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Abstract: In this paper, we consider factorizations of elements of a divisor-closed multiplicative submonoid of a ring

and also factorizations of elements of a module as a product of elements coming from a divisor-closed multiplicative

submonoid of the ring and another element of the module. In particular, we study uniqueness and some other properties

of such factorizations and investigate the behavior of these factorizations under direct sum and product of rings and

modules.
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1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Unless explicitly

stated otherwise, we assume that all modules are nonzero. R denotes a ring and M denotes an R -module.

Moreover, by U(R), J(R), and N(R) we mean the set of units, Jacobson radical, and nilradical of R ,

respectively. Furthermore, Z(N), where N ⊆ M , means the set of zero divisors of N , that is, {r ∈ R|∃0 ̸=
m ∈ N : rm = 0} . Any other undefined notation is as in [5].

Factorization theory in commutative monoids has gained considerable attention in the last two decades,

especially when the considered semigroup is the semigroup of regular elements of a commutative ring; see for

example [7, 9, 10, 13–18, 21, 23]. In particular, a result of Facchini was the starting point for an entire new

development in factorization theory of monoids. This result states that if C is a class of R -modules closed under

finite direct sums, direct summands, and isomorphisms such that all modules in C have semilocal endomorphism

ring, then the semigroup of isomorphism classes of modules in C (denoted by V(C)) is a Krull monoid (see [11,

Theorem 3.4]). This result could be applied to get interesting results on properties of direct sum decomposition

of modules in C , from factorization properties of elements of V(C) or vice versa; see for example [7, 8, 12, 13].

In [3, 4], Anderson and Valdes-Leon generalized the theory of factorization in integral domains to

commutative rings with zero divisors and to modules as well. They called two elements of M , such as m

and n , associates, denoted by m ∼ n , when Rm = Rn . They also said that m and n are strong associates,

denoted by m ≈ n , when m = un for some u ∈ U(R). They defined m and n to be very strong associates,

denoted by m ∼= n , when they are associates and either both are zero or that from m = rn for some r ∈ R , we

can deduce r ∈ U(R).
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An element m ∈ M is called primitive (resp. strongly primitive, very strongly primitive), when m = rn

for some r ∈ R, n ∈ M implies m ∼ n (resp. m ≈ n , m ∼= n). A nonunit element a ∈ R is called irreducible

(resp. strongly irreducible, very strongly irreducible) if a = bc for some b, c ∈ R , implies a ∼ b or a ∼ c (resp.

a ≈ b or a ≈ c , a ∼= b or a ∼= c). Note that here by being associates in R , we mean being associates in R as

an R -module. Using these concepts they introduced factorization properties such as unique factorization and

bounded factorization in rings having zero divisors and in modules over such rings.

Here we investigate these factorization properties in rings and modules but with the restriction that the

ring elements appearing in the factorization come from a divisor-closed multiplicative submonoid of the ring.

Recall that a divisor-closed multiplicative submonoid (abbreviated as DMS ) of R means a submonoid S of

the multiplicative monoid of R , with the property that if rr′ ∈ S , then both r and r′ are in S (in some

commutative algebra texts such an S is called a saturated multiplicatively closed subset). In what follows, we

assume that S is a DMS of R . Thus 0 ∈ S if and only if S = R . If S ̸= R , we say that S is proper. It is

clear that U(R) ⊆ S . If S = U(R), the concepts that are defined in this article will become trivial. Hence we

assume that S ̸= U(R), unless explicitly specified otherwise.

We will see that the concept of regular factorization in a ring (see [4, Section 5]), can be viewed as the

special case of our work with S = R \ Z(R). Furthermore, these concepts will generalize the notion of regular

bounded factorization modules introduced in [23, Section 3].

To grasp the idea behind this work, let us give an example. Take Z as a Z -module and let S be the

DMS generated by 2, that is, S =
{
± 2k|k ∈ N ∪ {0}

}
. In the terminology we will define, the fact that every

element of Z can be written uniquely as 2np , where n ∈ N ∪ {0} and p is an odd integer, will be stated as “Z
is an S -UFM”, that is, Z has unique factorization with respect to S (see Example 2.12). In fact, this is the

generic meaning of having unique factorization with respect to a DMS.

In Section 2 of this paper, we state the definitions of the main ideas of this article and give various

examples. In Section 3, we study some basic properties of these concepts and finally, in Section 4, we investigate

how these notions behave under direct sum and product of rings and modules.

2. Basic concepts

Recall that in this paper, S is a DMS of R and so U(R) ⊆ S . We also assume that S ̸= U(R), unless explicitly

stated otherwise.

Definition 2.1 We say that two elements, m and n of M , are S -associates and write m ∼S n if there exists

s, s′ ∈ S , such that m = sn and n = s′m . They are called S -strong associates if m = un for some u ∈ U(R)∩S
and we denote it by m ≈S n . We call them S -very strong associates, denoted by m ∼=S n , when m ∼S n and

either m = n = 0 or that m = sn for some s ∈ S implies s ∈ U(R) .

Note that U(R) ∩ S = U(R) and hence ≈S in fact does not depend on S . In this definition and other

definitions that we give throughout this paper, in the case S = R , we drop the S and say primitive element,

associates, etc. One can easily verify that this notation is compatible with the definitions in the introduction.

Example 2.2 Set M = Z2∞ , R = Z , and S =
{
± 17k|k ∈ N ∪ {0}

}
. Then 1

16 + Z ∼ 3
16 + Z , but they are

not S -associates. Moreover, if S′ =
{
± 2k|k ∈ N ∪ {0}

}
, then although 1

2 + Z ∼=S′ 1
2 + Z , they are not very

strong associates.
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Definition 2.3 An R-module M is called S -présimplifiable, when from sm = m for an s ∈ S, 0 ̸= m ∈ M , we

can deduce s ∈ U(R) . Furthermore, we say R is présimplifiable in S , when rs = s for some 0 ̸= s ∈ S, r ∈ R

implies r ∈ U(R) .

To give an example, we need the following lemma. Here we say that a set A ⊆ M is finite up to units,

when there is a finite subset B ⊆ A such that for each a ∈ A there are b ∈ B and u ∈ U(R) such that a = ub ,

it means, A ⊆
∪

b∈B(U(R)b).

Lemma 2.4 Suppose that for each s ∈ S \U(R) there exists k ∈ N such that skM is finite up to units. Then

M is S -présimplifiable if and only if (S \U(R)) ⊆
√
Ann(M) .

Proof (⇐) If m = sm for an s ∈ S \ U(R) and m ∈ M , then snM = 0 for some n ∈ N and hence

m = snm = 0, as required (note that the finiteness condition of the statement is not used in the proof of this

side).

(⇒) Let s ∈ S \ U(R) and k ∈ N be such that skM is finite up to units. Then for each m ∈ M and

k′ > k , sk
′
m ∈ skM and hence the set {m, sm, s2m, . . .} is finite up to units. Therefore, sk1m = usk2m for

some u ∈ U(R) and k1 < k2 ∈ N . Thus (usk2−k1)(sk1m) = (sk1m) and since usk2−k1 ∈ S \ U(R) and M is

S -présimplifiable, we conclude that sk1m = 0. In particular, for each x ∈ skM there is a n ∈ N with snx = 0.

However, skM is finite up to units and so we can find a n ∈ N with snskM = 0, that is s ∈
√
Ann(M). 2

As a simple example, consider M = (⊕∞
i= 1Z8)⊕ Z9 as a Z -module and S = {± 2k|k ∈ N ∪ {0}} . Then

clearly M and S satisfy the condition of the previous lemma and it follows that M is not S -présimplifiable.

Note that in this example M itself is not finite up to units.

