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1. Introduction

Ill-posed and large-scale problems, such as computed tomography, take place in many fields of mathematics and

physical sciences. Usually these problems are handled by iterative methods instead of direct methods. There

is an interest in regularizing iterative methods where the iteration vector can be considered as a regularized

solution. Using incorrect and noisy input data, which are due to measurements or rounding errors, we obtain a

more difficult problem to solve. The iteration index of an iterative method may be considered as a regularization

parameter. Initially the iteration vectors approach a regularized solution. Nevertheless, continuing the iteration

process often produces iteration vectors that are corrupted by noise; see [16, p. A2002] and [19, p. 1]. This

phenomenon was called semiconvergence by Natterer [30, page 157]; for analysis of the phenomenon, see, e.g.,

[4, 20, 21, 23, 33, 35]. The typical overall error behavior is shown in Figure 1. If there is a reliable stopping rule

then we may get a proper approximation of the sought solution, i.e. x∗. Otherwise, due to the semiconvergence

phenomenon, the stopping criterion may stop the iteration process early or far from a proper iteration index.

For this reason, we will study finding relaxation parameters for postponing the semiconvergence phenomenon.

Computational tomography, like many other large-scale ill-posed problems, leads to large linear systems

of equations (often inconsistent) with noisy data, of the form

Ax ≈ b, b = b̄+ δb. (1)

Here b̄ denotes the exact data and δb is the perturbation consisting of additive noise. We are interested in

iterative algorithms for solving the linear system (1). The algorithms can be generally classified as being either

sequential or simultaneous or block-iterative, see, e.g., [11], and the review paper [2] for a variety of specific

algorithms of these kinds.
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Figure 1. Semiconvergence phenomenon.

The algebraic reconstruction technique (ART) is a fully sequential method and has a long history and rich

literature. Originally it was proposed by Kaczmarz [26], and independently, for use in image reconstruction, by

Herman [23]. The vector of unknowns is updated at each equation of the system, after which the next equation

is addressed. We define one cycle as one pass through all the data. The prototype of simultaneous algorithms is

the well-known Cimmino method [12]. In this method the current iterate is first projected on all sets to obtain

intermediate points. The next iterate is made by an averaging process, as a convex combination, of intermediate

points. We now explain the block-iterative method. The basic idea of a block-iterative algorithm is to partition

the data A and b of the system (1) into blocks of equations (rows) and treat each block according to the rule

used in the simultaneous algorithm for the whole system, passing, e.g., cyclically over all the blocks. Figure 2

illustrates how these three methods work. Here Hi denotes the ith hyperplane, i.e. Hi = {x ∈ Rn, ⟨x, ai⟩ = bi}
where ai and bi indicate the ith row of A and b, respectively.
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Figure 2. Full sequential method [top-left (a)], full simultaneous method [top-right (b)] and sequential block-iterative

method [bottom (c)].

In [19], the semiconvergence properties of the unconstrained simultaneous iterative reconstruction tech-

nique (SIRT) using a constant relaxation parameter (called the stationary method) were studied, whereas [16]
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gave a detailed study of the phenomenon for projected nonstationary SIRT. Both papers proposed two new

relaxation strategies (updated after each iteration), which provide a delayed semiconvergence phenomenon. Re-

cently, in [17], the semiconvergence phenomenon was analyzed for stationary sequential block-iterations without

any suggestion for picking the relaxation parameter.

In the present work, we consider the nonstationary sequential block-iterative algorithm allowing a certain

family of relaxation parameters to control the semiconvergence phenomenon. We use two kinds of relaxation

parameters: one is updated in each iteration and the other one is only updated after each cycle. In both cases,

we give their convergence proofs based on [25].

Our paper is organized as follows. In Section 2 we recall the sequential block-iterative method and

give some well-known instances. We introduce two strategies for picking relaxation parameters and give their

convergence analysis in Section 3. In Subsection 3.1 we give two special cases of the strategies that satisfy

conditions of Propositions 4 and 7. Furthermore, we consider a projected case of the sequential block-iterative

method in Subsection 3.2 but without any convergence analysis. In Section 4 we give some numerical tests

explaining the efficiency of our relaxation parameters.

