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Abstract: A topological space X is called CC -normal if there exist a normal space Y and a bijective function

f : X −→ Y such that the restriction f|A : A −→ f(A) is a homeomorphism for each countably compact subspace

A ⊆ X . We will investigate this property and produce some examples to illustrate the relation between CC -normality

and other weaker kinds of normality.
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1. Introduction

A. V. Arhangel’skĭi introduced in 2012, when he was visiting the Department of Mathematics at King Abduaziz

University, a new weaker version of normality, called C -normality [2]. A topological space X is called C -normal

if there exist a normal space Y and a bijective function f : X −→ Y such that the restriction f|C : C −→ f(C)

is a homeomorphism for each compact subspace C ⊆ X . We use the idea of this definition to introduce another

new weaker version of normality that will be called CC -normality. The purpose of this paper is to investigate

this property. We prove that normality implies CC -normality but the converse is not true in general. We present

some examples to show relationships between CC -normality and other weaker versions of normality such as

C -normality, L -normality, almost normality, mild normality, epinormality, and π -normality. Throughout this

paper, we denote an ordered pair by ⟨x, y⟩ , the set of positive integers by N , and the set of real numbers by R .

A T4 space is a T1 normal space and a Tychonoff space is a T1 completely regular space. We do not assume T2

in the definition of compactness and countable compactness. We do not assume regularity in the definition of

Lindelöfness. For a subset A of a space X , intA and A denote the interior and the closure of A , respectively.

An ordinal γ is the set of all ordinals α such that α < γ . The first infinite ordinal is ω0 , the first uncountable

ordinal is ω1 , and the successor cardinal of ω1 is ω2 .

2. CC -normality

Definition 2.1 A topological space X is called CC -normal if there exist a normal space Y and a bijective

function f : X −→ Y such that the restriction f|A : A −→ f(A) is a homeomorphism for each countably

compact subspace A ⊆ X .
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We do not assume T2 in the above definition. Recall that a topological space X is called L-normal if

there exist a normal space Y and a bijective function f : X −→ Y such that the restriction f|A : A −→ f(A)

is a homeomorphism for each Lindelöf subspace A ⊆ X [9]. Any normal space is CC -normal, just by taking

X = Y and f to be the identity function. We will give an example of a CC -normal space that is neither

normal nor locally compact, but first we give a theorem that will be used in the example.

Theorem 2.2 If X is an L-normal space such that each countably compact subspace is contained in a Lindelöf

subspace, then X is CC -normal.

Proof Let X be any L-normal space such that if A is any countably compact subspace of X ; then there

exists a Lindelöf subspace B such that A ⊆ B . Let Y be a normal space and f : X −→ Y be a bijective

function such that f|C : C −→ f(C) is a homeomorphism for each Lindelöf subspace C of X . Now let A be any

countably compact subspace of X . Pick a Lindelöf subspace B of X such that A ⊆ B . Then f|B : B −→ f(B)

is a homeomorphism, and hence f|A : A −→ f(A) is a homeomorphism as (f|B )|A = f|A . 2

By similar arguments, we obtain the following corollary.

Corollary 2.3 (a) If X is C -normal and any Lindelöf subspace of X is contained in a compact subspace of

X , then X is L-normal [9].

(b) If X is C -normal and any countably compact subspace of X is contained in a compact subspace of X ,

then X is CC -normal.

(c) If X is CC -normal and any Lindelöf subspace of X is contained in a countably compact subspace of X ,

then X is L-normal.

Example 2.4 We modify the Dieudonné plank [15] to define a new topological space. Let

X = ((ω2 + 1)× (ω0 + 1)) \ {⟨ω2, ω0⟩}.

Write X = A ∪ B ∪ N , where A = {⟨ω2, n⟩ : n < ω0} , B = {⟨α, ω0⟩ : α < ω2} , and N = {⟨α, n⟩ : α < ω2

and n < ω0} . The topology τ on X is generated by the following neighborhood system: for each ⟨α, n⟩ ∈ N ,

let B(⟨α, n⟩) = {{⟨α, n⟩}} . For each ⟨ω2, n⟩ ∈ A , let B(⟨ω2, n⟩) = {Vα(n) = (α, ω2]× {n} : α < ω2} . For each

⟨α, ω0⟩ ∈ B , let B(⟨α, ω0⟩) = {Vn(α) = {α} × (n, ω0] : n < ω0} . Then X is a Tychonoff nonnormal space

that is not locally compact as any basic open neighborhood of any element in A is not Lindelöf, and hence not

compact. Now a subset C ⊆ X is countably compact if and only if C satisfies all of the following conditions:

(1) C ∩ A and C ∩ B are both finite; (2) the set {⟨α, n⟩ ∈ C ∩N : ⟨ω2, n⟩ ∈ C ∩ A} is finite; and (3) the set

{⟨α, n⟩ ∈ C ∩N : ⟨α, ω0⟩ ̸∈ C ∩B, ⟨ω2, n⟩ ̸∈ C ∩A } is finite. This means that any countably compact subspace

is countable and hence Lindelöf. Since the modified Dieudonné plank is L-normal, see [9], by Theorem 2.2, it

is CC -normal.