Example 2.5 Let R be a unique factorization domain (UFD), 0 ̸= x ∈ R \ U(R) , M = R
Rx and assume that

M is finite up to units (say R = Z and M = Zn , n ∈ N). Then M is S -présimplifiable if and only if x ≈ pα

for some α ∈ N , a prime element p ∈ R and S = {upk|k ∈ N ∪ {0}, u ∈ U(R)} .

Proof (⇐) Follows from the above lemma.

(⇒) Let x = vpk1
1 pk2

2 · · · pkt
t be the prime decomposition of x with v ∈ U(R) and s ∈ S \ U(R). By

2.4, s ∈
√
Rx = Rp1p2 · · · pt . Assume that s = rp1p2 · · · pt for some r ∈ R . By S being divisor-closed, p1 ∈ S

and since p1 is nonunit, again we have p1 ∈ Rp1 · · · pt . Thus t = 1 and x ≈ pk1
1 . Moreover, every prime divi-

sor of r is in S and hence in Rp1 , that is, r and hence s are strongly associated to powers of p1 , as required. 2

It should be mentioned that in the above example the finiteness condition on M is necessary, as the next

example shows.

Example 2.6 Let R = D[X] , where D is a UFD and M = R
RX2 . Then U(R) = U(D) and the elements of

the infinite set {x, x + 1, x + 2, . . .} , where x denotes the image of X in M , are not unit multiples of each

other. Consequently, M is not finite up to units. Note that if D is a field, then R is a principal ideal domain.

Moreover, if D = Z and S = {± 2αXβ |α, β ∈ N ∪ {0}} , then it is easy to check that M is S -présimplifiable.

In the sequel, we denote the closure of a multiplicative submonoid T of R by T̃ , which means the

smallest DMS of R containing T .
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Theorem 2.7 Assume that S and S′ where S ⊆ S′ are two DMS’s of R .

(i) If m,n ∈ M we have: m ∼=S′
n ⇒ m ∼=S n ⇒ m ≈S′

n ⇔ m ≈S n ⇒ m ∼S n ⇒ m ∼S′
n .

(ii) An R -module M is S -présimplifiable if and only if the relations ∼S , ≈S , and ∼=S coincide if and only

if ∼=S is reflexive.

(iii) Let S = 1̃ + I , where I is an ideal of R . Then M is S -présimplifiable if and only if Z(M)∩ I ⊆ J(R) .

(iv) A ring R is présimplifiable in S if and only if ∼, ≈ and ∼= coincide on S if and only if ∼= is reflexive

on S if and only if Z(S) ⊆ J(R) .

(v) If M is S -présimplifiable and s ∈ S \ Ann(M) , then all kinds of associativity and irreducibility are

equivalent for s .

Proof (i) and (ii) are easy to prove.

(iii) First suppose that M is S -présimplifiable and x ∈ Z(M) ∩ I . Thus there is an 0 ̸= m ∈ M such

that xm = 0. Now for each r ∈ R we have (1 +rx)m = m and also 1 +rx ∈ 1 +I ⊆ S . Thus 1 +rx ∈ U(R)

for all r ∈ R and hence x ∈ J(R).

Now suppose that Z(M) ∩ I ⊆ J(R) and sm = m for some s ∈ S, 0 ̸= m ∈ M . We must show that

s ∈ U(R). It suffices to show that for each maximal ideal M of R , s /∈ M . Note that S = R \
∪

P , where the

union is taken over prime ideals P of R containing I (see [5, p. 44, Exercise 7]). Thus if I ⊆ M , then s /∈ M

as required.

Therefore, suppose that i ∈ I \M . Now i(1 − s)m = 0 and hence i(1 − s) ∈ Z(M) ∩ I ⊆ J(R) ⊆ M .

However, since i /∈ M , we must have 1− s ∈ M and thus s /∈ M . This completes the proof of (iii).

(iv) If Z(S) ⊆ J(R) and rs = s for some 0 ̸= s ∈ S and r ∈ R , then (1 − r)s = 0 and hence

1 − r ∈ Z(S) ⊆ J(R). Thus r = 1 − (1 − r) ∈ U(R). The converse is similar and the proof of other parts of

(iv) is easy.

(v) Since s /∈ Ann(M), there is an m ∈ M such that sm ̸= 0. Suppose that s = rs for some r ∈ R . By

S being divisor-closed, r ∈ S . Now sm = r(sm) and since M is S -présimplifiable, r ∈ U(R). This shows that

s ∼= s . Now the result follows from [3, Theorem 2.2(2)]. 2

Note that the converses of implications in 2.7 (i), are not true as shown in Example 2.2 and [3, Example

2.3 and p. 445].

Corollary 2.8 The following are equivalent for an R -module M .

(i) M is S -présimplifiable for every proper DMS S of R .

(ii) M is S -présimplifiable for every DMS S of R of the form ˜1 +Rx for a nonunit x ∈ R .

(iii) M is présimplifiable.

In particular, every R -module is S -présimplifiable for every proper DMS S of R if and only if R is quasi-local.

Proof It is clear that (iii) ⇒ (i) ⇒ (ii).
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(ii) ⇒ (iii) If x ∈ Z(M), then since M is ˜1 +Rx -présimplifiable and by Theorem 2.7(iii), x ∈
Z(M) ∩ Rx ⊆ J(R). Thus Z(M) ⊆ J(R) and again by Theorem 2.7(iii) with I = R , M is présimplifi-

able. The final assertion follows from [4, p. 203]. 2

Definition 2.9 An m ∈ M is called S -primitive (resp. S -strongly primitive, S -very strongly primitive), when

m = sn for some s ∈ S, n ∈ M implies n ∼S m (resp. n ≈S m , n ∼=S m).

Example 2.10 (i) If we take Z as a Z-module, then its primitive elements are {1,−1} but its nonzero

S′ -primitive elements, where S′ is as in Example 2.2, are the elements of Z coprime to 2 .

(ii) Suppose that R is a UFD, x ∈ R , M = R
Rx and for each s ∈ S \ U(R) , GCD(s, x) ̸= U(R) , where

GCD(s, x) is the set of greatest common divisors of s and x . Then 0 ̸= ā ∈ M is S -very strongly

primitive if and only if GCD(a, p) = U(R) for all prime factors p of x with p ∈ S , where a is a preimage

of ā in R .

(iii) The Z-module Zn has no S -very strongly primitive element, if S contains a nonunit number coprime to
n .

(iv) Let n ∈ N and 0 ̸= a ∈ Z be such that (a, p) = 1 for all prime factors p of n with p ∈ S . Then the

image ā of a in the Z-module Zn is S -primitive.

Proof (i) Clear.

(ii) Let P be the set of all prime factors of x and P′ = P∩S . Let 0 ̸= a ∈ R such that GCD(a, p) = U(R)

for all p ∈ P′ and suppose that ā = sb̄ for some s ∈ S, b ∈ R . Thus for some r ∈ R , we have a = sb+ rx . If s

is a nonunit, then by assumption GCD(s, x) ̸= U(R) and hence there is a p ∈ P such that p|s . However, since

S is divisor-closed, p ∈ P′ . Now p|x and p|s , and so p|sb+ rx = a , which is a contradiction. Thus s must be

a unit and therefore ā is S -very strongly primitive.

Conversely, suppose that ā is S -very strongly primitive. If GCD(a, p) ̸= U(R) for some p ∈ P′ , then

ā = pb̄ , where b = a
p and p /∈ U(R), in contradiction with S -very strongly primitivity of ā . Therefore,

GCD(a, p) = U(R) for all p ∈ P′ .

(iii) Suppose that there is an s ∈ S \ U(R) with (s, n) = 1. Thus for some k ∈ N , we have

sk ≡ 1 (mod n). Therefore, for every m̄ ∈ Zn , m̄ = skm̄ and hence Zn has no S -very strongly primitive

element.

