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Abstract: We consider a two-obstacle problem with measure data. For measures that do not charge sets of zero p(·)-
capacity, we obtain the existence and uniqueness of the solution. On the other hand, for the measure concentrated

on a set with zero p(·)-capacity, we prove a nonexistence result in the sense that when one looks for solutions via

approximation, one cannot find a reasonable solution; see Theorem 2.3 and Remark 2.1 below.
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1. Introduction

Differential equations and variational problems involving variable exponents have attracted more and more

attention in recent years. Such problems are interesting from the purely mathematical point of view. Moreover,

they have potential applications in various fields such as flow through porous media [1], thermorheological fluids

[2], image processing [5, 10], and especially electrorheological fluids (an essential class of non-Newtonian fluids),

which have been used not only in fast-acting hydraulic valves and clutches, brakes, and shock absorbers, but

also in some new fields such as accurate abrasive polishing, robotics, and space technology[3, 18].

Let Ω be a bounded domain in RN (N > 2) and let µ be a bounded Radon measure on Ω. Let p ∈ C(Ω)

with 1 < p− = minx∈Ω p(x) ≤ p+ = maxx∈Ω p(x) < N . In this paper, we consider the double-obstacle problem

involving a variable exponent, which consists of finding a function u ∈ Kφ
ψ such that the following variational

inequality holds: ∫
Ω

|∇u|p(x)−2∇u∇(v − u) ≥
∫
Ω

µ(v − u)dx, ∀v ∈ Kφ
ψ , (1.1)

where Kφ
ψ = {v ∈W

1,p(·)
0 (Ω), ψ ≤ v ≤ φ}, φ, ψ ∈W

1,p(·)
0 (Ω) ∩ L∞(Ω), ψ ≤ φ a.e. in Ω.

We recall that obstacle problems with constant exponents and data of L1 or measure type have been

studied largely; see for example [4, 15, 16] and the references therein. In [19], an obstacle problem with

variable exponent and L1 data was studied. Using smooth approximation, the authors proved the existence

and uniqueness of the entropy solution. This result was then extended to obstacle problems with more general

type of variable exponents by the authors in [17]. In [8, 11], the regularity and stability results were established

for some obstacle problems involving variable exponents.
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More recently, in [20] Rodrigues and Teymurazyanin studied a double-obstacle problem, which included

problem (1.1) as a special case. The existence and uniqueness result was obtained when the data involved were

regular enough. Motivated by these previous works, in this paper we consider the double-obstacle problem (1.1)

involving measure data. Under suitable assumptions, we prove that problem (1.1) admits a unique solution if

µ does not charge sets of zero p(·)-capacity, and the problem does not admit a ”reasonable” solution if µ is

concentrated on a set with zero p(·)-capacity.
To move on, let us first recall the definitions and properties of the generalized Lebesgue and Sobolev

spaces; interested readers may refer to [7, 9, 13] for more details.

For p ∈ C(Ω) with p− > 1, define the variable exponent Lebesgue space as

Lp(·)(Ω) = {u : Ω → R;u is measurable and

∫
Ω

|u|p(x)dx <∞}

with norm ∥u∥Lp(·)(Ω) = inf{ρ > 0 :
∫
Ω
|u(x)ρ |p(x)dx ≤ 1}. We have

min{∥u∥p
+

Lp(·)(Ω)
, ∥u∥p

−

Lp(·)(Ω)
} ≤

∫
Ω

|u|p(x)dx ≤ max{∥u∥p
+

Lp(·)(Ω)
, ∥u∥p

−

Lp(·)(Ω)
}.

As p− > 1, the space is a reflexive Banach space with dual Lp
′(·)(Ω), where 1

p(·) + 1
p′(·) = 1. For any

u ∈ Lp(·)(Ω), v ∈ Lp
′(·)(Ω), we have the Hölder-type inequality∫

Ω

|uv|dx ≤
(

1

p−
+

1

(p−)′

)
∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω).

For positive integer k , the generalized Sobolev space is defined as

W k,p(·)(Ω) = {u ∈ Lp(·)(Ω) : Dαu ∈ Lp(·)(Ω), |α| ≤ k}

with norm

∥u∥Wk,p(·) =
∑
|α|≤k

∥Dαu∥Lp(·)(Ω).