2. Preliminaries and algorithms

Projection algorithms are successful iterative methods in the area of computational tomography; see, e.g., [6].

It is shown that projection methods often have a computational advantage, which makes them successful in

many real-world applications. They commonly have the ability to handle huge-sized problems of dimensions

beyond which more sophisticated methods cease to be efficient or even applicable due to memory requirements.

In a simple way, one may classify projection methods as either sequential or simultaneous. The block-iterative

methods, which lie between the sequential and simultaneous cases, have been studied in several works with

different applications; see, e.g., [1, 5, 7–9, 14, 15, 18, 25, 32, 34].

Are the block-iterative methods still of interest? Probably the most well-known iterative methods are

Krylov-type methods. However, steepest descent can be an excellent alternative when solving noisy linear

systems arising from the discretization of ill-posed problems. The reason is again semiconvergence behavior

and the blowing up of noise. Specifically, it was shown in [29] that, for an ill-posed problem arising in image

restoration, steepest descent can have a more stable convergence behavior than the Krylov method CGLS.

The performance of different block-iterative methods, such as sequential and simultaneous block-iterative

methods, with a fixed relaxation parameter was studied in [34]. The computational results showed that for

multicore computers the sequential approach is preferable and the most useful for large problems. Therefore,

in this paper we only consider a class of sequential block-iterative methods.

In this paper we consider the linear system of equations (1) such that A ∈ Rm×n and b ∈ Rm. Let

B = {1, 2, · · · ,m}. The index set B is partitioned into q subsets Bs such that

B = ∪q
s=1Bs. (2)

Indeed, A and b are partitioned into q (not necessarily disjoint) row blocks {As} and {bs}, in accordance with

{Bs}. Let ⟨x, y⟩ be the Euclidean inner product and ∥x∥ the corresponding norm. For a matrix A, we define

∥A∥ = maxx̸=0 ∥Ax∥/∥x∥. Further, for a symmetric positive definite (SPD) matrix W , ∥x∥W =
√

⟨Wx, x⟩

denotes a weighted Euclidean norm and W 1/2 is the square root of W . PΩ is the orthogonal projection onto

a closed convex set Ω and N(A) denotes the null space of A. By diag(zi), where zi can be either scalars or
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matrices, we mean the (block) diagonal matrix z1
z2

. . .

 .

We use the standard term sequential block-iterative (SeqBI), see [11, 25], such that an iterative step

sequentially moves from one block to the next. In general we consider the following SeqBI algorithm:

Algorithm 1 SeqBI

Initialization: x0 ∈ Rn is arbitrary.

Iterative Step: For given xk, compute

xk,0 = xk,

xk,s = Tk,s(x
k,s−1), s = 1, . . . , q,

xk+1 = xk,q,

where Tk,s(x) = x + λk,sA
T
s Ms(b

s − Asx). {Ms}qs=1 and λk,s are SPD matrices and relaxation parameters,

respectively. When q = 1 there is just one block so Ms = M ∈ Rm×m , and the method is called fully

simultaneous iteration. On the other hand, when each block consists of a single row, then q = m and Ms ∈ R
for s = 1, · · · ,m and we get a fully sequential iteration. In Algorithm 1, an iterative step moves from xk to

xk+1 , which is called a cycle, and it consists of subiterative steps (referred to as atomic steps or iterations) that

move from xk,s−1 to xk,s .

Numerous well-known methods can be written in the form of Algorithm 1 for appropriate choices of

matrix Ms . When Ms is equal to the identity matrix we get the classical Landweber method [28]. Cimmino’s

method [12] is obtained with Ms = 1
ms

diag(1/∥ai∥2) where ai denotes the ith row of As and ms stands for

the number of rows in As. The CAV method [10] uses Ms = diag(1/
∑n

j=1 Nja
2
ij) where Nj is the number of

nonzeros in the j th column of As .

3. Convergence results

Our main theoretical result is given in this section. As we mentioned before, we consider two strategies for

picking relaxation parameters. They are updated after each iteration and cycle.