(iv) Note that if P′ , b , and s are as in (ii) with x replaced by n , then by a similar argument, we have

(s, n) = 1 and hence for some k ∈ N , sk ≡ 1 (mod n). Now ā = sb̄ , b̄ = sk−1ā and so ā ∼S b̄ . Thus ā is

S -primitive. 2

From now on, we set A = {irreducible, strongly irreducible, very strongly irreducible} and B =

{primitive, strongly primitive, very strongly primitive}.

Definition 2.11 By an S -factorization of m ∈ M with length k , we mean an equation m = s1 · · · skn where

si ’s are nonunits in S , k ∈ N ∪ {0} , and n ∈ M . If, moreover, α ∈ A, β ∈ B and si ’s are α and n is S -β ,

we call this an (α, β )-S -factorization. If every nonzero element of M has an (α, β )-S -factorization, we say

that M is (α, β )-S -atomic.
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We could similarly define the concepts of “S -associativity” and “S -irreducibility” for elements of R and

use them, instead of those defined in the introduction, in our work. However, if we take R as an R -module and

s, s′ ∈ S , then S -associativity for s and s′ turn to be equivalent with the usual associativity, because we have

assumed S to be divisor-closed. Consequently, since here we focus on elements of S , we use the usual notions

of associativity and irreducibility for ring elements.

Example 2.12 (i) If we take Z as a Z-module and S′ is as in Example 2.2, then an (irreducible, primitive)-

S′ -factorization of 0 ̸= k ∈ Z means an equation k = ± 2nk′ , where n ∈ N∪{0} and k′ is an odd integer.

It is obvious that this kind of factorization is unique up to the signs of k′ and 2n .

(ii) It follows easily from (ii) and (iii) of Example 2.10 that the Z-module Zn is (irreducible, very strongly

primitive)-S -atomic if and only if S does not contain any nonunit number coprime to n . However, we

can deduce from (iv) of Example 2.10 that Zn is an (irreducible, primitive)-S -atomic Z-module, for every

DMS, S of Z .

By an S -atomic factorization we mean an (irreducible, primitive)-S -factorization and by an S -atomic

module we mean a module that is (irreducible, primitive)-S -atomic. Moreover, we say two S -atomic factoriza-

tions m = s1 · · · skn = t1 · · · tk′n′ are isomorphic, if k = k′ , n ∼S n′ and for a permutation σ of {1, . . . , k} ,
we have si ∼ tσ(i) for all 1 ≤ i ≤ k . (One can use ‘∼=’ or ‘≈ ’ instead of ‘∼ ’ to get different isomorphisms of

S -factorizations, but as we will see in the next section, here we mainly focus on S -présimplifiable modules and

so we just work with the weakest form of isomorphism.)

Definition 2.13 We call a module M an S -unique factorization module (S -UFM) when every nonzero element

of M has exactly one S -atomic factorization up to isomorphism. Furthermore, we say that M is an S -bounded

factorization module (S -BFM) if for every 0 ̸= m ∈ M there is an Nm ∈ N such that the length of every S -

factorization of m is at most Nm .

We say that R is atomic in S when every nonzero nonunit element of S has a factorization into irreducible

elements of R and if these factorizations are unique up to order and associates, we say that R has unique

factorization (UF) inside S . Similarly we say that R has BF in S if the lengths of factorizations of every

nonzero nonunit element of S are bounded above.

One can easily check that if S = R \ Z(R), then R is atomic (resp. has UF, has BF) in S if and only

if in the terminology of [4, Section 5], R is r-atomic (resp. factorial, an r-BFR). Moreover, if S = R \ Z(M)

and M is an S -BFM, then in [23, Section 3] we have called M an r-BFM and have presented a necessary and

sufficient condition for M [x] to be an r-BFM over R[x] .

It is easy to see that if R has UF inside S , then it has BF inside S . Furthermore, if R has BF inside S

and for some s ∈ S, r ∈ R we have s = rs , then s = r2s = r3s = · · · and hence either s = 0 or r ∈ U(R). By

a similar argument one can easily see that every S -BFM is S -présimplifiable, but the following example shows

that there are S -UFMs that are not S -BFMs, even in the case S = R . The idea of this example is stated in

[4, p.206].

In this example, we use the concept of semigroup rings. If R is a ring and T is a semigroup, then the

semigroup ring of T over R denoted by R[x;T ] is the set of formal sums of the form
∑

t∈F rtx
t , where F is a

finite subset of T and rt ∈ R , which equipped with an addition and a product similar to that of polynomials
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forms a ring. Of course, for this ring to be commutative with identity, we in fact assume that T is a commutative

monoid. A nice text on semigroup rings is [19].

Example 2.14 Let Q≥0 be the additive semigroup of nonnegative rational numbers and D = C
[
x;Q≥0

]
. Set

M = {f ∈ D|f(0) = 0} and M = D
M . Then M is a UFM that is not présimplifiable.

Proof As noted (without proof) in [1, p. 3], D has no irreducible elements. To see this, let f(x) =

a0 +
∑n

i= 1 aix
pi
q be a nonunit element of D with ai ’s in C and pi ’s and q and n in N . Set y = x

1
2q . Then

f(x) = a0 +
∑n

i= 1 aiy
2pi is a polynomial in y with complex coefficients and degree at least 2. Consequently,

there are nonunit polynomials f1, f2 ∈ C[y] such that f(x) = f1(y)f2(y) = f1

(
x

1
2q

)
f2

(
x

1
2q

)
, whence f(x) is

not irreducible in D .

Now it is easy to check that M is a non-unique maximal ideal of D . Thus M is a simple D -module and

hence every nonzero element of M is primitive. Therefore, the only S -atomic factorization of 0 ̸= m ∈ M is

m = m and M is a UFM. On the other hand, since Z(M) = M ̸⊆ J(D), by 2.7(iii) with I = D , we see that

M is not présimplifiable. 2

The module in the previous example has the property that each of its nonzero elements is primitive. We

end this section by characterizing modules with this property.

Theorem 2.15 Every nonzero element of M is primitive if and only if M ∼=
⊕

a∈A
R
M , for some maximal

ideal M of R and an index set A if and only if Ann(M) is a maximal ideal of R .

Proof The last two conditions are clearly equivalent. Suppose that M =
⊕

a∈A
R
M . If for some 0 ̸= m,m′ ∈ M

we have m = rm′ ; then since R
M is a field and r /∈ Ann(M) = M , there is an r′ ∈ R such that rr′+M = 1 +M .

Now r′m = r′rm′ = m′ , that is, m ∼ m′ . Hence every nonzero element of M is primitive.

Conversely, suppose that every element of M is primitive. Assume that a ∈ A and 0 ̸= a′ ∈ Ra . Then

by primitivity of a′ we see that Ra′ = Ra . Consequently, Ra is a simple module and for some maximal ideal

Ma of R , Ra ∼= R
Ma

.

Assume that there exist a, b ∈ A such that Ma ̸= Mb . If Ra∩Rb ̸= 0, since Ra and Rb are simple, we

must have Ra = Rb and Ma = Mb , a contradiction. Therefore, Ra+Rb = Ra⊕Rb ∼= R
Ma

⊕ R
Mb

∼= R
Ma∩Mb

is

a cyclic submodule of M , say Ra ⊕ Rb = Rc . Now we have a ∈ Rc and Ra ̸= Rc , which is in contradiction

with the primitivity of a . Thus there is a maximal ideal M of R such that for all a ∈ A , Ra ∼= R
M and hence

Ann(M) = M . 2

3. Basic properties of S -factorizations

In this section, we state and prove some basic results on the properties of S -factorizations in modules.

Theorem 3.1 (i) An S -UFM is an S -BFM if and only if it is S -présimplifiable. In particular, if R is

atomic in S , then every S -UFM is an S -BFM.