In this paper, we will always assume that p(·) satisfies the following log-Hölder continuous condition, i.e.

there exists a positive constant C such that

|p(x)− p(y)| ≤ − C

log |x− y|
, for every x, y ∈ Ω with |x− y| < 1

2
. (1.2)

This condition ensures that smooth functions are dense in the generalized Sobolev spaces. Then W
k,p(·)
0 (Ω)

can naturally be defined as the completion of C∞
c (Ω) in W k,p(·)(Ω) with respect to the norm ∥ · ∥Wk,p(·) .

For u ∈ W
1,p(·)
0 (Ω), the Poincaré-type inequality holds, i.e. ∥u∥Lp(·)(Ω) ≤ C∥∇u∥Lp(·)(Ω), where the positive

constant C depends on p and Ω. Thus ∥∇u∥Lp(·)(Ω) is an equivalent norm in W
1,p(·)
0 (Ω).

Let K ⊂ Ω be compact and χK be its characteristic function. The p(·)-capacity of K with respect to

Ω can be defined as follows (see [7, 12]):

capp(·)(K,Ω) = inf{
∫
Ω

|∇φ|p(x)dx, φ ∈ C∞
c (Ω), φ ≥ χK},
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where we set inf ∅ = ∞. For any open set U ⊂ Ω, define

capp(·)(U,Ω) = sup{capp(·)(K,Ω),K ⊂ U,K compact}.

The definition of p(·)-capacity can be extended to any Borel set E ⊂ Ω as

capp(·)(E,Ω) = inf{capp(·)(U,Ω), E ⊂ U ⊂ Ω, U open}.

Using truncation and smooth approximation, for every compact set K ⊂ Ω, one may define its p(·)-capacity as

capp(·)(K,Ω) = inf{
∫
Ω

|∇φ|p(x)dx, φ ∈ C∞
c (Ω), 0 ≤ φ ≤ 1, φ = 1 in some neighborhood of K}.

Let µ be a bounded Radon measure concentrated on a set E . Thanks to the Hahn decomposition

theorem, µ can be decomposed as µ = µ+ − µ− , where µ+ and µ− , being positive, are the upper and lower

variation of µ , respectively, with µ+ concentrated on E+ , µ− concentrated on E− , and E+ ∩ E− = ∅.
The following lemmas play an essential role in our analysis in the next.

Lemma 1.1 ([6]) Let µ be a bounded Radon measure on Ω , which is absolutely continuous with respect to the

p(·)-capacity. Then µ can be decomposed as µ = µ1 + µ2 with µ1 ∈ L1(Ω), µ2 ∈W−1,p′(x)(Ω) .

Lemma 1.2 [6] Let µ = µ+ − µ− be a Radon measure concentrated on a set E of zero p(·)-capacity with

1 < p− ≤ p+ ≤ N . Then for every δ > 0 , there exist two functions ψ+
δ , ψ

−
δ ∈ C∞

c (Ω) such that

0 ≤ ψ+
δ ≤ 1, 0 ≤ ψ−

δ ≤ 1,

∫
Ω

| ∇ψ+
δ |p(x) dx ≤ δ,

∫
Ω

| ∇ψ−
δ |p(x) dx ≤ δ,

0 ≤
∫
Ω

(1− ψ+
δ )dµ

+ ≤ δ, 0 ≤
∫
Ω

(1− ψ−
δ )dµ

− ≤ δ, 0 ≤
∫
Ω

ψ−
δ dµ

+ ≤ δ, 0 ≤
∫
Ω

ψ+
δ dµ

− ≤ δ.

2. Existence and nonexistence results

In this section, we prove existence and nonexistence results for problem (1.1) according to the singularity of the

data µ. We are mainly concerned with the case 1 < p− ≤ p+ < N.

Our first result concerns the existence result for problem (1.1).

Theorem 2.1 If µ is absolutely continuous with respect to the p(·)-capacity, problem (1.1) admits a unique

solution u .

Proof If µ is absolutely continuous with respect to the p(·)-capacity, thanks to Lemma 2.1 we have

µ = g + divG with g ∈ L1(Ω), G ∈ (Lp
′(·)(Ω))N .

