣∣∣∣∣∣∞
ξ=−∞

= 0,
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due to (3.15), we obtain

d

dt
||
√
wu||2L2 − c∗

∫
R

w′

w
w(ξ)u2(t, ξ)dξ − 2

∫
R
w(ξ)u(t, ξ)∆1u(t, ξ)dξ

+ 2

∫
R
w(ξ)u2(t, ξ)dξ

=
d

dt
||
√
wu||2L2 − c∗

∫
R

w′

w
w(ξ)u2(t, ξ)dξ − 2

∫
R
w(ξ)u(t, ξ)u(t, ξ + 1)dξ

− 2

∫
R
w(ξ)u(t, ξ)u(t, ξ − 1)dξ + 6

∫
R
w(ξ)u2(t, ξ)dξ

=2

∫
R
w(ξ)u(t, ξ)P (u0(t− τ, ξ − c∗τ))dξ. (3.16)

Using Young’s inequality:

2ab ≤ ηa2 +
1

η
b2, for any η > 0, (3.17)

and choosing η = eλ∗ , we can obtain∣∣∣∣2∫
R
w(ξ)u(t, ξ)u(t, ξ + 1)dξ

∣∣∣∣
≤
∫
R
w(ξ)

[
ηu2(t, ξ) +

1

η
u2(t, ξ + 1)

]
dξ

=

∫
R
ηw(ξ)u2(t, ξ)dξ +

∫
R

1

η

w(ξ − 1)

w(ξ)
w(ξ)u2(t, ξ)dξ

=2eλ∗

∫
R
w(ξ)u2(t, ξ)dξ.

Similarly, choosing η = e−λ∗ , we get∣∣∣∣2∫
R
w(ξ)u(t, ξ)u(t, ξ − 1)dξ

∣∣∣∣
≤
∫
R
w(ξ)

[
ηu2(t, ξ) +

1

η
u2(t, ξ − 1)

]
dξ

=

∫
R
ηw(ξ)u2(t, ξ)dξ +

∫
R

1

η

w(ξ + 1)

w(ξ)
w(ξ)u2(t, ξ)dξ

=2e−λ∗

∫
R
w(ξ)u2(t, ξ)dξ.

Substituting the two inequalities above into (3.16), one has

d

dt
||
√
wu||2L2 +A||

√
wu||2L2

≤ 2

∫
R
P (u0(t− τ, ξ − c∗τ))w(ξ)u(t, ξ)dξ,

(3.18)
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where

A = 2c∗λ∗ − 2eλ∗ − 2e−λ∗ + 6.

From (2.2) we know that A = 2g′(0)e−λ∗c∗τ > 0. Taking Young’s inequality (3.17) with η = 1, we can see that

2

∣∣∣∣ ∫
R
P (u0(t− τ, ξ − c∗τ))w(ξ)u(t, ξ)dξ

∣∣∣∣
≤2C

∫
R
|u0(t− τ, ξ − c∗τ)||u(t, ξ)|w(ξ)dξ

≤ε||
√
wu||2L2 +

C2

ε
||
√
wu0(t− τ, ξ − c∗τ)||2L2 , (3.19)

for some small constant ε > 0. Substituting (3.19) into (3.18), one gets

d

dt
||
√
wu||2L2 + (A− ε)||

√
wu||2L2 ≤ C2

ε
||
√
wu0(t− τ, ξ − c∗τ)||2L2 . (3.20)

Integrating (3.20) over [0, t] for t ∈ [0, τ ] and taking ε small enough to satisfy ε < A , we obtain

||
√
wu(t)||2L2 + C2

∫ t

0

||
√
wu(s)||2L2ds

≤ ||
√
wu0(0)||2L2 + C3

∫ t

0

||
√
wu0(s− τ, ξ − c∗τ)||2L2ds

≤ C3||
√
wu0(0)||2L2 + C3

∫ 0

−τ

||
√
wu0(s)||2L2ds

<∞ (3.21)

for t ∈ [0, τ ] .

From (3.1) we know that

∂u

∂t
+ c∗

∂u

∂ξ
−∆1u(t, ξ) + u(t, ξ) = P (u0(t− τ, ξ − c∗τ)) ≤ C|u0(t− τ, ξ − c∗τ)|, t ∈ [0, τ ].