Let

σs = ∥M1/2
s As∥, σmax = max{σs}qs=1,

σmin = min{σs}qs=1, θ = σmin/σmax

for s = 1, · · · , q. Assume an arbitrary sequence {γk} such that

0 ≤ γk ≤ 1,
∞∑
k=0

γk = ∞, lim
k→∞

γk = 0. (3)

Let

S = {x ∈ Rn|ATMAx = ATMb̄} (4)
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where M = diag(Ms) is a block diagonal matrix with diagonal entries {Ms}qs=1. Furthermore, assume that x̄

has the minimum Euclidian norm among all vectors of S .

Remark 2 In many applications of computational tomography the linear system of equations (1) is typically

underdetermined. This happens in limited angle applications (e.g., breast X-ray tomography) and few-projection

measurements (where the X-ray dose should be limited). When the system of linear equations (1) is underdeter-

mined, it is common practice to seek a solution that minimizes some objective function. The problem then is to

select, from among all the feasible solutions, a particular solution that has a good chance of being near the correct

image. One approach, which we are interested in, is to take the feasible solution of (1) having the minimum

Euclidean norm ∥x∥2 . There are other approaches such as minimizing one-norm, ∥x∥1, and minimizing total

variation; see [13] and [32], respectively.

We now consider the following two strategies. The first strategy is constant during a cycle, i.e.

λk =

{
θ4σ−2

min, k = 0, 1

θ4σ−2
minγk, k ≥ 2.

(5)

Therefore, the strategy (5) is updated after each cycle. The second strategy varies after each iteration, i.e.

λk,s =

{
θ4σ−2

s , k = 0, 1

θ4σ−2
s γk, k ≥ 2.

(6)

Note that λk = λk,s

(
σ2
s/σ

2
min

)
≥ λk,s .

Next, using [25], we show that Algorithm 1 with both strategies (5) and (6) converges. First we recall

the following theorem:

Theorem 3 [25, Theorem II.1, p.572] Let there exist ρ > 0 such that ∥As∥Ms ≤ ρ for s = 1, 2, · · · , q and

0 ≤ ρ2λk ≤ 2 for k ≥ 0. Also assume that the relaxation parameters λk are constant within each cycle.

(a) If (1) is consistent and
∞∑
k=0

min{ρ2λk, 2− ρ2λk} = +∞ (7)

then the sequence generated by Algorithm 1 converges to x̄+ PN(A)(x
0).

(b) If the partition (2) is disjoint and

lim
k→∞

λk = 0 and
∞∑
k=0

λk = +∞ (8)

then the sequence generated by Algorithm 1 converges to x̄+ PN(A)(x
0) even if (1) is inconsistent.

We will show that the relaxation parameters (5) satisfy all conditions of Theorem 3. Therefore, we can

use Theorem 3 to illustrate that the sequence generated by Algorithm 1 with relaxation parameter (5) converges.
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Proposition 4 The relaxation parameters (5) hold all conditions of Theorem 3.

Proof Since ∥As∥Ms = ∥M1/2
s As∥ = σs ≤ σmax, we put ρ = σmax > 0 in Theorem 3. For the case k = 0, 1

we have

0 ≤ ρ2λk = σ2
max

θ4

σ2
min

= θ2 ≤ 1 (9)

and for k ≥ 2, using 0 ≤ γk ≤ 1, we obtain that

0 ≤ ρ2λk = θ2γk ≤ 1. (10)

Using (10) and (3) we get

∞∑
k=0

min{ρ2λk, 2− ρ2λk} = ρ2
∞∑
k=0

λk

≥ ρ2
θ4

σ2
min

∞∑
k=2

γk = ∞.

Since conditions (8) are the same conditions as (3), we get that the strategy (5) satisfies all conditions of The-

orem 3. 2

Next we concentrate on the second strategy, i.e. (6). Combining [25, Theorem A.3, Remark A.4, and

Theorem A.10], one gets the following convergence result:

Theorem 5 Let there exist ρ > 0 such that ∥As∥Ms ≤ ρ for s = 1, 2, · · · , q and 0 ≤ ρ2λk,s ≤ 2 for k ≥ 0 and

s = 1, 2, · · · , q. The relaxation parameters λk are allowed to vary in each iteration. If (1) is consistent and

∞∑
k=0

tk = +∞ (11)

where tk = min{τk,s}qs=1 and τk,s = min{ρ2λk,s, 2 − ρ2λk,s}, then the sequence generated by Algorithm 1

converges to x̄+ PN(A)(x
0).