Then problem (1.1) is equivalent to the following problem:
∫
Ω
|∇u|p(x)−2∇u∇(v − u)dx ≥

∫
Ω
g(v − u)dx+

∫
Ω
G · ∇(v − u)dx ∀v ∈ Kφ

ψ ,

un ∈ Kφ
ψ = {v ∈W

1,p(·)
0 (Ω), ψ ≤ v ≤ φ},

(2.1)

where φ,ψ ∈W
1,p(·)
0 (Ω) ∩ L∞(Ω), ψ ≤ φ a.e. in Ω.
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The uniqueness of the solution to problem (2.1) follows from rather standard arguments. Indeed, assume

that u1, u2 are two solutions of (2.1). Taking u1 as a test function in the formulation of solution u2 , and taking

u2 as a test function in the formulation of solution u1 , we can easily deduce that u1 = u2.

The existence of the solution u for problem (2.1) can be obtained as the limit of the solution sequence

{un} for the following approximate problem:
∫
Ω
|∇un|p(x)−2∇un∇(v − un)dx ≥

∫
Ω
gn(v − un)dx+

∫
Ω
G · ∇(v − un)dx, ∀v ∈ Kφ

ψ ,

un ∈ Kφ
ψ = {v ∈W

1,p(·)
0 (Ω), ψ ≤ v ≤ φ},

(2.2)

where gn is a sequence of smooth functions that converges to g in L1(Ω) with ∥gn∥L1(Ω) ≤ ∥g∥L1(Ω) . Since

the analysis is rather similar to those in [6, 19], we omit the details. 2

In the above theorem, we have found that when µ is a ’smooth’ measure, we can find a solution for

problem (1.1) via approximations. However, for a singular measure µ we cannot expect to find a reasonable

solution for problem (1.1) in such a way.

Let µ(= µ+ − µ−) be a bounded Radon measure concentrated on a set E(⊂ Ω) with zero p(·)-capacity.
Let fn = f⊕n − f⊖n be a sequence of smooth data with f⊕n , f

⊖
n being positive and converging to µ+, µ−

respectively in the narrow topology of measures, i.e.

lim
n→∞

∫
Ω

f⊕n ϕdx =

∫
Ω

ϕdµ+, lim
n→∞

∫
Ω

f⊖n ϕdx =

∫
Ω

ϕdµ− for any ϕ ∈ C(Ω). (2.3)

Let G ∈ (Lp
′(·)(Ω))N , g ∈ L1(Ω), and gn be a sequence of smooth functions that converges to g in L1(Ω) with

∥gn∥L1(Ω) ≤ ∥g∥L1(Ω) . Consider the following obstacle problem:

∫
Ω
|∇un|p(x)−2∇un∇(v − un)dx ≥

∫
Ω
gn(v − un)dx+

∫
Ω
G · ∇(v − un)dx

+
∫
Ω
fn(v − un)dx, ∀v ∈ Kφ

ψ ,

un ∈ Kφ
ψ = {v ∈W

1,p(·)
0 (Ω), ψ ≤ v ≤ φ},

(2.4)

where φ,ψ ∈ W
1,p(·)
0 (Ω) ∩ L∞(Ω), ψ ≤ φ a.e. in Ω. As n tends to infinity, we have the following convergence

result for the solution sequence {un}(the existence and uniqueness of the solution un to (2.2) for each n follows

from standard results for monotone, coercive operators; see [14, 20]).

Theorem 2.2 Let un be the solution to problem (2.2). Then when n tends to infinity, un converges in

W
1,p(·)
0 (Ω) to a function u , which is the unique solution of the following double obstacle problem:

∫
Ω
|∇u|p(x)−2∇u∇(v − u) ≥

∫
Ω
g(v − u)dx+

∫
Ω
G · ∇(v − u), ∀v ∈ Kφ

ψ ,

u ∈ Kφ
ψ = {v ∈W

1,p(·)
0 (Ω), ψ ≤ v ≤ φ}.

(2.5)

As a special case, we have the following nonexistence result for problem (1.1) immediately.