Differentiating equation (3.1) with respect to ξ , and then multiplying it by w(ξ)uξ(t, ξ), we have

wuξ(ut)ξ + c∗uξuξξw −∆1uξuξw + wu2ξ ≤ Cw(ξ)uξ(t, ξ)u0,ξ(t− τ, ξ − c∗τ).

Then integrating the inequality above with respect to ξ over R , and noting that

{c∗
2
wu2ξ

} ∣∣∣∣ξ=+∞

ξ=−∞
= 0,
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since u ∈ H2
w , we can obtain

d

dt
||
√
wuξ||2L2 − c∗

∫
R

w′

w
w(ξ)u2ξ(t, ξ)dξ − 2

∫
R
w(ξ)uξ(t, ξ)∆1uξ(t, ξ)dξ

+ 2

∫
R
w(ξ)u2ξ(t, ξ)dξ

=
d

dt
||
√
wuξ||2L2 − c∗

∫
R

w′

w
w(ξ)u2ξ(t, ξ)dξ − 2

∫
R
w(ξ)uξ(t, ξ)uξ(t, ξ + 1)dξ

− 2

∫
R
w(ξ)uξ(t, ξ)uξ(t, ξ − 1)dξ + 6

∫
R
w(ξ)u2ξ(t, ξ)dξ

≤2

∫
R
Cw(ξ)|uξ(t, ξ)||u0,ξ(t− τ, ξ − c∗τ)|dξ. (3.22)

Using Young’s inequality, and choosing η = eλ∗ , we can obtain

∣∣∣∣2∫
R
w(ξ)uξ(t, ξ)uξ(t, ξ + 1)dξ

∣∣∣∣
≤
∫
R
ηw(ξ)u2ξ(t, ξ)dξ +

∫
R

1

η
w(ξ)u2ξ(t, ξ + 1)dξ

=

∫
R
ηw(ξ)u2ξ(t, ξ)dξ +

∫
R

1

η

w(ξ − 1)

w(ξ)
w(ξ)u2ξ(t, ξ)dξ

= 2eλ∗

∫
R
w(ξ)u2ξ(t, ξ)dξ.

Similarly, choosing η = e−λ∗ , we can obtain

∣∣∣∣2∫
R
w(ξ)uξ(t, ξ)uξ(t, ξ − 1)dξ

∣∣∣∣
≤
∫
R
ηw(ξ)u2ξ(t, ξ)dξ +

∫
R

1

η
w(ξ)u2ξ(t, ξ − 1)dξ

=

∫
R
ηw(ξ)u2ξ(t, ξ)dξ +

∫
R

1

η

w(ξ + 1)

w(ξ)
w(ξ)u2ξ(t, ξ)dξ

= 2e−λ∗

∫
R
w(ξ)u2ξ(t, ξ)dξ.

Substituting both inequalities above into (3.22), we have

d

dt
||
√
wuξ||2L2 +A||

√
wuξ||2L2

≤ 2

∫
R
Cu0,ξ(t− τ, ξ − c∗τ)w(ξ)uξ(t, ξ)dξ

≤ ε||
√
wuξ||2L2 +

C2

ε
||
√
wu0,ξ(t− τ, ξ − c∗τ)||2L2 .
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Hence,

d

dt
||
√
wuξ||2L2 + (A− ε) ||

√
wuξ||2L2

≤ C2

ε
||
√
wu0,ξ(t− τ, ξ − c∗τ)||2L2 . (3.23)

Integrating (3.23) over [0, t] , we have

||
√
wuξ||2L2 + (A− ε)

∫ t

0

||
√
wuξ(s)||2L2ds

≤ ||
√
wu0,ξ(0)||2L2 +

C2

ε

∫ 0

−τ

||
√
wu0,ξ(s)||2L2ds

<∞. (3.24)

Now we prove that ∥u(t)∥C <∞ . By (3.1), one has

∂u

∂t
+ c∗

∂u

∂ξ
+ 3u(t, ξ) = P (u(t− τ, ξ − c∗τ)) + u(t, ξ + 1) + u(t, ξ − 1). (3.25)

The solution of equation (3.25) can be explicitly and uniquely solved by, for t ∈ [0, τ ] ,

u(t, ξ) =e−3tu0(0, ξ − c∗t) + e−3t

∫ t

0

e3s[P (u(s− τ, ξ + c∗[(s− t)− τ ]))

+ u(s, ξ + 1 + c∗(s− t)) + u(s, ξ − 1 + c∗(s− t))]ds.