Remark 6 As explained in Theorems 3 and 5, the sequence generated by Algorithm 1 converges to x̄+PN(A)(x
0)

irrespective of the disjointness of blocks where the linear system of equations (1) is consistent. Therefore, the

solution set (4) is maintained as it is and we do not need to redefine a new solution set where {Ms}qs=1 are not

disjoint. On the other hand, for the case of an inconsistent linear system, if the partition (2) is not disjoint but

q∑
s=1

AT
s Msb

s = ATMb (12)

holds, then the results of Theorem 3 are still true; see [25, Remark A.11, p. 576]. However, later, we only

consider the disjoint partitioning case.

We next give an example and show that (12) holds for a partition that is not disjoint. Similar to [16], consider

the following slightly modified problem in the form of a regularized problem with regularization parameter α
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and balancing parameter µ = ∥M∥ :

min
x∈Rn

1

2

(
∥Ax− b∥2M + α2µ∥x∥2

)
= min

x∈Rn

1

2

∥∥∥Âx− b̂
∥∥∥2
M̂

,

where

M̂ = diag(M,µI), M = diag(M1, · · · ,Mq)

Â =

(
A
αI

)
, b̂ =

(
b
0

)
.

We consider the following partitioning of Â, b̂ and the corresponding weight matrix as follows:

Ã =


A1

αI
...
Aq

αI

 , b̃ =


b1
0
...
bq
0

 (13)

M̃ =

 M̃1

. . .

M̃q

 (14)

where M̃s = diag(Ms, µI) for s = 1, · · · , q. It is easy to check that the partitioning (13–14) is not disjoint but

it satisfies (12) if {As}qs=1 are disjoint.

Proposition 7 The relaxation parameters (6) hold for all conditions of Theorem 5.

Proof As in Proposition 4, we put ρ = σmax > 0, and for k = 0, 1 we obtain

0 ≤ ρ2λk,s = σ2
max

θ4

σ2
s

= θ2
(
σmin

σs

)2

≤ 1. (15)

Using 0 ≤ γk ≤ 1 we get

0 ≤ ρ2λk,s = θ2
(
σmin

σs

)2

γk ≤ 1 (16)

where k ≥ 2. Using (16) we obtain τk,s = ρ2λk,s . Therefore,

tk = min{ρ2λk,s}qs=1 ≥ θ4γk,

which verifies (11). 2
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3.1. Choosing γk

In this section we consider two special cases for γk that are inspired by Elfving et al. [19]. Following [19, (2.13)]

we consider the equation

gk−1(y) = (2k − 1)yk−1 − (yk−2 + · · ·+ y + 1) = 0, (17)

which has a unique real root ζk ∈ (0, 1). The roots satisfy 0 < ζk < ζk+1 < 1 and limk→∞ ζk = 1 (see [19,

Propositions 2.3, 2.4]), and they can easily be precalculated; see the Table.

Table. The unique root ζk ∈ (0, 1) of gk−1(y) = 0.

k ζk k ζk k ζk k ζk k ζk k ζk
2 0.3333 7 0.8156 12 0.8936 17 0.9252 22 0.9424 27 0.9531
3 0.5583 8 0.8392 13 0.9019 18 0.9294 23 0.9449 28 0.9548
4 0.6719 9 0.8574 14 0.9090 19 0.9332 24 0.9472 29 0.9564
5 0.7394 10 0.8719 15 0.9151 20 0.9366 25 0.9493 30 0.9578
6 0.7840 11 0.8837 16 0.9205 21 0.9396 26 0.9513 31 0.9592

Now we consider the two following choices for γk :

γI
k = 1− ζk, γII

k =
1− ζk

(1− ζkk )
2
. (18)

Proposition 8 Both parameters γI
k and γII

k , defined by (18), hold for (3).

