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Abstract: The trial equation method, which was proposed by Cheng-Shi Liu, is a very powerful method for solving

nonlinear differential equations. After the original trial method, some modified versions of the trial equation method were

introduced and applied to some famous nonlinear differential equations. Although each modified trial equation method

provides a different perspective, they have some weaknesses according to the given differential equations. This is the

main reason for introducing modified trial equation methods. This study aims to define a general representation of trial

methods for solving nonlinear differential equations. The generalized trial equation method consists of the simple trial

equation method, irrational trial method, and extended trial equation method as a common coverage. A suitable trial

equation can also be structured according to the given nonlinear differential equations. To demonstrate the applicability

of the generalized trial equation method, the solutions of the Duffing equation and Poisson–Boltzmann equation are

examined and new solutions of these equations are obtained based on some nonlinear functions that have not been

considered before within the trial equation methods.
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1. Introduction

The trial method was developed by Cheng-Shi Liu for the solution of nonlinear differential equations. This new

method provides considerably different approaches for solutions of nonlinear differential equations. The idea of

this method is very simple and it depends on a representation of the desired solution that satisfies a first-order

constant coefficient differential equation. In [10], the simple trial method is defined as

u′ = F (u) =

m∑
i=0

aiu
i (1)

for the solution of nonlinear differential equation

M (u, u′, u′′, ...) = 0. (2)

The author in [10] then showed that method (1) is not applicable for some nonlinear differential equations.

Consequently, a modified trial equation method was introduced in [11] as

u =
s∑

i=0

diφ
i (3)
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where φ′ is a rational function of u and u is the solution of nonlinear differential equation (2). On the other

hand, Du in his paper [5] indicated that trial equation methods (1) and (3) are not applicable for some

nonlinear differential equations. He suggested an irrational trial equation method in [5] as

u′ =

k1∑
i=0

aiu
i +

(
k2∑
i=0

biu
i

)√√√√ k3∑
i=0

ciui. (4)

Finally, an extended trial method was introduced in [6] as as

u =

δ∑
i=0

τiγ
i (5)

where (γ′)
2
is a rational function of γ and u is the solution of nonlinear differential equation (2).

Each introduced trial method has been applied and many exact solutions of some important nonlinear

equations were obtained. Therefore, selection of a proper trial equation method depends on the characteristics

of the nonlinear differential equation in the area of study.

For example, the irrational trial equation method can be applicable for the sine-Gordon equation consid-

ered in [5]:

αu′′ + βu′ = a sinu+ b sin(2u).

On the other hand, the extended trial method can be more suitable for the equation of the fractional KdV,

αu′′u+ β (u′)
2
= au2 + bu3, (6)

given in [12]. Therefore, these works show that trial equations should be written according to the nonlinear

differential equation in the study. Finally, papers [3] and [4] are referred to for important applications of trial

equation methods to partial differential equations.

2. Generalized trial equation method

In this section, the generalized trial method will be defined and then the relation between it and other trial

methods will be discussed. Consider the following nonlinear ordinary differential equation:

L(u, u′, u′′, · · ·) = 0. (7)

The generalized trial equation for the solution of nonlinear differential equation (7) can be defined as

F (u) =
α (u)

β (u)
(8)

where F (u) is the solution of nonlinear equation (7) and

u′ = D (u) =
γ (u)

ρ (u)
. (9)
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It is important to note that the functions α (u) , β (u) , γ (u) , andρ (u) in the generalized trial equation can be

nonlinear according to the given differential equation. Consequently, from (8),

F ′(u) =
∂F

∂u
·D (u) .

Using (8) and (9), the second- and third-order derivatives of solution function (8) can be obtained as

F ′′ (u) =
∂2F

∂u2
·D2 (u) +

∂F

∂u
· ∂D
∂u

·D (u) ,

F ′′′(u) =
∂3F

∂u3
·D3 (u) + 2

∂2F

∂u2
· ∂D
∂u

·D2 (u) +
∂2F

∂u2
· ∂D
∂u

·D2 (u)

+
∂F

∂u

(
∂2D

∂u2
·D2 (u) +

(
∂D

∂u

)2

·D (u)

)
.

By selection of appropriate functions F (u) , α (u) , β (u) , γ (u) , andρ (u) , the introduced trial methods can be

obtained as follows:

Case 1 If F (u) = u′, α (u) =
∑k1

i=0 aiu
i, β (u) = 1 , and F (u) = D(u), then the generalized trial method

returns to the simple trial method.

Case 2 If F (u) = u, α (u) =
∑k1

i=0 aiu
i, β (u) = 1, γ (u) = amum+···+a0

bnun+···+b0
;m,n ∈ N and ρ (u) = u′, then the

generalized trial method returns to the extended trial method.