Theorem 2.5 If X is a T1 space such that the only countably compact subspaces of X are the finite subsets,

then X is CC -normal.

Proof Let X be a T1 space such that the only countably compact subspaces of X are the finite subsets of

X . By T1 , we conclude that any countably compact subspace of X is discrete. Thus, let Y = X and consider

Y with the discrete topology. Then the identity function from X onto Y works. 2

750



KALANTAN and ALHOMIEYED/Turk J Math

C -normality is a generalization of CC -normality because any compact space is countably compact;

hence, any CC -normal space is C -normal. Obviously, any countably compact CC -normal space must be

normal. Thus, ω1 × Iω1 , where I = [0, 1] is the closed unit interval with its usual metric topology and Iω1 is

an uncountable product of I , is not CC -normal because it is a countably compact nonnormal space [15], but

ω1 × Iω1 is C -normal being locally compact [2]. The space ω1 × (ω1 + 1) is an example of an L -normal space,

see [9], which is not CC -normal because it is a countably compact nonnormal space. Here is an example of a

CC -normal space that is not L -normal.

Example 2.6 Consider (R , CC ) , where CC is the countable complement topology [15]. The space (R , CC )

is T1 as any singleton is closed. Let C be any countably infinite subset of R . For each c ∈ C , define

Vc = (R \ C) ∪ {c} . Then the family {Vc : c ∈ C} is a countable open cover for C that has no finite subcover,

and hence C is not countably compact. Thus, the only countably compact subspaces are the finite sets. Therefore,

by Theorem 1.5, (R , CC ) is CC -normal. It is not L-normal because it is a Lindelöf nonnormal space.

In Example 2.10, we give a Tychonoff separable first countable locally compact CC -normal space that

is not L -normal.

Theorem 2.7 CC -normality is a topological property.

Proof Let X be a CC -normal space and X ∼= Z . Let Y be a normal space and f : X −→ Y be a bijective

function such that f|C : C −→ f(C) is a homeomorphism for each countably compact subspace C of X . Let

g : Z −→ X be a homeomorphism. Then f ◦ g : Z −→ Y satisfies all requirements. 2

Theorem 2.8 CC -normality is an additive property.

Proof Let Xα be a CC -normal space for each α ∈ Λ. We show that their sum ⊕α∈ΛXα is CC -normal. For

each α ∈ Λ, pick a normal space Yα and a bijective function fα : Xα −→ Yα such that fα|Cα
: Cα −→ fα(Cα)

is a homeomorphism for each countably compact subspace Cα of Xα . Since Yα is normal for each α ∈ Λ, the

sum ⊕α∈ΛYα is normal ([4], 2.2.7). Consider the function sum ([4], 2.2.E), ⊕α∈Λfα : ⊕α∈ΛXα −→ ⊕α∈ΛYα

defined by ⊕α∈Λfα(x) = fβ(x) if x ∈ Xβ , β ∈ Λ. Now a subspace C ⊆ ⊕α∈ΛXα is countably compact if

and only if the set Λ0 = {α ∈ Λ : C ∩ Xα ̸= ∅} is finite and C ∩ Xα is countably compact in Xα for each

α ∈ Λ0 . If C ⊆ ⊕α∈ΛXα is countably compact, then (⊕α∈Λfα)|C is a homeomorphism because fα|C∩Xα
is a

homeomorphism for each α ∈ Λ0 . 2

CC -normality is not a multiplicative property. For example, the normal spaces ω1 and ω1 + 1 are both

CC -normal, but ω1 × (ω1 + 1) is not CC -normal. CC -normality is not hereditary. For example, the space

ω1 × (ω1 + 1) is not CC -normal while it is a subspace of its Stone–C̆ech compactification (ω1 + 1)2 .