Proof Since 0 < ζk < 1 and limk→∞ ζk = 1, see [19, Propositions 2.3, 2.4], one gets 0 < γI
k < 1

and limk→∞ γI
k = 0. Using [19, Proposition 2.4, Inequality (2.17)] we have ζk < 2k

2k+1 , which leads to

1− ζk > 1/(2k + 1). Thus, γI
k holds for all three conditions in (3).

Based on [19, Proposition 3.3] we obtain 0 < γII
k < 1. Using the following inequality, see [19, (3.10)],

ζk ≤
(

k − 1

2k − 1

)1/k

, (19)

we get

0 < γII
k =

1− ζk
(1− ζkk )

2
≤ 1− ζk(

k
2k−1

)2 . (20)

Therefore, using (20), we conclude that limk→∞ γII
k = 0. Combining γII

k > 1 − ζk and ζk < 2k
2k+1 , one easily

gets

γII
k > 1− ζk >

1

2k + 1
,

which shows that
∑∞

k γII
k = +∞. Therefore, all three conditions in (3) are satisfied by γII

k . 2
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3.2. Using additional information

The use of a priori information (like nonnegativity) when solving an inverse problem is a well-known technique

to improve the quality of the reconstruction. Let Ω be a closed convex set in Rn such that Ω ∩ S ̸= ∅. We

consider the following algorithm, which is the projected version of Algorithm 1:

Algorithm 9 Projected SeqBI (PSeqBI)

Initialization: x0 ∈ Rn is arbitrary.

Iterative Step: For given xk, compute

xk,0 = xk,

xk,s = Tk,s(x
k,s−1), s = 1, . . . , q,

xk+1 = PΩ(x
k,q),

where PΩ denotes orthogonal projection onto Ω.

For the case q = 1, i.e. the full simultaneous method, the convergence analysis of Algorithm 9 is shown

in [3] where the relaxation parameters are constant during iterations. However, there is no convergence analysis

where the relaxation parameters are updated during the iterations or cycles. Consequently, convergence analysis

for Algorithm 9 is not available and it remains an open problem.

4. Experimental issues

This section consists of two subsections. We first discus the ‘fast semiconvergence’ phenomenon and implemen-

tation of Algorithm 1 in Subsection 4.1. We report on some numerical tests (six different tests) with examples

taken from tomographic imaging. We use the AIR Tools software package [22] and the SNARK09 software

package [27].

In Subsection 4.2 we consider the following notations and concepts. For the choices of Ms we always

use Cimmino’s method. The noise-free right-hand side of the linear system of equations (1) was taken as the

product of the matrix and the reshaped vector. We use additive independent Gaussian noise of mean 0 and

relative noise levels (∥δb∥/∥b̄∥) 5% and 10% where b = b̄ + δb . In all numerical tests, noisy data are used.

We define the relative error of xk as ∥xk − x∗∥/∥x∗∥ where x∗ is the original image, i.e. Ax∗ = b̄. Apart

from the unconstrained case we also consider the constrained version where Ω is the nonnegative orthant. Note

that the positiveness of the sought solution is a natural constraint in computerized tomography applications.

Since our theoretical results show that Algorithm 1 (using strategies (5) and (6)) converges to x̄ + PN(A)(x
0)

and using Remark 2, one should select the starting point x0 such that PN(A)(x
0) = 0. We take x0 = 0 in all

numerical tests. We also compare different strategies, (5), (6), and λ = 1 (without relaxation parameter), where

Algorithm 1 is used. Furthermore, the results of the CGLS method and error minimizing relaxation strategy

(EMR) [31, (3.16), case s = 1] are compared with Algorithm 1. When CGLS is used, the linear system (1) is

scaled by W 1/2, i.e. W 1/2A and W 1/2b are used instead of A and b, respectively. Here, W denotes the weight

SPD matrix defined by the fully simultaneous Cimmino method.

We next give some notes on the fast semiconvergence phenomenon and implementation of Algorithm 1.
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4.1. Fast semiconvergence and implementation issues

To accelerate the algorithm, where noise-free data are used, one may choose a proper starting point x0 or

“efficient” order in blocks and rows of A or both of them. Using a proper starting point and efficient ordering

may have a strong effect on the practical performance of algebraic reconstruction techniques; see [24, 34].