(ii) A module M (resp. a ring R) is an S -BFM (resp. has BF in S ) if and only if it is S -atomic (resp.

is atomic in S ) and the length of S -atomic factorizations of each of its nonzero elements (resp. atomic

factorizations of nonzero nonunit elements of S ) is bounded.
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Proof (i) As noted in the previous section, every S -BFM is S -présimplifiable, whence one side of the assertion

is obvious. Suppose that M is an S -présimplifiable S -UFM and m = s1s2 · · · skm′ is an S -factorization of

0 ̸= m ∈ M . Also assume that N is the length of the unique S -atomic factorization of m .

Let s1m
′ = s′1s

′
2 · · · s′t1m

′
1 be the S -atomic factorization of s1m

′ . If t1 = 0, then since m′
1 is S -primitive

and M is S -présimplifiable, s1 must be a unit, which is a contradiction. Thus t1 ≥ 1. Now by writing down an

S -atomic factorization for s2m
′
1 and continuing this way, we get an S -atomic factorization of m with length

t1 + t2 + · · ·+ tk (where ti is the length of S -atomic factorization of sim
′
i−1 ). A similar argument shows that

each ti is at least 1 and hence k ≤ t1 + t2 + · · ·+ tk , which by the uniqueness of S -atomic factorizations must

equal N . Therefore, M is an S -BFM.

If R is atomic in S and M is an S -UFM and for some nonunit s ∈ S and nonzero m ∈ M , we have

sm = m , then by writing down the S -atomic factorization of m and an atomic factorization for s , we get

two different S -atomic factorizations for m , a contradiction. Hence M is S -présimplifiable and, by the above

argument, an S -BFM.

(ii) Suppose that M is an S -BFM. If m = s1s2 · · · snm′ is an S -factorization of 0 ̸= m ∈ M with

the maximum length, then every si must be irreducible and m′ must be S -primitive, else we get a longer

S -factorization. Thus M is S -atomic.

For the converse note that by an argument similar to the proof of (i), from each S -factorization of m ,

we can get an S -atomic factorization of m without reducing its length, from which the result follows. The ring

case is similar and even easier. 2

Example 3.2 The Z-module Zn is an S -UFM if and only if either n = p is prime and S = {±pk|k ∈ N∪{0}}
or n = 4 and S = {± 2k|k ∈ N ∪ {0}} .

Proof One can readily verify that in these cases M = Zn is an S -UFM. Conversely, if M is an S -UFM,

then by 3.1, since Z is an atomic ring, M is S -présimplifiable and by 2.5, n = pα for a prime number p and

S =
{
±pk|k ∈ N ∪ {0}

}
. However, we have pα−11̄ = pα−1(1̄ + p̄). Thus by the uniqueness of S -factorizations,

we get 1̄ ∼= 1̄ + p̄ or equivalently ± 1 = 1 + p (mod n). Hence either p = 0 (mod n), that is, α = 1 and n

is prime, or p = −2 (mod n), which means n = 4. 2

Proposition 3.3 The following are equivalent for a ring R .

(i) Every R -module is an S -UFM for every proper DMS, S of R .

(ii) Every R -module is an S -BFM for every proper DMS, S of R .

(iii) R is a zero dimensional quasi-local ring.

Proof (i) ⇒ (ii) Let S be a proper DMS of R . Then R is an S -UFM as an R -module. Thus each s ∈ S has

an S -atomic factorization such as s = s1s2 · · · snr , where each si is irreducible and r is primitive. However,

r ∈ S and it is easy to see that every S -primitive element of R that is in S is a unit. Therefore, R is atomic

inside S and by Theorem 3.1 every S -UFM is S -BFM, as required.

(ii) ⇒ (iii) Suppose that (iii) is not true. Then there exists an r ∈ R \ (N(R) ∪ U(R)). Consider

M =
∏

i∈N R⊕
i∈N R and set S to be the closure of {rk|k ∈ N ∪ {0}} . Then we have (1, r, r2, . . .) + ⊕R =
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r(0, 1, r, r2, . . .) + ⊕R = r2(0, 0, 1, r, . . .) + ⊕R = · · · , and M is not an S -BFM. However, S does not contain

0 and hence is a proper DMS, which is in contradiction with (ii), and the result follows.

(iii) ⇒ (i) Just note that the only proper DMS of R is U(R). 2

Example 3.4 Let K be a field, D = K [{xi}i∈N, y] , I = Dy2 +
∑

i∈N Dxi+ 1
i +

∑
i∈N Dy(1− xi

i) and R = D
I .

Then it is easy to see that R has exactly one prime ideal and hence by the above result every R module is a

UFM with respect to every proper DMS of R . However, ȳ = x̄i
iȳ for all i ∈ N . Consequently, R is not a BFR,

that is, there are R -modules that are not S -BFM when S = R .

In the sequel, we focus on S -présimplifiable modules, so that we can use Theorems 3.1 and 2.7.

Notation 3.5 In the rest of this paper, when we talk about an S -UFM such as M , we assume that M is

S -présimplifiabletoo.

Proposition 3.6 Let M be an R-module.

(i) If Ann(M) ∩ S ⊆ {0} and M is S -présimplifiable (resp. an S -BFM, an S -UFM), then inside S , R is

présimplifiable (resp. has BF, has UF).

(ii) If M is faithful and S -présimplifiable (resp an S -BFM), then R as an R -module is S -présimplifiable

(resp. an S -BFM).

Proof (i) Suppose that 0 ̸= s ∈ S and m ∈ M is such that sm ̸= 0. If s = rs for some r ∈ R , then because

S is divisor-closed r ∈ S and also (sm) = r(sm), whence if M is S -présimplifiable, then r ∈ U(R). Similarly

every factorization of s leads to an S -factorization of sm with the same length. Thus if M is an S -BFM, then

R has BF in S .

Moreover, if M is an S -UFM, then it is an S -BFM (note that we are using Notation 3.5). Thus R

has BF and hence is atomic inside S . Now by writing down an atomic factorization of s and appending it

with an S -atomic factorization of m , we get the unique S -atomic factorization of sm , whence up to order and

associates there exists exactly one atomic factorization for s .

(ii) Again if 0 ̸= r ∈ R and m ∈ M with rm ̸= 0, then an S -factorization of r , when we take R as an

R -module, leads to an S -factorization of rm with at least the same length. 2

Remark 3.7 Indeed, the proof of Proposition 3.6 shows that if s ∈ S \ Ann(M) is a nonunit and M is an

S -UFM (S -BFM), then s has a unique factorization into irreducibles (s has BF).

If R as an R -module is S -présimplifiable (resp. an S -BFM, an S -UFM), then according to Proposition

3.6(i) R is présimplifiable (resp. has BF, has UF) inside S . However, Example 4.14 shows that the converse is

not true.

Theorem 3.8 Let S ⊆ S′ be two DMS’s of R .

(i) If M is S′ -présimplifiable (resp. an S′ -BFM), then it is S -présimplifiable (resp. an S -BFM). Moreover,

in this case if 0 ̸= m,m′ ∈ M , then m ∼S′
m′ if and only if m ∼S m′ if and only if m = um′ for some

u ∈ U(R) and also if 0 ̸= s, s′ ∈ S′ \Ann(M) , then s ∼ s′ if and only if s = vs′ for some v ∈ U(R) .
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(ii) Set T = {ut1t2 · · · tk|k ∈ N ∪ {0}, each ti is an irreducible element in S′ \ S, u ∈ U(R)} . If M is an

S′ -UFM, then it is an S -UFM and nonzero S -primitive elements of M are exactly nonzero elements of

the form tm , for some t ∈ T and some S′ -primitive m ∈ M . If moreover T ∩ Ann(M) = ∅ , then T is

a DMS of R .