Then, since |P (u)| ≤ C|u| from (3.2), we can obtain

||u(t)||C ≤ e−3t||u0(0)||C + 2e−3t

∫ t

0

e3s||u(s)||Cds

+ e−3t

∫ t

0

e3sP (u0(s− τ, ξ + c∗[(s− t)− τ ]))ds

≤ ||u0(0)||C + 2

∫ t

0

e−3(t−s)||u(s)||Cds+ C

∫ t

0

e−3(t−s)||u0(s− τ)||Cds

≤ ||u0(0)||C + 2

∫ t

0

||u(s)||Cds+ C

∫ t

0

||u0(s− τ)||Cds, t ∈ [0, τ ].

It then follows that

||u(t)||C ≤

(
||u0(0)||C + Cτ sup

t∈[−τ,0]

||u0(t)||C

)
+ 2

∫ t

0

||u(s)||Cds. (3.26)

Applying Gronwall’s inequality to (3.26), we get

||u(t)||C ≤

(
||u0(0)||C + Cτ sup

t∈[−τ,0]

||u0(t)||C

)
e2τ t ∈ [0, τ ]. (3.27)
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Note that u0 ∈ Cunif (−τ, 0), namely limξ→∞ u0(t, ξ) =: u0,∞(t) ∈ C[−τ, 0] exists uniformly in t , and we are

going to prove u ∈ Cunif [0, τ ]. We rewrite the solution of (3.1) as

u(t, ξ) =e−tu0(0, ξ − c∗t) + e−t

∫ t

0

es[u(s, ξ + 1 + c∗(s− t))

− 2u(s, ξ + c∗(s− t)) + u(s, ξ − 1 + c∗(s− t))

+ P (u(s− τ, ξ + c∗(s− t− τ)))] ds.

Then one has

lim
ξ→+∞

u(t, ξ) =e−tu0(0,∞) + e−t

∫ t

0

es lim
ξ→+∞

P (u0(s− τ, ξ + c∗[(s− t)− τ ]))ds

=e−tu0,∞(0) +

∫ t

0

e−(t−s)P (u0,∞(s− τ))ds

=Y(t), uniformly with respect to t ∈ [0, τ ].

(3.28)

Therefore, (3.21), (3.24), (3.27), and (3.28) imply u ∈ Xloc(0, τ) and

||u(t)||2C + ||
√
wu(t)||2H1 +

∫ t

0

||
√
wu(s)||2H1ds

≤ C

(
||u(0)||2C + ||

√
wu0(0)||2H1 +

∫ 0

−τ

||
√
wu0(s)||2H1ds

)
, t ∈ [0, τ ],

for some C > 0.

When t ∈ [τ, 2τ ] , the solution of u(t, ξ) for t ∈ [τ, 2τ ] is uniquely and explicitly given by

u(t, ξ) =e−3tu0(τ, ξ − c∗t) + e−3t

∫ t

τ

e3s[P (u(s− τ, ξ + c∗[(s− t)− τ ]))

+ u(s, ξ + 1 + c∗(s− t)) + u(s, ξ − 1 + c∗(s− t))]ds.