However, using noisy data may give the opposite results because of the semiconvergence phenomenon. Figure

3 shows the relative errors of iterates using Algorithm 1, relaxation parameter λ = 30, and starting point

x0 = 0.5x∗ (i.e. a proper starting point). Here we use our first test data with two noise levels. As seen in

the figure, increasing the noise level (10%) leads to “faster semiconvergence” compared with the 5% noise.

Our intention by fast semiconvergence is to get diverging behavior of relative error within early iterations.

As seen in Figure 3, the iteration vector approaches a regularized solution at the first iteration (because of

the proper starting point). However, continuing the iteration leads to iteration vectors that are deteriorated

by noise. Therefore, choosing a proper starting point and reordering the rows and blocks may make fast

semiconvergence. Since our purpose is to postpone the semiconvergence phenomenon, we do not discuss how

to choose the starting point or block reordering in this paper. As we explained before, in our numerical tests,

we only consider the starting point x0 = 0. We also propose natural ordering of the rows, which arises from

treating rays according to the position of the pixels in the projections. It should be mentioned that, depending

on the different applications, various numbers of blocks can be used. In medical imaging, e.g., breast X-ray

tomography, the X-ray dose should be limited. Therefore, few-projection measurements, i.e. few numbers of

blocks, have been considered. On the other hand, there is no limitation on X-ray dose and many projection

measurements can be used in industrial imaging.
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Figure 3. Fast semiconvergence of SeqBI iterations with constant relaxation parameter λ = 30 and starting point

x0 = 0.5x∗, for two different noise levels (5% and 10%).

To implement Algorithm 1, we assume that {Ms}qs=1 are diagonal matrices as in the Cimmino and CAV

methods. Therefore, we only need two matrix-vector multiplications and one component-wise multiplication

in each iteration, i.e. computing y = bs − Asx as one matrix-vector multiplication, computing z = Msy as

component-wise multiplication, and finally another matrix-vector multiplication AT
s z. The next part of the
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algorithm deals with computing relaxation parameters (5) and (6). As we mentioned before, the sequences (18)

can be cheaply precalculated. Computing the largest singular value of M
1/2
s As seems to be the most expensive

part of our relaxation strategies. However, in general, computing the related singular values has to be done to

obtain the acceptable range of relaxation parameters; see Theorems 3 and 5. Note that computing the square

root of a matrix is expensive in general. However, since Ms is a diagonal matrix, taking the square root of its

diagonal components gives M
1/2
s . Furthermore, the multiplication M

1/2
s As is not so costly. To compute the

largest singular values {σs}qs=1, one may use the power method. We have to mention that computation of the

sequences (18) and all singular values {σs}qs=1 can be precalculated before the first iteration and we can use

them for the rest of the iterations.

4.2. Numerical results

In our first test, using the AIR Tools software package, the original head phantom is discretized into 365× 365

pixels. We take 88 projections (evenly distributed between 0 and 179 degrees) with 516 rays per projection.

The resulting projection matrix A has dimension 40892×133225, so the system of equations is underdetermined.

Remark 10 In image reconstruction from projections, some rays may not cross the reconstruction region

(phantom). Therefore, the multiplication of the number of projections and rays may differ with the number

of equations in (1).
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Figure 4. Relative error histories of SeqBI iterations with different relaxation parameters for 5% noise level.

Figure 4 shows the relative error behavior of Algorithm 1 for various relaxation parameters for a noise

level of 5%. Based on Theorems 3 and 5, relaxation parameters have to lie in 0 < λk < 622.11. In this figure

we avoid considering relaxation parameters of less than 5 or larger than 270, which cause slow convergence and

diverging behavior, respectively. As is seen, the proper relaxation parameter is λ = 30 and the semiconvergence

phenomenon occurs at the 13th cycle. Our intention with the “proper relaxation parameter” is to get the

smallest relative error within a few iterations and stable behavior for the rest of iterations.
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Figure 5 (part a) shows the relative errors of different strategies with 5% noise level. The strategy (6)

with γk = γI
k gives an acceptable result compared with other strategies. Using the results shown in Figure

5 (part b), adding more noise to the right-hand side of (1) gives fast semiconvergence for constant relaxation

parameter λ = 30 and the CGLS method, whereas our strategies show stable behavior. As is seen, using a

nonnegativity constraint reduces the relative error and the strategy (6) with γk = γI
k gives a stable behavior.