Proof (i) The first assertion is obvious and the second follows from Theorem 2.7.

(ii) Assume that M is an S′ -UFM. Suppose that 0 ̸= m ∈ M is S -primitive. If m = t1t2 · · · tkm′ is the

S′ -atomic factorization of m , then no ti can be in S , since m is S -primitive. Thus m = tm′ for some t ∈ T

and an S′ -primitive m′ ∈ M .

Conversely, assume that 0 ̸= ut1t2 · · · tkm = sm′ , where u ∈ U(R), ti ’s are irreducibles in S′ \ S , m

is an S′ -primitive element of M , m′ ∈ M , and s ∈ S \ U(R). By Remark 3.7, since s /∈ Ann(M), it has an

atomic factorization such as s = s1s2 · · · st . Let m′ = s′1s
′
2 · · · s′t′m′′ be the S′ -atomic factorization of m′ .

Now ut1t2 · · · tkm = s1s2 · · · sts′1s′2 · · · s′t′m′′ and by uniqueness of S′ -atomic factorizations, for some i

we must have ti ∼ s1 . Thus ti is a unit multiple of s1 by (i), and hence is in S , which is a contradiction. From

this contradiction we conclude that ut1t2 · · · tkm is S -primitive.

To see that M is an S -UFM, first note that it is an S′ -BFM and by (i), an S -BFM. Thus M is S -

atomic. Now let m = s1 · · · skn and m = s′1 · · · s′k′n′ be two S -atomic factorizations of 0 ̸= m ∈ M . Suppose

that n = t1 · · · tpa and n′ = t′1 · · · t′p′a′ are the S′ -atomic factorizations of n and n′ , respectively.

Since n and n′ are S -primitive, ti ’s and t′i ’s are in S′ \ S . However, by uniqueness of S′ -atomic

factorizations of m , each si must be an associate of some s′i or t′i , but si ∼ t′j results in t′j ∈ S , which is a

contradiction. Therefore, each si is an associate of some s′i . Similarly each s′i is an associate of some si . Thus

in fact we can assume that k = k′ and for a reordering of s′i ’s, we have si ∼ s′i for each 1 ≤ i ≤ k .

By a similar reasoning, we see that p = p′ and we can assume ti = vit
′
i for vi ∈ U(R) and 1 ≤ i ≤ p .

Furthermore, a = ua′ for some u ∈ U(R) and hence if we set v = v1 · · · vpu , then n = vn′ , that is, n ∼S n′ .

Thus the two S -atomic factorizations of m are isomorphic. Hence M is an S -UFM.

Now suppose that T ∩ Ann(M) = ∅ . It is obvious that T is closed under multiplication and 1 ∈ T .

Suppose that xy ∈ T , say xy = ut1t2 · · · tk for irreducible elements ti ∈ S′ \ S and u ∈ U(R). Since xy ∈ S′

and S′ is divisor-closed, we have x ∈ S′ and y ∈ S′ .

By 3.7, x , y , and xy have unique atomic factorizations. Let x = s1 · · · sp and y = s′1 · · · s′p′ be the

atomic factorizations of x and y , respectively. By the uniqueness of atomic factorizations of xy , each si must

be a unit multiple of one of the ti ’s and hence cannot be in S . Thus si ’s are in S′ \ S and hence x ∈ T .

Similarly y ∈ T . 2

Theorem 3.9 Assume that S∩Z(M) = ∅ and S ⊆ S′ be two DMS’s of R . Let T = S−1S′ =
{

r
s ∈ S−1R|r ∈ S′} .

If M is S -présimplifiable (an S -BFM) and S−1M as an S−1R-module is T -présimplifiable (a T -BFM), then

M is S′ -présimplifiable (an S′ -BFM).

Proof First note that if m ∈ M , r ∈ R , and s ∈ S , then since S ∩ Z(M) = ∅ , we have m
1 = 0 if and only

if m = 0 and since S is divisor-closed we have r
s ∈ U

(
S−1R

)
if and only if r ∈ S .

Suppose that M is an S -BFM, S−1M is a T -BFM, and let m = s1s2 · · · sks′1s′2 · · · s′k′m′ be an S′ -

factorization of 0 ̸= m ∈ M , where si ’s are in S and s′i ’s are in S′ \ S . Since M is an S -BFM, we have

k ≤ N , where N is the bound on the lengths of S -factorizations of m .
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Now m
1 = s1

1 · · · sk
1

s′1
1 · · · s′

k′
1

m′

1 . Since S−1M is a T -BFM, there is an upper bound such as N ′ on the

number of nonunit elements in T -factorizations of 0 ̸= m
1 . Thus k′ ≤ N ′ and N +N ′ is a bound on the length

of S′ -factorizations of m . The présimplifiable case is similar. 2

The following example shows that the condition S ∩ Z(M) = ∅ is necessary in Theorem 3.9.

Example 3.10 If M = Z2∞ ⊕Z as a Z-module, S =
{
± 2k|k ∈ N ∪ {0}

}
and S′ = Z , then M is S -présim-

plifiable and S−1M is an (S−1S′)-UFM, but M is not S′ -présimplifiable.

If S ∩ Z(M) ̸= ∅ , then we can apply Theorem 3.9 with S0 = S \ Z(M) ⊆ S′ . However, in some cases

like the above example, S0 = U(R) and applying Theorem 3.9 with S0 is of no use.

The converse of Theorem 3.9 is not true. For example, if R is the ring of integer-valued polynomials over

Q , that is, {f ∈ Q[x]|f(Z) ⊆ Z} , then R is a BFR (that is, R as an R -module is a BFM), but for some prime

ideal P of R , RP is not a BFR (see [1, Example 2.7(b)]). Thus if S = R \P , S′ = R = M , then although M

is an S′ -BFM, but S−1M is not an (S−1S′)-BFM as an S−1R -module.

Question 3.11 Does the UFM version of Theorem 3.9 hold?

Consider the UFM version of Theorem 3.9 in the very special case that R is a domain and M = S′ = R .

In this case, the question is “can we say that R is a UFD, assuming that S−1R is a UFD and R is an S -UFM

as an R -module?” This is an example of what some authors call ‘Nagata-type’ questions. This type of question,

which is well-studied, asks “under what conditions can we deduce that R is a UFD, assuming that S−1R is a

UFD?” For example, if R is a Krull domain, S is generated by a set of primes and S−1R is a UFD, then R

is a UFD (see [20, Corollary 8.32]). To see some other ‘Nagata-type’ theorems and a brief literature review of

this subject see [2, Section 3].

4. S -factorizations in decomposable rings and modules

The proof of the following result is easy and we leave it to the reader.

Proposition 4.1 Assume that for each i ∈ I , Mi is an R -module, M =
⊕

i∈I Mi and N =
∏

i∈I Mi . Then

M is S -présimplifiable (an S -BFM) if and only if N is S -présimplifiable (an S -BFM) if and only if each Mi

is S -présimplifiable (an S -BFM).

To obtain a similar result on S -UFMs, we first need a lemma.

Lemma 4.2 Suppose that each Mi (i ∈ I) is an R -module and M =
∏

i∈I Mi . Also assume that Mi ’s are

S -UFMs and 0 ̸= mi ∈ Mi . If (mi)i∈I = a(xi)i∈I = b(yi)i∈I for some a, b ∈ S , xi, yi ∈ Mi such that (xi)i∈I

and (yi)i∈I are S -primitive elements of M , then there exist unit elements u and vi ’s in R such that a = ub ,
xi = viyi .