Case 3 If F (u) = u′, α (u) =
∑k1

i=0 aiu
i +

(∑k2

i=0 biu
i
)√∑k3

i=0 ciu
i, β (u) = 1, and F (u) = D(u), then the

generalized trial method returns to the irrational trial method.

Unfortunately, there are many nonlinear differential equations that cannot be solved by simple trial

method, extended trial method, or irrational trial method. For instance, the nonlinear differential equation

u′′ (x)− u′ (x) = eu(x) + e2u(x) (10)

cannot directly be solved by one of the introduced trial methods. By logarithmic transformation, equation

(10) can be rewritten as

u′′ (x)− (u′ (x))
2

u (x)
= (u (x))

2
+ (u (x))

3
. (11)

Equation (11) is almost the same as the equation of the fractional KdV given in [12].

The original nonlinear equation (10) can be easily solved via the generalized trial method. By using the

generalized trial method, the necessary trial equations for nonlinear equation (10) can be written as

F (u) = a1 ln (u) + ln a2 (12)

and

u′ = D (u) = b1 + b2u+ b3u
2, (13)
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where a1, a2, b1, b2, b3 are constants to be determined. When F (u) and D (u) are substituted into equation

(10), the nonlinear system of equations

a1b
2
1 = 0; a1b1u+ a1b1b2u = 0,

a1b1u
2 = 0;+a1b3u

3 − a1b2b3u
3 = 0,

−a1b
2
3u

4 = 0; a2u
2+a1 + a22u

2+2a1 = 0

will be obtained. Consequently, the unknown parameters a1, a2, b1, b2, b3 should be found as

a1 = 1, a2 = a2, b1 = b2 = 0 and b3 = −a2.

Hence, the solution of nonlinear equation (10) is

F (u (x)) = u (x) = ln[
a2

a2x− c1
]

where c1 is the integral constant. It is necessary to mention that Mathematica does not give any output for

the solution of equation (10). It is important to mention a study from paper [1, pp. 616] about the solutions of

(2+1)-dimensional Burgers partial differential equations. In this study, the (2+1)-dimensional Burgers equation

has been converted into the following ordinary differential equation:

(
c2 − 1

)
u′′ (x) = −eu(x) − e−2u(x). (14)

Consequently, transformation based on a natural logarithm was used before applying the generalized

Kudryashov method (similar to a trial equation). From the derivation of the solution of equation (10), the

proposed generalized trial equation method can directly be applied for differential equation (14) given in [1, pp.

616] with no requirement of using logarithmic transformation. Hence, the generalized trial equation method

can alternatively be applicable in the process of the generalized Kudryashov method. For more details about

this important method, see [2].

Moreover, the original equation (10) is also similar to the Poisson–Boltzmann type differential equation

u′′ (x) = −eu(x) + e−u(x) (15)

discussed in [8, pp. 142]. The solutions of this Poisson–Boltzmann type differential equation will be discussed

in the next section.

3. Applications

In this section, the new solutions of the Poisson–Boltzmann type differential equation and the Duffing type

differential equation will be derived respectively via a generalized trial equation method.

3.1. Poisson–Boltzmann differential equation

The Poisson–Boltzmann equation (16) can be widely used as a modeling tool in a variety of fields. Poisson

distribution is particularly used in predicting the failures of components in electrical power and communication

systems. It enables a solution to detect the exact failed components within the system. The outcome of such
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application reduces search time that may be costly in some applications. In this subsection, the convenient trial

equations for the solution of differential equation (16) will be derived. In light of the solution of equation (10),

the necessary nonlinear trial equations for the Poisson–Boltzmann type differential equation

u′′ (x) = −eu(x) + e−u(x) (16)

can be derived as

F (u) = ln
(
a1 + a2u

1
4 + a3u

1
2

)
(17)

and

u′ = D (u) = b1u+ b2u
5
4 , (18)

where a1, a2, a3, b1, b2 are constants to be determined. After substituting (17) and (18) into the nonlinear

equation (16), the complete nonlinear trial equation satisfying nonlinear equation (16) is derived as

F (u) = ln

(
−1 + a2u

1
4 − (

a22
4
)u

1
2

)
(19)

and

u′ = D (u) = −
√
2a2u

5
4 + 4

√
2u. (20)

Consequently, solutions of the Poisson–Boltzmann type differential equation (16) can be derived from the simple

set of trial equations (19) and (20). First, the solutions of the trial equation (20) should be derived. By using

Mathematica, the solutions of equation (20) have been derived as

u1 (x) =
256e4

√
2x(

−
(
a2e4

√
2x
)
+ ec1

)4 , (21)

u2 (x) =
256e4

√
2x(

a2e4
√
2x + ec1

)4 , (22)

u3 (x) =

(
256e8

√
2x
)

a42e
8
√
2x + e4(

√
2x+c1) − 6a22e

6
√
2x+2c1 + 4

√
−(a22e

2(5
√
2x+c1)