In Figure 5 (parts a and b), using the EMR strategy [31, (3.16)] and constant relaxation parameter λ = 1

(without relaxation) gives very fast semiconvergence and slow convergence, respectively. Algorithm 1 with our

strategies and λ = 30 seems more robust against noise than CGLS.
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Figure 5. Relative error histories of SeqBI iterations with different relaxation strategies and the CGLS method, for two

different noise levels of 5% [top (a)] and 10% [bottom (b)].

In the second test, we use the SNARK09 software package. We work with the standard head phantom

from [23]. The phantom is discretized into 63 × 63 pixels, and 16 projections (evenly distributed between 0

and 174 degrees) with 99 rays per projection are used. The resulting matrix A has dimensions of 1376×3969,
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so the system of equations is highly underdetermined. In this test we consider 5% noise for the right-hand

side vector. Figure 6 shows the relative histories of Algorithm 1 with our different relaxation strategies. The

strategies (5) and (6) with two choices for γk give similar results. As explained for the first test, Algorithm 1

with our strategies is more robust against noise than CGLS. Furthermore, using the EMR strategy [31, (3.16)]

and λ = 1 (without relaxation) gives fast semiconvergence and slow convergence, respectively. Here, after the

12th cycles, the proper relaxation parameter λ = 4.91 gives results similar to those of our strategies. However,

the strategies cause faster convergence behavior than the proper relaxation parameter within the first 10 cycles.
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Figure 6. Relative error histories of SeqBI iterations with different relaxation strategies and CGLS method for 5%

noise level.

We next consider four phantoms, i.e. ‘threephases’, ‘fourphases’, ‘grains’, and ‘ppower’, generated by

the AIR Tools software package. All four phantoms are discretized into 225 × 225 pixels, and 36 projections

(evenly distributed between 0 and 179 degrees) with 318 rays per projection are used. The resulting matrix A

has dimensions of 10264× 50625. Here, we again use 5% noise for the right-hand side vector. Figure 7 shows

the relative error histories in SeqBI iterations using noisy data (5%) with different phantoms and relaxation

strategies. In all results (top and bottom), using constant relaxation parameter λ = 1 (without relaxation)

leads to slow convergence. The results of our strategies are almost equivalent for all four phantoms. In Figure

7 (parts a and b), the EMR strategy [31, (3.16)] shows fast convergence behavior within the first cycles and

the semiconvergence phenomenon after the fourth cycle. Figure 7 (parts c and d) shows that the EMR strategy

leads to fast semiconvergence, although it gives slow convergence within the first cycles. However, Figure 7

shows that the EMR strategy is unstable like the CGLS method.

Remark 11 As explained in Theorems 3 and 5, the sequence of cycles converges to x̄+PN(A)(x
0) where x̄ ∈ S;

see (4). Since our numerical tests are done with noisy data, both theorems are still valid where the set S is

defined with noisy data, i.e. S = {x ∈ Rn|ATMAx = ATMb}. For this reason, our numerical results only show

semiconvergence behavior.
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Figure 7. Relative error histories of SeqBI iterations with different relaxation strategies and CGLS method for 5%

noise level. Top: threephases [left (a)] and fourphases [right (b)] phantoms; bottom: grains [left (c)] and ppower [right

(d)] phantoms.

5. Conclusion

We introduce two strategies for picking relaxation parameters to make a delay in the semiconvergence phe-

nomenon. Since noisy data corrupt the approximated solution after a few iterations (or cycles), we want to

diminish the iteration vectors after a few iterations. We can cut off the iteration process by using our relaxation

parameters, which converge to zero. Our tests show that the updating of relaxation parameters after each

iteration has better performance than updating after each cycle.
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