Proof Assume that s1, . . . , sk ∈ S are the irreducible factors that are common (up to associates) in the

S -atomic factorizations of all mi ’s, and let tij ’s (1 ≤ j ≤ ni ) be the other irreducible factors of mi . More

concretely, let

mi = sαi1
1 sαi2

2 · · · sαik

k tβi1

i1 · · · tβini
ini

z (1)
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be the S -atomic factorization of mi . By Remark 3.7, since a, b ∈ S \Ann(M) and M is an S -UFM, a and b

have atomic factorizations. By appending an atomic factorization of a to an S -atomic factorization of xi , we

get an S -atomic factorization of mi . However, by Mi ’s being S -UFMs, these factorizations must be isomorphic

to (1).

Because (xi) is S -primitive, there is no common irreducible in the S -atomic factorizations of xi ’s. In

addition, every irreducible element in the atomic factorization of a is a common factor of all mi ’s and hence

must be one of the si ’s. Using these notes, it is easy to see that in fact

a = tsγ1

1 · · · sγk

k ,

xi = lis
αi1−γ1

1 · · · sαik−γk

k tβi1

i1 · · · tβini
ini

z,

where γj = mini∈I(αij) for 1 ≤ j ≤ k and t, li ∈ U(R) for all i ∈ I .

A similar argument shows that b and yi ’s must have similar formulations as a and xi ’s, respectively,

and the only difference can happen in the unit multiples. Thus b and yi ’s are unit multiples of a and xi ’s,

respectively, as required. 2

Theorem 4.3 Assume that for each i ∈ I , Mi is an R -module, M =
⊕

i∈I Mi , and N =
∏

i∈I Mi . Then M

is an S -UFM if and only if N is an S -UFM if and only if each Mi is an S -UFM and S∩Z(Mi) = S∩Ann(Mj)

for each i, j ∈ I .

Proof Suppose that N is an S -UFM. We will show that the conditions on Mi ’s hold. First assume

that I = {1, 2} . Because N is an S -BFM and by 4.1, each Mi is an S -BFM and S -atomic. One can

easily check that for each 0 ̸= m ∈ M1 , (m, 0) is S -primitive in N if and only if m is so in M1 . Thus,

if m = s1s2 · · · skx = s′1s
′
2 · · · s′k′x′ are two nonisomorphic S -atomic factorizations of m , then (m, 0) =

s1s2 · · · sk(x, 0) = s′1s
′
2 · · · s′k′(x′, 0) are two nonisomorphic S -atomic factorizations of (m, 0), a contradiction.

From this contradiction we deduce that M1 (similarly M2 ) is an S -UFM.

Now suppose that s ∈ S∩Z(M2). Thus sm
′ = 0 for some 0 ̸= m′ ∈ M2 . Also suppose that s /∈ Ann(M1)

and there is an m ∈ M1 such that sm ̸= 0. We can assume that m is S -primitive (else replace m with the

S -primitive element in the S -atomic factorization of m).

According to Remark 3.7, s has an atomic factorization say s = s1 · · · sk . Now (sm, 0) = s1 · · · sk(m, 0) =

s1 · · · sk(m,m′) are two S -factorizations of (sm, 0) and the former is S -atomic. By replacing (m,m′) with

its S -atomic factorization and using the fact that N is an S -UFM, we see that in fact (m,m′) is S -primitive

and (m, 0) ∼S (m,m′). Since N is S -présimplifiable, this means (m,m′) = u(m, 0) for some u ∈ U(R),

which is impossible. Therefore, s ∈ Ann(M1) and whence S ∩ Z(M2) ⊆ S ∩Ann(M1). By a similar reasoning,

S ∩ Z(M1) ⊆ S ∩Ann(M2) and so

S ∩ Z(M1) ⊆ S ∩Ann(M2) ⊆ S ∩ Z(M2) ⊆ S ∩Ann(M1) ⊆ S ∩ Z(M1)

and hence all the inequalities must be equalities.

The result for the case that |I| < ∞ follows by an easy induction. Now assume that |I| = ∞ and

i ̸= j ∈ I . Since N = Mi⊕Mj ⊕
(∏

i,j ̸=k∈I Mk

)
, it follows from the finite case that S∩Z(Mi) = S∩Ann(Mj),
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as required. Assuming that M (instead of N ) is an S -UFM and by a similar argument, one can deduce that

each Mi is an S -UFM and S ∩ Z(Mi) = S ∩Ann(Mj) for each i, j ∈ I .

Conversely, suppose that Mi ’s are S -UFMs and S ∩ Z(Mi) = S ∩ Ann(Mj) for each i, j ∈ I . By

Proposition 4.1, N is an S -BFM and hence S -atomic. Let 0 ̸= m = (mi) ∈ N . First assume that all mi ’s are

nonzero and (mi) = s1 · · · sk(xi) = t1 · · · tl(yi) are two S -atomic factorizations of m . By Lemma 4.2, there are

u, vi ∈ U(R) (i ∈ I ) such that xi = viyi and s = s1 · · · sk = ut1 · · · tl . Because s ∈ S \ Ann(M), by Remark

3.7, s has just one unique atomic factorization. Hence l = k and after reordering ti ’s, we have si ∼ ti for each

1 ≤ i ≤ k .

In addition, if we set t = t1 · · · tk , we have tyi = mi = sxi = utviyi and hence t(1−uvi)yi = 0. However,

t ∈ S \ Ann(Mi) = S \ Z(Mi), whence (1 − uvi)yi = 0 and uxi = uviyi = yi . Thus (xi) ∼S (yi), that is, m

has a unique S -atomic factorization up to isomorphism.

Now assume that mi = 0 for i ∈ J ⊆ I and mi ̸= 0 for i ∈ I \J . If (mi) = s1 · · · sk(xi) is an S -atomic

factorization of m and xj ̸= 0 for a j ∈ J , then s1 · · · sk ∈ S∩Z(Mj) ⊆ Ann(Mi) for all i and hence m = 0, a

contradiction. Thus xj = 0 for all j ∈ J . Using this, one can see that nonisomorphic S -atomic factorizations

of m in N lead to nonisomorphic S -atomic factorizations of m′ = (mi)i∈I\J in N ′ =
∏

i∈I\J Mi . However,

by the above case in which all mi ’s are nonzero, m′ has a unique S -atomic factorization in N ′ . Therefore, m

has just a unique S -atomic factorization in N . Consequently, N is an S -UFM.

To see that M is also an S -UFM, note that any S -atomic factorizations of an element of M is indeed

an S -atomic factorization in
⊕

i∈F Mi for a finite subset F of I . However, for the finite index sets the result

follows from the product case proved above. 2

Proposition 4.4 For an R -module M , S ∩ Z(M) = S ∩ Ann(M) for every proper DMS S of R if and only

if Z(M) = N(R) ∪Ann(M) .

Proof (⇒) Clearly N(R)∪Ann(M) ⊆ Z(M). Let x ∈ Z(M)\N(R). Then the closure S of {xn|n ∈ N∪{0}}
is a proper DMS of R and x ∈ S ∩ Z(M) ⊆ Ann(M).

(⇐) Let s ∈ S ∩ Z(M). If s /∈ Ann(M), then s ∈ N(R), whence 0 ∈ S and S = R , a contradiction. 2

Note that S ∩ Z(M) = S ∩Ann(M) for every DMS S of R (including S = R) if and only if Z(M) = Ann(M)

if and only if the zero submodule of M is prime. (A submodule N of M is called prime when from rm ∈ N

for r ∈ R , m ∈ M , we can deduce that either m ∈ N or rM ⊆ N . This notion has been studied extensively;

see for example [6, 22].)

In what follows, we assume that R =
∏

α∈A Rα and that πα is the canonical projection from R onto

Rα . If for each α ∈ A , Sα is a DMS of Rα , then obviously
∏

α∈A Sα is a DMS of R . Set

S =

{
(sα)α∈A ∈

∏
α∈A

Sα

∣∣∣sα ∈ U(Rα) for all but finitely many α ∈ A

}
.

It can easily be verified that S is a DMS of R .