It is clear that a function f : X −→ Y bearing the CC -normality of X need not be continuous. For

example, consider the modified Dieudonné plank X, see Example 1.4. Let Y = X with the topology generated

by the following neighborhood system: points of B and N have the same local base as in X and each point of

A is isolated. Then the identity function from X onto Y is not continuous, but it bears the CC -normality of

X . A function f : X −→ Y bearing the CC -normality of X will be continuous if X is Fréchet. Recall that a

space X is called Fréchet if for every A ⊆ X and every x ∈ A there exists a sequence (an)n∈N of points of A

such that an −→ x , see [4].
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Theorem 2.9 If X is CC -normal and Fréchet and f : X −→ Y bears the CC -normality of X , then f is

continuous.

Proof Assume that X is CC -normal and Fréchet. Let f : X −→ Y bear of the CC -normality of X . Let

A ⊆ X and pick y ∈ f(A). Pick the unique x ∈ X such that f(x) = y . Thus, x ∈ A . Since X is Fréchet, there

exists a sequence (an) ⊆ A such that an −→ x . The subspace B = {x, an : n ∈ N} of X is countably compact

being compact, and thus f|B : B −→ f(B) is a homeomorphism. Now let W ⊆ Y be any open neighborhood

of y . Then W ∩ f(B) is open in the subspace f(B) containing y . Since f({an : n ∈ N}) ⊆ f(B) ∩ f(A) and

W ∩ f(B) ̸= ∅ , W ∩ f(A) ̸= ∅ , hence y ∈ f(A), and thus f(A) ⊆ f(A). Therefore, f is continuous. 2

We conclude from the above proof that if X is C -normal and Fréchet and f : X −→ Y bears the

C -normality of X , then f is continuous. Since any first countable space is Fréchet, the statements are true if

X is first countable. In fact, for C -normality the statement is true if X is a k -space, see [9]. For a function

that bears L-normality, the following is true: “If X is L -normal and of countable tightness and f : X −→ Y

bears the L -normality of X , then f is continuous.”, see [9].

Any L -normal regular separable space of countable tightness is normal, see [9]. This is not true for CC -

normality. Here is an example of a CC -normal Tychonoff separable first countable space that is not normal.

For simplicity, we will denote the first infinite ordinal just by ω .

Example 2.10 We choose a suitable Mrówka space. Recall that two countably infinite sets are said to be almost

disjoint [16] if their intersection is finite. Call a subfamily of [ω]ω = {A ⊂ ω : A is infinite } a mad family

[16] on ω if it is a maximal (with respect to inclusion) pairwise almost disjoint subfamily. Let A be a pairwise

almost disjoint subfamily of [ω]ω . The Mrówka space Ψ(A) is defined as follows: the underlying set is ω ∪A ,

each point of ω is isolated, and a basic open neighborhood of W ∈ A has the form {W} ∪ (W \ F ), with

F ∈ [ω]<ω = {B ⊆ ω : B is finite} . It is well known that there exists an almost disjoint family A ⊂ [ω]ω

such that |A | > ω and the Mrówka space Ψ(A) is a Tychonoff, separable, first countable, and locally compact

space that is neither countably compact nor normal. A is a mad family if and only if Ψ(A) is pseudocompact

[11]. Since Ψ(A) is locally compact, it is C -normal, see [2]. Now a subspace C of Ψ(A) is countably compact

if and only if C ∩ A is finite and the set (ω ∩ C) \ (
∪

A∈(C∩A) A) is finite. This means that any countably

compact subspace is compact. Thus, by Corollary 2.3(b), Ψ(A) is CC -normal.

3. CC -normality and other properties

Let us recall some definitions.

Definition 3.1 A subset A of a space X is called a closed domain of X [4] (also called regularly closed, κ-

closed) if A = intA . A space X is called mildly normal [14] (also called κ-normal [12]) if for any two disjoint

closed domains A and B of X there exist two disjoint open subsets U and V of X such that A ⊆ U and

B ⊆ V , see also [6,7]. A space X is called almost normal [13] if for any two disjoint closed subsets A and B

of X , one of which is a closed domain, there exist two disjoint open subsets U and V of X such that A ⊆ U

and B ⊆ V , see also [8]. A subset A of a space X is called π -closed [7] if A is a finite intersection of closed

domains of X . A space X is called π -normal [7] if for any two disjoint closed subsets A and B of X , one of

which is π -closed, there exist two disjoint open subsets U and V of X such that A ⊆ U and B ⊆ V . A space

X is called quasinormal [17] if for any two disjoint π -closed subsets A and B of X , there exist two disjoint

open subsets U and V of X such that A ⊆ U and B ⊆ V , see also [7].
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It is clear from the definitions that
normal =⇒ π -normal =⇒ almost normal =⇒ mildly normal.

normal =⇒ π -normal =⇒ quasinormal =⇒ mildly normal.