Theorem 2.3 Let µ(= µ+ − µ−) be a bounded Radon measure concentrated on a set with zero p(·)-capacity,
and fn be a sequence of smooth functions converging to µ in the sense of (2.3). Then as n tends to infinity,
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the solution un for the following obstacle problem
∫
Ω
|∇un|p(x)−2∇un∇(v − un)dx ≥

∫
Ω
fn(v − un)dx, ∀v ∈ Kφ

ψ ,

un ∈ Kφ
ψ = {v ∈W

1,p(·)
0 (Ω), ψ ≤ v ≤ φ}.

(2.6)

converges to 0 in W
1,p(·)
0 (Ω) .

Remark 2.1 As we see, if µ is a bounded Radon measure concentrated on a set with zero p(·)-capacity, we
cannot find a solution to problem (1.1) by approximation. The ’singular’ measure disappears when we pass

to the limit in the approximate problem. Moreover, 0 is not a solution to the original problem (1.1). Thus

Theorem 2.3 implies a nonexistence result for problem (1.1) in the sense that when one looks for solutions by

approximation, one cannot find a reasonable solution.

Remark 2.2 For obstacle problems with general Leray–Lions type operators involving variable exponent (see

for example [21]), with very minor modifications, we can prove the similar result.

Proof of Theorem 2.2. Now we are in a position to prove Theorem 2.2. Hereafter, we use C to denote some

positive constant, which may distinguish with each other even in the same line. We denote by w(δ, n) any

quantity such that

lim
δ→0+

lim
n→∞

|w(δ, n)| = 0.

Furthermore, the convergences may be understood to be taken possibly up to a suitable subsequence extraction,

even if we do not explicitly stress it.

Taking a function v0 ∈ Kφ
ψ as a test function in (2.4), we deduce that∫

Ω

|∇un|p(x)dx ≤
∫
Ω

|∇un|p(x)−2∇un∇v0dx+

∫
Ω

G · ∇(un − v0)dx+

∫
Ω

(gn + fn)(un − v0)dx. (2.7)

Using Young’s inequality, we have∫
Ω

|∇un|p(x)−2∇un∇v0dx+

∫
Ω

G · ∇(un − v0)dx

≤ C

∫
Ω

|G|p
′(x)dx+ C

∫
Ω

|∇v0|p(x)dx+
1

2

∫
Ω

|∇un|p(x)dx.

Note that (2.3) implies that ∥fn∥L1(Ω) ≤ C . We then deduce from (2.7) that∫
Ω

|∇un|p(x)dx ≤ C

∫
Ω

(|G|p
′(x) + |∇v0|p(x))dx+ 2(∥g∥L1(Ω) + C)max{∥φ∥L∞(Ω), ∥ψ∥L∞(Ω)} ≤ C. (2.8)

Noting that ψ ≤ un ≤ φ , we know that {un} is bounded in W
1,p(·)
0 (Ω) ∩ L∞(Ω), and there exists a function

u ∈W
1,p(·)
0 (Ω) ∩ L∞(Ω) with ψ ≤ u ≤ φ such that

un −→ u strongly in L1(Ω), weakly∗ in L∞(Ω),

un −→ u weakly in W
1,p(·)
0 (Ω),∇un −→ ∇u weakly in Lp(·)(Ω).
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Next, let us prove that un converges to u strongly in W
1,p(·)
0 (Ω).

Let Ψδ = ψ+
δ + ψ−

δ . Taking unΨδ + u(1−Ψδ) (of course belongs to Kφ
ψ ) as a test function in (2.4), we

deduce that ∫
Ω

|∇un|p(x)−2∇un∇(un − u)(1−Ψδ)dx−
∫
Ω

|∇un|p(x)−2∇un∇Ψδ(un − u)dx

≤
∫
Ω

g(un − u)(1−Ψδ)dx+

∫
Ω

G · ∇(un − u)(1−Ψδ)dx−
∫
Ω

G · ∇Ψδ(un − u)dx

+

∫
Ω

f⊕n (un − u)(1−Ψδ)dx−
∫
Ω

f⊖n (un − u)(1−Ψδ)dx. (2.9)

Denote the seven terms in the above inequality by A1 to A7 sequentially. Thanks to Lemma 2.2, both ψ+
δ and