Notation 4.5 We call the above set S , the weak product of Sα ’s, and denote it by
∏w

α∈A Sα .
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Notation 4.6 By (rα; r) α∈A
α ̸=α0

, we mean the element (aα) ∈ R , with aα = rα for all α ∈ A , except for α = α0

and aα0 = r .

Thus, for example, if α ̸= α0 , then πα

(
(1; 0) α∈A

α ̸=α0

)
= 1 and πα0

(
(1; 0) α∈A

α ̸=α0

)
= 0.

Proposition 4.7 Suppose that S is a DMS of R and Sα = πα(S) . Then each Sα is a DMS of Rα and∏w
α∈A Sα ⊆ S ⊆

∏
α∈A Sα .

Proof Obviously each Sα is closed under multiplication. If xy ∈ Sβ for a β ∈ A , then there is an s = (sα) ∈ S

with sβ = xy . Now (1;x)α∈A
α ̸=β

(sα; y)α∈A
α ̸=β

= s ∈ S . Since S is divisor-closed, (1;x)α∈A
α ̸=β

and (sα; y)α∈A
α ̸=β

must be

in S and hence x, y ∈ Sβ .

It is clear that S ⊆
∏

α∈A Sα . Suppose that s = (sα) ∈ S′ =
∏w

α∈A Sα . Thus for each α ∈ A , we have

sα ∈ U(Rα) except for a finite number of α ’s, say α1, . . . , αn . For each 1 ≤ i ≤ n there exists a ti ∈ S such

that παi(ti) = sαi . However, (πα(ti); 1) α∈A
α ̸=αi

(1;παi(ti)) α∈A
α ̸=αi

= ti ∈ S . Because S is divisor-closed, we must

have t′i = (1;παi(ti)) α∈A
α ̸=αi

∈ S .

Choose u ∈ R such that for each α ∈ A \ {α1, . . . , αn} , we have πα(u) = sα and for 1 ≤ i ≤ n ,

παi(u) = 1. Thus every component of u is a unit and hence u ∈ U(R) ⊆ S . Now s = ut′1t
′
2 · · · t′n ∈ S , as

required. 2

Corollary 4.8 If |A| < ∞ , then every DMS of R is a product of DMS’s of Rα ’s.

Example 4.9 Set A = N and for each i ∈ N , let Ri = Z and Si =
{
± 2k|k ∈ N ∪ {0}

}
. Moreover, let S be the

subset of
∏

i∈N Si , for which almost all odd components of its elements are units. Then (2, 2, . . .) ∈
∏

i∈N Si \S
and (1, 2, 1, 2, . . .) ∈ S \

∏w
i∈N Si . Thus for this S the two inequalities of Proposition 4.7 are strict.

Lemma 4.10 Let r = (rα)α∈A and s = (sα)α∈A be two elements of R .

(i) r ∼ s if and only if for each α ∈ A , we have rα ∼ sα .

(ii) r is irreducible if and only if each rα ∈ U(Rα) except for one α0 and that rα0 is irreducible in Rα0 .

Proof See [3, Theorem 2.15]. 2

Theorem 4.11 Assume that |A| > 1 , S is a DMS of R , and Sα = πα(S) .

(i) R is présimplifiable in S , if and only if for each α ∈ A , Rα is présimplifiable in Sα and Sα ̸= Rα .

(ii) R has BF (UF) in S , if and only if for each α ∈ A , Rα has BF (UF) in Sα , Sα ̸= Rα , and S =
∏w

α∈A Sα .

Proof (i) Assume that R is présimplifiable inside S . If for some β ∈ A , rβ ∈ Rβ , and 0 ̸= sβ ∈ Sβ we have

rβsβ = sβ , then (1; rβ)α∈A
α ̸=β

(1; sβ)α∈A
α ̸=β

= (1; sβ)α∈A
α ̸=β

. However, by Proposition 4.7, (1; sβ)α∈A
α ̸=β

∈
∏w

α∈A Sα ⊆ S .

Thus from R being présimplifiable in S , we deduce that rβ ∈ U(Rβ) and hence Rβ is présimplifiable in Sβ .
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If for some β ∈ A , we have 0 ∈ Sβ , then s = (1; 0)α∈A
α ̸=β

∈ S and s2 = s , but 0 ̸= s /∈ U(R), which is

impossible. Thus for all α ∈ A , we have Rα ̸= Sα .

Conversely, suppose that for all α ∈ A , Rα is présimplifiable in Sα and Rα ̸= Sα . If for an r = (rα) ∈ R

and an s = (sα) ∈ S , we have rs = s , then for each α ∈ A , rαsα = sα and since sα ̸= 0 (because Rα ̸= Sα ),

we have rα ∈ U(Rα). Therefore, r ∈ U(R).

(ii) First suppose that R has BF in S . Then by (i), we see that for each α ∈ A , we have Rα ̸= Sα .

Moreover, by mapping s ∈ Sβ to (1; s)α∈A
α ̸=β

∈ S , one can easily see that lengths of factorizations of s are

bounded.

Now suppose that there is an s = (sα) ∈ S with an infinite number of nonunit components. We

can assume that N ⊆ A and for each i ∈ N , the i ’th component of s is a nonunit. For each n ∈ N set

an = (1; sn)α∈A
α ̸=n

and let bn be the element of R with πi(bn) = 1 for 1 ≤ i ≤ n and with other components as

s .

However, now we have s = a1b1 = a1a2b2 = · · · and since each ai and bi has at least one nonunit

component, these are a family of factorizations of s with arbitrary large lengths, a contradiction. Therefore,

no s ∈ S has an infinite number of nonunit components and S ⊆
∏w

α∈A Sα . The converse inclusion holds by

Proposition 4.7.

Conversely, assume that S =
∏w

α∈A Sα and for all α ∈ A , Rα has BF in Sα and Sα ̸= Rα . Let

s = (sα) ∈ S and suppose that sα1 , . . . , sαk
are the nonunit components of s . Assume that s = t1 · · · tn , where

for each 1 ≤ i ≤ n , ti ∈ S \ U(R). For each 1 ≤ j ≤ k , set pj to be the number of ti ’s with a nonunit αj ’th

component. Since the αj ’th components of ti ’s form a factorization for sαj , we get pj ≤ Nj , where Nj is a

bound on the lengths of factorizations of sαj .

Furthermore, let qi be the number of nonunit components of ti . Then 1 ≤ qi for each 1 ≤ i ≤ n . Hence

n ≤
∑n

i= 1 qi = the total number of nonunit components of ti ’s =
∑k

j= 1 pj ≤
∑k

j= 1 Nj . Thus
∑k

j= 1 Nj is a

bound on the lengths of factorizations of s and R has BF inside S .

Finally suppose that R has UF in S . Then by the BF case, we see that S =
∏w

α∈A Sα and for each

α ∈ A , Rα ̸= Sα . Moreover, by mapping s ∈ Sβ to (1; s)α∈A
α ̸=β

∈ S and using Lemma 4.10, one can easily see

that nonisomorphic atomic factorizations of s lead to nonisomorphic atomic factorizations of (1; s)α∈A
α̸=β

. Hence

every Rα must have UF inside Sα .

Conversely, assume that each Rα has UF in Sα and s = t1 · · · tn is an atomic factorization of 0 ̸= s ∈
S =

∏w
α∈A Sα . Suppose that sα1 , . . . , sαk

are the nonunit components of s . By Lemma 4.10(ii), for each

1 ≤ i ≤ n , ti has exactly one nonunit component and that component is irreducible. Suppose that the nonunit

components of t1, . . . , tn1 occur at the place of α1 , the nonunit components of tn1+ 1, . . . , tn2 occur at the place

of α2 , and so on.