Example 3.2 Consider (R , CF ) , where CF is the finite complement topology [15]. Since the only closed

domains of (R , CF ) are ∅ and R , (R , CF ) is π -normal and hence quasinormal, almost normal, and mildly

normal, but (R , CF ) is not CC -normal because it is countably compact, being a compact, nonnormal space.

Here is an example of a CC -normal space that is not π -normal.

Example 3.3 The modified Dieudonné plank X of Example 1.4 is CC -normal but neither quasinormal nor

π -normal.

Proof X is not normal because A and B are closed disjoint subsets that cannot be separated by two dis-

joint open sets. Note that int(A) = ∅ = int(B). Thus, A and B are not closed domains. We will show

that A and B are π -closed sets. Let E = {n < ω0 : n is even } and O = {n < ω0 : n is odd } . Let

C = {⟨α, n⟩ : α < ω2 , n ∈ E } = ω2×E and D = {⟨α, n⟩ : α < ω2 , n ∈ O } = ω2×O . Then C and D are both

open in X , being subsets of N . Thus, C and D are both closed domains in X , being closures of open sets.

Now C = C ∪B∪{⟨ω2, n⟩ ∈ A : n ∈ E } and D = D∪B∪{⟨ω2, n⟩ ∈ A : n ∈ O } , and hence C ∩D = B . Thus,

B is π -closed. Now let K and L be subsets of ω2 such that K ∩ L = ∅ , K ∪ L = ω2 , and the cofinality of

K and L is ω2 ; for instance, let K be the set of limit ordinals in ω2 and L be the set of successor ordinals in

ω2 . Let G = {⟨α, n⟩ : α ∈ K,n < ω0 } = K × ω0 and H = {⟨α, n⟩ : α ∈ L, n < ω0 } = L× ω0 . Then G and H

are both open in X being subsets of N . Thus G and H are both closed domains in X , being closures of open

sets. Now G = G∪A∪{⟨α, ω0⟩ ∈ B : α ∈ K } and H = H ∪A∪{⟨α, ω0⟩ ∈ B : α ∈ L } , and hence G∩H = A .

Thus A is π -closed. Therefore, the modified Dieudonné plank X is CC -normal but neither quasinormal nor

π -normal. 2

Example 3.4 R with the particular point topology τ p , see [15], where the particular point is p ∈ R , is not

CC -normal. Recall that τ p = {∅}∪{U ⊆ R : p ∈ U} . It is well known that (R , τ p) is neither T1 nor normal

and if A ⊆ R , then {{x, p } : x ∈ A} is an open cover for A ; thus, a subset A of R is countably compact if and

only if it is finite. To see that (R , τ p) is not CC -normal, suppose that (R , τ p) is CC -normal. Let Y be

a normal space and f : R −→ Y be a bijection such that the restriction f|C : C −→ f(C) is a homeomorphism

for each countably compact subspace C of (R , τ p) . For the space Y , we have only two cases:

Case 1: Y is T1 . Take C = {x, p} , where x ̸= p . Then C is a countably compact subspace of (R ,

τ p) . By assumption f|C : C −→ f(C) = {f(x), f(p)} is a homeomorphism. Since f(C) is a finite subspace

of Y and Y is T1 , f(C) is a discrete subspace of Y . Thus, we obtain that f|C is not continuous, which is a

contradiction, as f|C is a homeomorphism.

Case 2: Y is not T1 . We claim that the topology on Y is coarser than the particular point topology

on Y with f(p) as its particular point. To prove this claim, we suppose not. Then there exists a nonempty

open set U ⊂ Y such that f(p) ̸∈ U . Pick y ∈ U and let x ∈ R be the unique real number such that

f(x) = y . Consider {x, p } . Note that x ̸= p because f(x) = y ∈ U , f(p) ̸∈ U , and f is one-to-one. Consider

f|{x,p} : {x, p} −→ {y, f(p)} . Now {y} is open in the subspace {y, f(p) } of Y because {y} = U ∩ {y, f(p)} ,
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but f−1({y}) = {x} and {x} is not open in the subspace {x, p} of (R , τ p) , which means f|{x,p} is not

continuous. This is a contradiction, and our claim is proved. However, any topology coarser than the particular

point topology has no disjoint nonempty open sets and therefore cannot be normal, so we get a contradiction as

Y is assumed to be normal. Therefore, (R , τ p) is not CC -normal.