Taking the same estimates as in (3.21)–(3.28), we can prove u ∈ Xloc(τ, 2τ) and

||u(t)||2C + ||
√
wu(t)||2H1 +

∫ t

τ

||
√
wu(s)||2H1ds

≤ C

(
||u(τ)||2C + ||

√
wu(τ)||2H1 +

∫ τ

0

||
√
wu(s)||2H1ds

)

≤ C2

(
||u(0)||2C + ||

√
wu0(0)||2H1 +

∫ 0

−τ

||
√
wu0(s)||2H1ds

)
, t ∈ [τ, 2τ ],

and

lim
ξ→+∞

u(t, ξ) =e−tu0(τ,∞) + e−t

∫ t

τ

es lim
ξ→+∞

P (u0(s− τ, ξ + c∗[s− (t+ τ)]))ds

=e−tY(τ) +

∫ t

τ

e−(t−s)P (Y(τ))ds

=Z(t), uniformly with respect to t ∈ [τ, 2τ ].
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Repeating the above produce, step by step, we can prove that u ∈ Xloc((n−1)τ , nτ) uniquely exists and satisfies

||u(t)||2C + ||
√
wu(t)||2H1 +

∫ t

0

||
√
wu(s)||2H1ds

≤ Cn

(
||u(0)||2C + ||

√
wu0(0)||2H1 +

∫ 0

−τ

||
√
wu0(s)||2H1ds

)
,

for t ∈ [(n− 1)τ, nτ ] . Finally, we prove that u is unique, and u ∈ Xloc(0,∞) with, for any T > 0, that

||u(t)||2C + ||
√
wu(t)||2H1 +

∫ t

0

||
√
wu(s)||2H1ds

≤ CT

(
||u(0)||2C + ||

√
wu0(0)||2H1 +

∫ 0

−τ

||
√
wu0(s)||2H1ds

)
, t ∈ [0, T ].

The proof is completed. 2

3.2. Uniform boundedness

In this subsection, we are going to prove Theorem 3.2. For the global solution of equation (3.3), u ∈ Xloc(0,∞),

when the initial perturbation u0 ∈ X0(−τ, 0) is small enough, we shall show u ∈ X(0,∞) by deriving the

uniform boundedness (3.13).

Take the following transformation:

u(t, ξ) =
√
w(ξ)u(t, ξ) = e−λ∗ξu(t, ξ).

Substituting u(t, ξ) = w−1/2(ξ)u(t, ξ) to (3.3), then we derive the following equation for u(t, ξ):
∂u
∂t + c∗

∂u
∂ξ − [eλ∗u(t, ξ + 1) + e−λ∗u(t, ξ − 1)] + (c∗λ∗ + 3)u(t, ξ)

−g′(ϕ(ξ − c∗τ))u(t− τ, ξ − c∗τ)e
−λ∗c∗τ = Q(u(t− τ, ξ − c∗τ)),

u(s, ξ) =
√
wu(s, ξ) = u0(s, ξ), s ∈ [−τ, 0], ξ ∈ R,

(3.29)

where

Q(u) = e−λ∗ξQ(u). (3.30)

By Taylor’s expansion formula:

|Q(u)| ≤ Ce−λ∗ξ|u|2 =
C√
w(ξ)

|u|2. (3.31)

Lemma 3.4 It holds that

||u(t)||2L2 +

∫ t

0

∫
R
M(ξ)|u(s, ξ)|2dξds

≤||u0(0)||2L2 + 2C

∫ t

0

∫
R

1√
w(ξ)

|u(s, ξ)||u(s− τ, ξ − c∗τ)|2dξds

+ g′(0)e−λ∗c∗τ

∫ 0

−τ

∫
R
|u0(s, ξ)|2dξds, (3.32)
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where

M(ξ) := e−λ∗c∗τ
[
2g′(0)− |g′(ϕ(ξ − c∗τ))| − |g′(ϕ(ξ))|

]
. (3.33)

Proof Multiplying the equation (3.29) by u(t, ξ), then integrating it with the respect to ξ and t over R×[0, t] ,

we have

||u(t)||2L2 − 2(eλ∗ + e−λ∗)

∫ t

0

∫
R
ū(s, ξ)ū(s, ξ + 1)dξds

+ 2(c∗λ∗ + 3)

∫ t

0

∫
R
u2(s, ξ)dξds

− 2e−λ∗c∗τ

∫ t

0

∫
R
g′(ϕ(ξ − c∗τ))u(s, ξ)u(s− τ, ξ − c∗τ)dξds

=||u0(0)||2L2 + 2

∫ t

0

∫
R
Q (u(s− τ, ξ − c∗τ))u(s, ξ)dξds. (3.34)