ψ−
δ converge to 0 weakly∗ in L∞(Ω), strongly in W

1,p(·)
0 (Ω), almost everywhere in Ω, as δ vanishes. Since

{un} is bounded in W
1,p(·)
0 (Ω) ∩ L∞(Ω) , we are ready to obtain that

A2, A5 = w(δ, n). (2.10)

From the weakly∗ convergence of un to u , we have A3 = w(δ, n). On the other hand, from the weak convergence

of ∇un to ∇u in Lp(·)(Ω), we know that A4 = w(n). By Lemma 2.2 we have

|A6| ≤ C

∫
Ω

f⊕n (1−Ψδ)dx = C

∫
Ω

f⊕n (1− ψ+
δ )dx− C

∫
Ω

f⊕n ψ
−
δ dx = w(δ, n).

Similarly, we have A7 = w(δ, n). Lastly, from the weak convergence of ∇un to ∇u in Lp(·)(Ω), we have∫
Ω

|∇u|p(x)−2∇u∇(un − u)(1−Ψδ)dx = w(δ, n).

Then we deduce from the convergences of A2 to A7 that

0 ≤
∫
Ω

|∇u−∇un|p(x)(1−Ψδ)dx ≤ A1 −
∫
Ω

|∇u|p(x)−2∇u∇(un − u)(1−Ψδ)dx = w(δ, n). (2.11)

To obtain the strong convergence of un to u in W
1,p(·)
0 (Ω), we need only to show that∫

Ω

|∇u−∇un|p(x)Ψδdx = w(δ, n). (2.12)

Since
∫
Ω
|∇u|p(·)Ψδdx −→ 0 as δ → 0, we need only to prove∫

Ω

|∇un|p(x)Ψδdx −→ 0 as n→ ∞, δ → 0. (2.13)

Taking φψ+
δ + (1− ψ+

δ )un (∈ Kφ
ψ ) as a test function in (2.4), we deduce that∫

Ω

|∇un|p(x)−2∇un∇(un − φ)ψ+
δ dx+

∫
Ω

|∇un|p(x)−2∇un∇ψ+
δ (un − φ)dx

≤
∫
Ω

g(un − φ)ψ+
δ dx+

∫
Ω

G · ∇(un − φ)ψ+
δ dx+

∫
Ω

G · ∇ψ+
δ (un − φ)dx

+

∫
Ω

f⊕n (un − φ)ψ+
δ dx−

∫
Ω

f⊖n (un − φ)ψ+
δ dx. (2.14)
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Denote the seven terms in (2.14) by B1 to B7 sequentially. Similar to the analysis of (2.9), thanks to the

convergence of ψ+
δ and the estimate for un , we have

B2, B3, B4, B5 = w(δ, n).

Note that B6 is nonpositive and

|B7| = |
∫
Ω

f⊖n (un − φ)ψ+
δ dx| ≤ C

∫
Ω

f⊖n ψ
+
δ dx = w(δ, n),

Note that |∇un|p(x)−2∇un converges to some function χ weakly in Lp
′(·)(Ω). We have∫

Ω

|∇un|p(x)−2∇un∇φψ+
δ dx =

∫
Ω

χ∇φψ+
δ dx+ w(n) = w(δ, n).

Then we deduce from (2.14) that∫
Ω

|∇un|p(x)ψ+
δ dx = B1 +

∫
Ω

|∇un|p(x)−2∇un∇φψ+
δ dx = w(δ, n). (2.15)

Similarly, taking ψψ−
δ + (1− ψ−

δ )un(∈ Kφ
ψ ) as a test function in (2.4), we can prove that∫
Ω

|∇un|p(x)ψ−
δ dx = w(δ, n),

which, combined with (2.15), implies (2.13). Then we conclude from (2.11), (2.12) that un converges to u

strongly in W
1,p(·)
0 (Ω).

For any v ∈ Kφ
ψ , taking unΨδ + v(1−Ψδ) in (2.4), thanks to the convergence of un and Ψδ , it is easy

to obtain that u is a solution to problem (2.5) by passing to the limit on n and δ. The proof is completed.
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[17] Ouaro S, Traore S. Entropy solutions to the obstacle problem for nonlinear elliptic problems with variable exponent

and L1 -data. Pac J Optim 2009; 5: 127-141.
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