Since the only closed domains in (R , τ p ) are ∅ and R , (R , τ p ) is almost normal.

Recall that a topological space (X , τ ) is called submetrizable if there exists a metric d on X such

that the topology τ d on X generated by d is coarser than τ , i.e. τ d ⊆ τ , see [5]. A topological space (X ,

τ ) is called epinormal if there is a coarser topology τ ′ on X such that (X , τ ′ ) is T4 [2].

The space ω1 + 1 is CC -normal being T2 -compact but it is not submetrizable. Indiscrete spaces with

more than one element and (R , CC ) are examples of CC -normal spaces that are not epinormal because they

are not Hausdorff. It was proved in [2] that any submetrizable space is C -normal and any epinormal space is C -

normal. We still do not know if submetrizability implies CC -normality or if epinormality implies CC -normality

or not.

We discovered that the Alexandroff duplicate space of a CC -normal space is CC -normal. Recall that

the Alexandroff duplicate space A(X) of a space X is defined as follows: let X be any topological space. Let

X ′ = X × {1} . Note that X ∩ X ′ = ∅ . Let A(X) = X ∪ X ′ . For simplicity, for an element x ∈ X , we will

denote the element ⟨x, 1⟩ in X ′ by x′ and for a subset B ⊆ X let B′ = {x′ : x ∈ B} = B × {1} ⊆ X ′ . For

each x′ ∈ X ′ , let B(x′) = {{x′}} . For each x ∈ X , let B(x) = {U ∪ (U ′ \ {x′}) : U is open in X with x ∈ U } .
Then B = {B(x) : x ∈ X} ∪ {B(x′) : x′ ∈ X ′} will generate a unique topology on A(X) such that B is its

neighborhood system. A(X) with this topology is called the Alexandroff duplicate of X [1,4].

Theorem 3.5 If X is CC -normal, then its Alexandroff duplicate A(X) is also CC -normal.

Proof Let X be any CC -normal space. Pick a normal space Y and a bijective function f : X −→ Y such that

f|C : C −→ f(C) is a homeomorphism for each countably compact subspace C ⊆ X . Consider the Alexandroff

duplicate spaces A(X) and A(Y ) of X and Y respectively. It is well known that the Alexandroff duplicate

of a normal space is normal [1], and hence A(Y ) is also normal. Define g : A(X) −→ A(Y ) by g(a) = f(a) if

a ∈ X . If a ∈ X ′ , let b be the unique element in X such that b′ = a , and then define g(a) = (f(b))′ . Then g is

a bijective function. Now a subspace C ⊆ A(X) is countably compact if and only if C∩X is countably compact

in X and for each open set U in X with C∩X ⊆ U , we have that (C∩X ′)\U ′ is finite. Let C ⊆ A(X) be any

countably compact subspace. We show that g|C : C −→ g(C) is a homeomorphism. Let a ∈ C be arbitrary.

If a ∈ C ∩X ′ , let b ∈ X be the unique element such that b′ = a . For the smallest basic open neighborhood

{(f(b))′} of the point g(a) we have that {a} is open in C and g({a}) ⊆ {(f(b))′} . If a ∈ C ∩X , let W be any

open set in Y such that g(a) = f(a) ∈ W . Consider H = (W ∪ (W ′ \ {(f(a))′}))∩ g(C), which is a basic open

neighborhood of f(a) in g(C). Since f|C∩X
: C∩X −→ f(C∩X) is a homeomorphism, there exists an open set

U in X with a ∈ U and f|C∩X
(U ∩C) ⊆ W ∩ f(C ∩X). Now (U ∪ (U ′ \{a′}))∩C = G is open in C such that

a ∈ G and g|C (G) ⊆ H . Therefore, g|C is continuous. Now we show that g|C is open. Let K∪(K ′\{k′}), where
k ∈ K and K is open in X , be any basic open set in A(X); then (K ∩C)∪ ((K ′∩C)\{k′}) is a basic open set

in C . Since X∩C is countably compact in X , g|C (K∩(X∩C)) = f|X∩C
(K∩(X∩C)) is open in Y ∩f(C∩X)

as f|X∩C
is a homeomorphism. Thus g|C (K ∩ C) is open in Y ∩ f(X ∩ C). Also, g((K ′ ∩ C) \ {k′}) is open

in Y ′∩g(C) being a set of isolated points. Thus, g|C is an open function. Therefore, g|C is a homeomorphism.2
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The following problems are still open:

1. Is CC -normality hereditary with respect to closed subspaces?

2. If X is a Dowker space, is X × I then CC -normal?
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