By the Cauchy–Schwarz inequality 2xy ≤ x2 + y2 , we get

2

∣∣∣∣∫ t

0

∫
R
ū(s, ξ)ū(s, ξ + 1)dξds

∣∣∣∣
≤
∫ t

0

∫
R
|ū(s, ξ)|2dξds+

∫ t

0

∫
R
|ū(s, ξ + 1)|2dξds

=2

∫ t

0

∫
R
|ū(s, ξ)|2dξds, (3.35)

and

2

∣∣∣∣∫ t

0

∫
R
g′(ϕ(ξ − c∗τ))u(s, ξ)u(s− τ, ξ − c∗τ)dξds

∣∣∣∣
≤
∫ t

0

∫
R
|g′(ϕ(ξ − c∗τ))| |u(s, ξ)|2dξds+

∫ t

0

∫
R
|g′(ϕ(ξ − c∗τ))|u(s− τ, ξ − c∗τ)|2dξds

≤
∫ t

0

∫
R
|g′(ϕ(ξ − c∗τ))| |u(s, ξ)|2dξds+

∫ t−τ

−τ

∫
R
|g′(ϕ(ξ))| |u(s, ξ)|2dξds

≤
∫ t

0

∫
R
(|g′(ϕ(ξ − c∗τ)|+ |g′(ϕ(ξ))|) |u(s, ξ)|2dξds

+ g′(0)

∫ 0

−τ

∫
R
|u0(s, ξ)|2dξds. (3.36)

The last inequality holds due to the fact that |g′(ϕ)| ≤ g′(0); see (H3). On the other hand, by (3.31), the

nonlinear term in (3.34) can be estimated as follows:∣∣∣∣∫ t

0

∫
R
Q (u(s− τ, ξ − c∗τ))u(s, ξ)dξds

∣∣∣∣
≤C

∫ t

0

∫
R

1√
w(ξ)

|u(s, ξ)||u(s− τ, ξ − c∗τ)|2dξds. (3.37)
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Substituting (3.35), (3.36), and (3.37) into (3.34), we have

||u(t)||2L2 + 2(c∗λ∗ + 3− eλ∗ − e−λ∗)

∫ t

0

∫
R
|u(s, ξ)|2dξds

− e−λ∗c∗τ

∫ t

0

∫
R
(|g′(ϕ(ξ − c∗τ)|+ |g′(ϕ(ξ))|) |u(s, ξ)|2dξds

≤||u0(0)||2L2 + 2C

∫ t

0

∫
R

1√
w(ξ)

|u(s, ξ)||u(s− τ, ξ − c∗τ)|2dξds

+ g′(0)e−λ∗c∗τ

∫ 0

−τ

∫
R
|u0(s, ξ)|2dξds.

Note that c∗λ∗ + 3− eλ∗ − e−λ∗ = g′(0)e−λ∗c∗τ and let

M(ξ) := e−λ∗c∗τ [2g′(0)− |g′(ϕ(ξ − c∗τ))| − |g′(ϕ(ξ))|] .

Then we obtain

||u||2L2 +

∫ t

0

∫
R
M(ξ)|u(s, ξ)|2dξds

≤ ||u0(0)||2L2 + 2C

∫ t

0

∫
R

1√
w(ξ)

|u(s, ξ)||u(s− τ, ξ − c∗τ)|2dξds

+ g′(0)e−λ∗c∗τ

∫ 0

−τ

∫
R
|u0(s, ξ)|2dξds.

The proof is completed. 2

By a similar argument as in [3], we obtain the estimate for M(ξ).

Lemma 3.5 It holds that

M(ξ) ≥ Cϕ(ξ) ≥ 0

for some positive constant C .

Based on Lemmas 3.4 and 3.5, we can get the following estimate.

Lemma 3.6 There exists δ1 > 0 , when N∞ ≤ δ1 , and then

||u(t)||2L2 +

∫ t

0

∫
R
ϕ(ξ)w(ξ)|u(s, ξ)|2dξds

≤ C

(
||u0||2L2 +

∫ 0

−τ

||u0(s)||2L2ds

)
≤ CN 2

0 , t ∈ [0,∞), (3.38)

where C is a positive constant.