Hence sαi = παi

(
tni−1+ 1

)
· · ·παi (tni) is an atomic factorization of sαi . Thus using Lemma 4.10(i) and

the fact that each Rα has UF in Sα , it can easily be verified that every atomic factorization of s is isomorphic

to s = t1 · · · tn . This concludes the proof. 2

At the end of this article, we consider modules over decomposable rings. Note that if R = R1 × R2 for

two nontrivial rings R1 and R2 and M is an R -module, then M = (1, 0)M ⊕ (0, 1)M and also M1 = (1, 0)M

and M2 = (0, 1)M are modules over R1 and R2 , respectively.
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Proposition 4.12 Let R1 and R2 be nontrivial rings and M1 and M2 be modules, not both zero, over R1 and

R2 , respectively. In addition, suppose that S1 and S2 are DMS’s of R1 and R2 , respectively. Set R = R1×R2 ,

M = M1 ⊕M2 , and S = S1 × S2 .

Then M as an R -module is S -présimplifiable (resp. an S -BFM, an S -UFM), if and only if either

S = U(R) or one of the Mi ’s, say M1 , is zero, S1 = U(R1) , and M2 is S2 -présimplifiable (an S2 -BFM, an

S2 -UFM).

Proof Assume that M is S -présimplifiable. If 0 ̸= m ∈ M1 and s ∈ S2 \U(R2), then (1, s)(m, 0) = (m, 0), a

contradiction with M being S -présimplifiable. Thus, if M1 ̸= 0, then S2 = U(R2). Similarly, if M2 ̸= 0, then

S1 = U(R1). Thus, if neither of M1 and M2 is zero, then S = U(R). Moreover, it is easy to see that each Mi

must be an Si -présimplifiable Ri -module. The cases of S -BFM and S -UFM are similar and the proof of the

converse is easy. 2

Corollary 4.13 Assume that R =
∏

i∈I Ri and πi(S) = Si , where each Ri is a ring and Si is a DMS of Ri ,

and let M be an R -module. Then M is S -présimplifiable (resp. an S -BFM, an S -UFM) if and only if either

S = U(R) or there is an i0 ∈ I such that
∏

i0 ̸=i∈I Ri ⊆ Ann(M) , Si = U(Ri) for each i0 ̸= i ∈ I and M is

Si0 -présimplifiable (resp. an Si0 -BFM, an Si0 -UFM) as an Ri0 -module.

Example 4.14 Let R = Z× Z and S = R \ Z(R) = (Z \ {0})× (Z \ {0}) . Then by Theorem 4.11, R has UF

inside S , but if we take R as an R -module, Proposition 4.12 says that it is not even S -présimplifiable.

Acknowledgments

The authors would like to thank Prof H Sharif of Shiraz University for his helpful comments and discussions.

We also thank the reviewer for his/her careful reading of the manuscript and valuable comments.

References

[1] Anderson DD, Anderson DF, Zafrullah M. Factorization in integral domains. J Pure Appl Algebra 1990; 69: 1-19.

[2] Anderson DD, Anderson DF, Zafrullah M. Factorization in integral domains II. J Algebra 1992; 152: 78-93.

[3] Anderson DD, Valdes-Leon S. Factorization in commutative rings with zero divisors. Rocky Mt J Math 1996; 26:

439-480.

[4] Anderson DD, Valdes-Leon S. Factorization in commutative rings with zero divisors, II. In: Anderson DD, editor.

Factorization in Integral Domains. New York, NY, USA: Marcel Dekker, 1997, pp. 197-219.

[5] Atiyah MF, Macdonald IG. Introduction to Commutative Algebra. London, UK: Addison-Wesley, 1969.

[6] Azizi A, Sharif H. On prime submodules. Honam Math J 1999; 21: 1-12.

[7] Baeth NR, Geroldinger A. Monoids of modules and arithmetic of direct-sum decompositions. Pac J Math 2014; 271:

257-319.

[8] Baeth NR, Wiegand RA. Factorization theory and decompositions of modules. Am Math Mon 2013; 120: 3-34.

[9] Chang GW, Smertnig D. Factorization in the self-idealization of a PID. B Unione Mat Ital 2013; 6: 363-377.

[10] Chun S, Anderson DD, Valdez-Leon S. Reduced factorizations in commutative rings with zero divisors. Commun

Algebra 2011; 39: 1583-1594.

498

http://dx.doi.org/10.1016/0022-4049(90)90074-R
http://dx.doi.org/10.1016/0021-8693(92)90089-5
http://dx.doi.org/10.1216/rmjm/1181072068
http://dx.doi.org/10.1216/rmjm/1181072068
http://dx.doi.org/10.2140/pjm.2014.271.257
http://dx.doi.org/10.2140/pjm.2014.271.257
http://dx.doi.org/10.4169/amer.math.monthly.120.01.003
http://dx.doi.org/10.1080/00927871003666397
http://dx.doi.org/10.1080/00927871003666397


NIKSERESHT and AZIZI/Turk J Math

[11] Facchini A. Direct sum decompositions of modules, semilocal endomorphism rings, and Krull monoids. J Algebra

2002; 256: 280-307.

[12] Facchini A. Geometric regularity of direct-sum decompositions in some classes of modules. J Math Sci 2006; 139:

6814-6822. (Translated from: Fundam Prikl Mat 2004; 10: 231-244.)

[13] Facchini A. Direct-sum decompositions of modules with semilocal endomorphism rings. B Math Sci 2012; 2: 225-279.

[14] Foroutan A, Hassler W. Factorization of powers in C-monoids. J Algebra 2006; 304: 755-781.

[15] Frei C, Frisch S. Non-unique factorization of polynomials over residue class rings of the integers. Commun Algebra

2011; 39: 1482-1490.

[16] Frisch S. A construction of integer-valued polynomials with prescribed sets of lengths of factorizations. Monatsh

Math 2013; 171: 341-350.

[17] Geroklinger A, Halter-Koch F. Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory. Boca

Raton, FL, USA: Chapman & Hall/CRC, 2006.

[18] Geroldinger A, Ramacher S, Reinhart A. On v-marot mori rings and c-rings. J Korean Math Soc 2015; 52: 1-21.

[19] Gilmer R. Commutative Semigroup Rings. Chicago, IL, USA: The University of Chicago Press, 1984.

[20] Larsen MD, McCarthy PJ. Multiplicative Theory of Ideals. New York, NY, USA: Academic Press, 1971.

[21] Mooney CP. Generalized factorization in commutative rings with zero-divisors. PhD, University of Iowa, Iowa City,

IA, USA, 2013.

[22] Nikseresht A, Azizi A. Envelope dimension of modules and the simplified radical formula. Can Math Bull 2103; 56:

683-694.

[23] Nikseresht A, Azizi A. On factorization in modules. Commun Algebra 2011; 39: 292-311.

499

http://dx.doi.org/10.1016/S0021-8693(02)00164-3
http://dx.doi.org/10.1016/S0021-8693(02)00164-3
http://dx.doi.org/10.1007/s10958-006-0393-2
http://dx.doi.org/10.1007/s10958-006-0393-2
http://dx.doi.org/10.1007/s13373-012-0024-9
http://dx.doi.org/10.1016/j.jalgebra.2005.11.006
http://dx.doi.org/10.1080/00927872.2010.549158
http://dx.doi.org/10.1080/00927872.2010.549158
http://dx.doi.org/10.1007/s00605-013-0508-z
http://dx.doi.org/10.1007/s00605-013-0508-z
http://dx.doi.org/10.4134/JKMS.2015.52.1.001
http://dx.doi.org/10.4153/CMB-2012-029-3
http://dx.doi.org/10.4153/CMB-2012-029-3
http://dx.doi.org/10.1080/00927870903527535

	Introduction
	Basic concepts
	Basic properties of S-factorizations
	S-factorizations in decomposable rings and modules