(
−(a22e

2
√
2x) + e2c1

)2
)

, (23)

and

u4 (x) =

256

(
4
2e

8
√
2x + e4(

√
2x+c1) − 6a22e

6
√
2x+2c1 + 4

√
−(a22e

2(5
√
2x+c1)

(
−(a22e

2
√
2x) + e2c1

)2
)

)
(
a22e

2
√
2x + e2c1

)4 . (24)

Hence, the solutions of nonlinear equation (16) according to (21)− (24) with suitable coefficients can be

derived as

F (u (x)) = u (x) = ln

(
−1 + a2 (ui (x))

1
4 − a22

2
(ui (x))

1
2

)
, ∀i = 1, 2, 3, 4. (25)
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If we consider u1 (x) with a2 = 1 and c1 = 0, for simplicity, we obtain the solution of nonlinear equation (16)

as follows:

u (x) = ln

−1 +

 256e4
√
2x(

−
(
e4

√
2x
)
+ 1
)4


1
4

− 1

2

 256e4
√
2x(

−
(
e4

√
2x
)
+ 1
)4


1
2

 . (26)

It is important to mention that the solution (26) of equation (16) is satisfied by using Mathematica.

Remark 4 The solution (26) according to the selections of coefficients involves functions of complex variables.

The Poisson–Boltzmann type differential equation is particularly used in quantum mechanics. For interesting

applications, see [7]. Since complex numbers play a central role in representing the wave function of a quantum

system in quantum mechanics, solution (26) is meaningful. It is also important to note that the real valued

solutions of equation (16) can be derived. All solutions obtained from trial equations (19) and (20) are natural

logarithms of exponential functions.

3.2. Undamped Duffing differential equation

The nonlinear differential equation

u′′ (x)− αu (x)
3 − βu (x) = 0 (27)

is called the undamped Duffing equation. The Duffing equation is one of the famous nonlinear equations

commonly used in science and engineering. Therefore, researchers pay it remarkable attention due to the

variety of its applications. For more details about the Duffing equation, see [9].

As shown in the previous section, a suitable nonlinear trial equation via the generalized trial equation will

be considered for the undamped Duffing equation. In this subsection, a new solution of the undamped Duffing

equation will be derived via the generalized trial equation method. By using the generalized trial method, the

necessary trial equations for nonlinear equation (27) can be written as

F (u) = a1u
1
2 + a2 (28)

and

u′ = D (u) = b1u
1
2 + b2u+ b3u

3
2 (29)

where a1, a2, b1, b2, b3 are constants to be determined. When F (u) and D (u) are substituted in equation

(27), the nonlinear system of equation

−4αa32 + a1b1b2 − 4a2β = 0, (−12αa21a2 + 3a1b2b3)u = 0,

(−12αa1a
2
2 + a1b

2
2 + 2a1b1b3 − 4a1β)u

1
2 = 0, (−4αa31 + 2a1b

2
3)u

3
2 = 0

will be obtained. Then the unknown parameters a1, a2, b1, b2, b3 can be considered as

a2 = 0, a1 = a1, b1 = −
√
2β√
αa1

, b2 = 0 and b3 = −
√
2αa1 .

Hence, the solution of nonlinear equation (27) by means of coefficients is

F (u (x)) = u (x) = a1

√
β tan

[
1
2

√
β
(√

2x−
√
αa1c1

)]2
αa21

(30)
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where c1 is an integral constant. It is important to mention that solution (30) of equation (27) is satisfied by

using Mathematica.

Alternatively, the unknown parameters a1, a2, b1, b2, b3 can be considered as

a1 = a1, a2 = a2, b1 =

√
2
(
αa22 + β

)
√
αa1

, b2 = 2
√
2αa2, and b3 =

√
2αa1.

Hence, the other solution of nonlinear equation (27) with suitable coefficients is

F (u (x)) = u (x) = a2 + a1

√(√
αa2 −

√
β tan

[
1
2

√
β
(√

2x+
√
αa1C1

)])2
αa21

(31)

where C1 is an integral constant.

Remark 5 The same class of trigonometric solutions for differential equation (27) has been introduced from

the nonlinear trial equations (28) and (29).

4. Conclusion

The generalized trial equation method is defined and used for the solutions of some differential equations. The

generalized trial method is a very simple and powerful method for solutions of nonlinear ordinary differential

equations. The appropriate trial equation via the generalized trial equation can easily be written for many

nonlinear differential equations. Besides, this paper shows that nonlinear trial equations consisting of nonlinear

functions should be considered for many nonlinear differential equations. Since some effective trial equations

have been introduced in different studies, this paper also provides a general representation for trial equation

methods. Finally, new solutions of the undamped Duffing equation and the Poisson–Boltzmann equation are

obtained in this paper.
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