Proof The proof is similar to Lemma 4.3 in [3], so we omit it here. 2

Similarly to lemma 3.6, we have the following result.
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Lemma 3.7 When N∞ ≤ δ1 , then

||uξ||2L2 +

∫ t

0

||uξ(s, ξ)||2L2ds ≤ C4(N∞ + 1)N 2
0 , (3.39)

and ∫ t

0

∣∣∣∣ ddt ||uξ(s, ξ)||2L2

∣∣∣∣ ds ≤ C5(N∞ + 1)N 2
0 , (3.40)

where C4 and C5 are positive constants.

Proof Differentiating equation (3.29) with respect to ξ yields

(uξ)t + c∗uξξ −
[
eλ∗uξ(t, ξ + 1) + e−λ∗uξ(t, ξ − 1)

]
+ (c∗λ∗ + 3)uξ − g′′(ϕ(ξ − c∗τ))ϕ

′(ξ − c∗τ)u(t− τ, ξ − c∗τ)e
−λ∗c∗τ

− g′(ϕ(ξ − c∗τ))uξ(t− τ, ξ − c∗τ)e
−λ∗c∗τ

=∂ξQ(u(t− τ, ξ − c∗τ)). (3.41)

Multiplying (3.41) by uξ(t, ξ) and integrating it with respect to ξ over R , we further obtain

d

dt
||uξ||2L2 + 2B

∫
R
u2ξ(t, ξ)dξ

=2e−λ∗c∗τ

∫
R
g′′(ϕ(ξ − c∗τ))ϕ

′(ξ − c∗τ)u(t− τ, ξ − c∗τ)uξ(t, ξ)dξ

+ 2e−λ∗c∗τ

∫
R
g′(ϕ(ξ − c∗τ))uξ(t− τ, ξ − c∗τ)uξ(t, ξ)dξ

+ 2

∫
R
uξ(t, ξ)∂ξQ(u(t− τ, ξ − c∗τ)dξ

=:I1(t) + I2(t) + I3(t), (3.42)

where

B = c∗λ∗ + 3− eλ∗ − e−λ∗ = g′(0)e−c∗λ∗τ .

Integrating (3.42) over [0, t] , we get

||uξ(t)||2L2 + 2B
∫ t

0

||uξ||2L2ds

= ||u0,ξ(0)||2L2 +

∫ t

0

[I1(s) + I2(s) + I3(s)] ds. (3.43)

By a similar argument as in the proof of Lemma 4.4 of [3], we obtain∫ t

0

I1(s)ds ≤ CN 2
0 ,

∫ t

0

I2(s)ds ≤ CN 2
0 , (3.44)

and ∫ t

0

I3(s)ds ≤ CN∞N 2
0 , (3.45)
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provided N∞ ≤ δ1 . Substituting (3.44) and (3.45) into (3.43), we have

||uξ||2L2 + 2B
∫ t

0

||uξ||2L2ds

≤
(
||u0(0)||2H1 +

∫ 0

−τ

||u0(s)||2H1ds

)
C4 (N∞ + 1)

≤ C4 (N∞ + 1)N 2
0 , (3.46)

for some constant C4 > 0, provided N∞ ≤ δ1 . This proves (3.39).

Now we prove (3.40). From (3.42), we can see that∣∣∣∣ ddt ||uξ||2L2

∣∣∣∣ ≤ 2B||uξ||2L2 + |I1|+ |I2|+ |I3|.

Integrating it over [0, t], we have∫ t

0

∣∣∣∣ ddt ||uξ||2L2

∣∣∣∣ ds ≤ 2B
∫ t

0

||uξ||2L2ds+

∫ t

0

(|I1|+ |I2|+ |I3|)ds.

By (3.46), one has ∫ t

0

∣∣∣∣ ddt ||uξ(s, ξ)||2L2

∣∣∣∣ ds ≤ C5(N∞ + 1)N 2
0 , (3.47)

where C5 > 0, N∞ < δ1 . The proof is completed. 2

Lemma 3.8 Assume that (H1)− (H3) hold. Then

|u(t,∞)| = |U(t)| ≤ CN0e
−µt, t > 0,

for some 0 < µ = µ(τ, g′(K)) < 1, provided with |U0| ≪ 1 .

Proof Let u(t, x) = v(t, x)− ϕ(x+ c∗t). From (1.1) and (1.2), one gets that u(t, x) satisfies{
ut(t, x)−∆1u(t, x) + u(t, x)− g′(ϕ)u(t− τ, x) = Q(u(t− τ, x)), t > 0, x ∈ R,
u(s, x) = u0(s, x), s ∈ [−τ, 0], x ∈ R,

(3.48)

where Q(u(t − τ, x)) = g(ϕ + u) − g(ϕ) − g′(ϕ)u(t − τ, x). Since u ∈ X(0,∞), so u ∈ Cunif [0,∞), namely

limx→+∞ u(t, x) = u(t,∞) =: U(t) exists uniformly for t ∈ (−τ,∞), and limx→+∞Q(u(t−τ, x)) = Q(U(t−τ)).
Taking the limit to equation (3.48) as x→ +∞ , we have{

Ut + U(t)− g′(v+)U(t− τ) = Q(U(t− τ)), t > 0,

U(s) = U0(s), s ∈ [−τ, 0].

Applying the nonlinear Halanay inequality given in [11], we obtain that if (H1)− (H3) hold, then

|U(t)| ≤ C̃||U0||L∞(−τ,0)e
−µt, (3.49)
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where 0 < µ < 1 and C̃ is some positive constant. Then we get

|U(t)| ≤ CN0e
−µt, t > 0,

for some positive constant C . Thus, we complete the proof. 2

Now we can prove the boundedness of u in C(R).

Lemma 3.9 If N∞ ≤ δ1 , then

||u(t)||C ≤ C
√

N∞ + 1N0, t ∈ [0,∞). (3.50)

Proof From Lemma 3.8, we have

lim
ξ−→+∞

u(t, ξ) = u(t,∞) =: U(t)

uniformly with respect to t ∈ [0,∞). Then for any given ε > 0, there exists a very large number x0 = x0(ξ) ≫ 1

such that when ξ ≥ x0 ,

|u(t, ξ)− U(t)| < ε uniformly in t ∈ [0,∞),

and

|u(t,∞)| = |U(t)| ≤ CN0e
−µt ≤ CN0.

That is,

sup
x∈[x0,∞)

|u(t, ξ)| < CN0 uniformly in t ∈ [0,∞), (3.51)

and

sup
x∈(−∞,x0]

|u(t, ξ)| ≤ sup
x∈(−∞,x0]

∣∣∣∣∣
√
w(ξ)

e−λ∗x0
u(t, ξ)

∣∣∣∣∣
=eλ∗x0 sup

x∈(−∞,x0]

∣∣∣√w(ξ)u(t, ξ)∣∣∣
≤C||

√
wu(t)||H1

≤C
√

N∞ + 1N0, t ∈ [0,∞). (3.52)

Combining (3.51) and (3.52), we obtain that (3.50) holds. The proof is completed. 2

Proof [Proof of Theorem 3.2] Adding (3.38), (3.39), and (3.50) together, we have

||u(t)||2C + ||u(t)||2H1 +

∫ t

0

||
√
ϕwu(s)||2L2ds+

∫ t

0

||uξ(s)||2L2ds

≤C(N∞ + 1)N 2
0 , t ∈ [0,∞). (3.53)

In order to guarantee N∞ ≤ δ1 , and N∞ ≤
√
C6(N∞ + 1)N0, we take δ0 > 0 in Theorem 3.2 as

δ0 =
δ1√

C6(δ1 + 1)
.
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Thus, when N0 ≤ δ0, we can guarantee

N∞ ≤
√
C6(N∞ + 1)N0 ≤

√
C6(δ1 + 1)δ0

and

N 2
∞ ≤ C6(N∞ + 1)N 2

0 ≤ C6(δ1 + 1)N 2
0 ≤ C7N 2

0 ,

provided N∞ < δ1 . The proof is completed. 2

3.3. Asymptotic stability

This subsection is devoted to proving the asymptotic stability of critical traveling waves.

Proof [Proof of Theorem 3.3] From (3.40) and (3.53), we have

0 ≤ ||uξ||2L2 ≤ CN 2
0 ,

0 ≤
∫ ∞

0

||uξ(t, ξ)||2L2dt ≤ CN 2
0 ,

0 ≤
∫ ∞

0

∣∣∣∣ ddt ||uξ(t, ξ)||2L2

∣∣∣∣ dt ≤ CN 2
0 ,

which implies

lim
t→∞

||uξ(t)||2L2 = 0. (3.54)

By the Sobolev inequality H1(R) ↪→ C(R), we further obtain

||u(t)||C ≤
√
2||u(t)||

1
2

L2 ||uξ(t)||
1
2

L2 .

With the boundedness of ||u(t)||L2 = ||(
√
wu)(t)||L2 ≤ CN0 and the convergence of (3.54), we then prove

lim
t→∞

sup
ξ∈R

|
√
w(ξ)u(ξ)| = lim

t→∞
||u(t)||C = 0. (3.55)

Next, we shall show the convergence

lim
t→∞

sup
ξ∈R

|u(t, ξ)| = 0.

By Lemma 3.8, we have

|u(t,∞)| = |U(t)| ≤ CN0e
−µt, t > 0.

It is easy to see that (3.48) is equivalent to

et[ut(t, x)−∆1u(t, x) + u(t, x)− g′(ϕ)u(t− τ, x)] = etQ(u(t− τ, x)),

that is,

{etu(t, x)}t + et[−∆1u(t, x)− g′(ϕ)u(t− τ, x)] = etQ(u(t− τ, x)).
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Integrating the above equation with respect to t over [0, t] , we get

u(t, x) = e−tu0(0, x) + e−t

∫ t

0

es[∆1u(s, x) + g′(ϕ)u(s− τ, x) +Q(u(s− τ, x))]ds.

Thus, one has, for 0 < µ < 1,

eµtu(t, x) =e(µ−1)tu0(0, x)

+ e(µ−1)t

∫ t

0

es[∆1u(s, x) + g′(ϕ)u(s− τ, x) +Q(u(s− τ, x))]ds. (3.56)

Taking the limit to (3.56) as x→ ∞ , and noting that all these limits are uniformly in t , then applying the fact

|Q(U(t))| ≤ C|U|2 and the decay estimate (3.49) for U(t), we have

lim
x→∞

eµtu(t, x)

= lim
x→∞

e(µ−1)tu0(0, x)

+ lim
x→∞

e(µ−1)t

∫ t

0

es
[
∆1u(s, x) + g′(ϕ)u(s− τ, x) +Q(u(s− τ, x))

]
ds

=e(µ−1)tU0(0) + e(µ−1)t

∫ t

0

es[g′(v+)U(s− τ) +Q(U(s− τ))]ds

≤e(µ−1)tU0(0) + e(µ−1)t

∫ t

0

es[|U(s− τ)|+ C|U(s− τ)|2]ds

≤e(µ−1)tU0(0) + e(µ−1)t

∫ t

0

es[e−µ(s−τ) + Ce−2µ(s−τ)]ds

≤C, uniformly in t.

This implies that there exists a number x1 ≫ 1 (independent of t), such that when ξ ≥ x1 , then

sup
ξ∈[x1,∞)

|u(t, ξ)| ≤ Ce−µt, t ∈ (0,∞). (3.57)

Notice that
√
w(ξ) = e−λ∗ξ ≥ e−λ∗x1 for ξ ∈ (−∞, x1] . Then (3.55) implies

lim
t−→∞

sup
ξ∈(−∞,x1]

|u(t, ξ)| ≤ lim
t−→∞

sup
ξ∈(−∞,x1]

|
√
w(ξ)

e−λ∗x1
u(t, ξ)|

≤eλ∗x1 lim
t−→∞

sup
ξ∈R

|
√
w(ξ)u(t, ξ)|

=0.

(3.58)

From (3.57) and (3.58), we have

lim
t−→∞

sup
ξ∈R

|u(t, ξ)| = 0.

The proof is completed. 2
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