

**Turkish Journal of Mathematics** 

http://journals.tubitak.gov.tr/math/

**Research Article** 

# On certain semigroups of full contraction maps of a finite chain

Goje Uba GARBA, Muhammad Jamilu IBRAHIM, Abdussamad Tanko IMAM<sup>\*</sup> Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria

| Accepted/Fublished Online: 00.00.2010 | <b>Received:</b> 14.02.2016 | • | Accepted/Published Online: 06.06.2016 | ٠ | Final Version: 22.05.2017 |
|---------------------------------------|-----------------------------|---|---------------------------------------|---|---------------------------|
|---------------------------------------|-----------------------------|---|---------------------------------------|---|---------------------------|

**Abstract:** Let  $X_n = \{1, 2, ..., n\}$  with its natural order and let  $\mathcal{T}_n$  be the full transformation semigroup on  $X_n$ . A map  $\alpha \in \mathcal{T}_n$  is said to be order-preserving if, for all  $x, y \in X_n$ ,  $x \leq y \Rightarrow x\alpha \leq y\alpha$ . The map  $\alpha \in \mathcal{T}_n$  is said to be a contraction if, for all  $x, y \in X_n$ ,  $|x\alpha - y\alpha| \leq |x - y|$ . Let  $\mathcal{CT}_n$  and  $\mathcal{OCT}_n$  denote, respectively, subsemigroups of all contraction maps and all order-preserving contraction maps in  $\mathcal{T}_n$ . In this paper we present characterisations of Green's relations on  $\mathcal{CT}_n$  and  $\mathcal{OCT}_n$ .

Key words: Full transformation, order-preserving, contraction, Green's relations, starred Green's relations

# 1. Introduction

The full transformation semigroup on  $X_n = \{1, 2, ..., n\}$ , under its natural order, is denoted by  $\mathcal{T}_n$ . The importance of the study of  $\mathcal{T}_n$ , as a naturally occurring semigroup, is justified by its universal property in which every finite semigroup is embeddable in some  $\mathcal{T}_n$ . This is analogous to Cayley's theorem for symmetric group  $S_n$ , of all permutations of  $X_n$ , in group theory. Thus, just as the study of alternating and dihedral groups has made a significant contribution to group theory, there is some interest in identifying and studying certain special subsemigroups of  $\mathcal{T}_n$ . The subsemigroups  $\mathcal{O}_n = \{ \alpha \in \mathcal{T}_n : x \leq y \Rightarrow x\alpha \leq y\alpha, \text{ for all } x, y \in X_n \}, \text{ of }$ order-preserving elements and  $S_n^- = \{ \alpha \in \mathcal{T}_n : x\alpha \leq x, \text{ for all } x \in X_n \}$ , of order-decreasing elements of  $\mathcal{T}_n$  have been studied. In [14], Howie showed that every element of  $\mathcal{O}_n$  is expressible as a product of idempotents and also obtained formulae for the number of elements and the number of idempotents in  $\mathcal{O}_n$ . Umar in [22] showed that every element of  $S_n^-$  is expressible as a product of idempotents. The rank and idempotent rank of  $\mathcal{O}_n$ were computed by Gomes and Howie [12] to be n and 2(n-1), respectively. Maximal subsemigroups, maximal idempotent-generated/regular subsemigroups, and locally maximal idempotent-generated subsemigroups of  $\mathcal{O}_n$ were described and classified in [24-26]. The results of [26] were simplified in [28]. Maximal regular subsemibands of the two-sided ideals of  $\mathcal{O}_n$  were completely described by Zhao [27]. In [8], a description of the endomorphisms of  $\mathcal{O}_n$  was presented. Other algebraic properties in the semigroup  $\mathcal{O}_n$  and some of its notable subsemigroups and oversemigroups may be found in [3-7,9].

On a semigroup S the relation  $\mathcal{L}^*$  is defined by the rule that  $(a, b) \in \mathcal{L}^*$  if and only if a, b are related by the Green's relation  $\mathcal{L}$  in some over semigroup of S. The relation  $\mathcal{R}^*$  is defined dually. These relations have played a fundamental role in the study of many important classes of semigroups; see for example the work by Fountain [10, 11]. Moreover, many papers have appeared describing the relations  $\mathcal{L}^*$  and  $\mathcal{R}^*$  in certain

<sup>\*</sup>Correspondence: atimam@abu.edu.ng

<sup>2010</sup> AMS Mathematics Subject Classification: 20M20.

subsemigroups of  $\mathcal{T}_n$  preserving order and an equivalence relation. Araujo and Konieczny [2] characterised  $\mathcal{L}^*$ and  $\mathcal{R}^*$  in the subsemigroup of  $\mathcal{T}_n$ , consisting of all transformations preserving an equivalence relation and a cross-section of the relation. Pei and Zhou [18] characterised  $\mathcal{L}^*$  and  $\mathcal{R}^*$  in the subsemigroup of  $\mathcal{T}_n$ , consisting of all transformations preserving an equivalence relation. Similar characterisations of  $\mathcal{L}^*$  and  $\mathcal{R}^*$  were presented in [16–21]. In this current article we consider an algebra study for the so-called subsemigroups of contraction mappings of  $\mathcal{T}_n$ . In particular, we present characterisations of both Green's and starred Green's relations for these semigroups.

A map  $\alpha$  in  $\mathcal{T}_n$  is said to be a *contraction* if  $|x\alpha - y\alpha| \leq |x - y|$ , for all  $x, y \in X_n$ . The sets of all contraction maps and of all order-preserving contraction maps in  $\mathcal{T}_n$  are, respectively, denoted by  $\mathcal{CT}_n$  and  $\mathcal{OCT}_n$ , which are subsemigroups of  $\mathcal{T}_n$ . The term contraction map first appeared in [13] but algebraic and combinatorial studies of the semigroups  $\mathcal{CT}_n$  and  $\mathcal{OCT}_n$  were initiated by Dauda [1]. Orders and regularity for both  $\mathcal{CT}_n$  and  $\mathcal{OCT}_n$  were investigated in [1]. He also characterises Green's relations on  $\mathcal{OCT}_n$ . Here we investigate Green's relations on  $\mathcal{CT}_n$  and starred Green's relations on both  $\mathcal{CT}_n$  and  $\mathcal{OCT}_n$ .

### 2. Preliminaries

Let  $\mathcal{O}_n = \{ \alpha \in \mathcal{T}_n \setminus \mathcal{S}_n : (\forall x, y \in X_n) \ x \leq y \Rightarrow x\alpha \leq y\alpha \}, \ \mathcal{CT}_n = \{ \alpha \in \mathcal{T}_n \setminus \mathcal{S}_n : (\forall x, y \in X_n) \ |x\alpha - y\alpha| \leq |x - y| \}, \ \text{and} \ \mathcal{OCT}_n = \mathcal{CT}_n \cap \mathcal{O}_n \ \text{be the subsemigroups of} \ \mathcal{T}_n \setminus \mathcal{S}_n \ \text{consisting of all order-preserving maps, all contraction maps, and all order-preserving contraction maps, respectively.}$ 

**Definition 2.1** Let A be a subset of  $X_n$  and let  $\{A_1, A_2, \ldots, A_r\}$  be a partition of  $X_n$ . Then A is called convex if, for all  $x, y \in X_n$ ,  $(x, y \in A \text{ and } x \leq z \leq y) \Rightarrow z \in A$ . A is called a transversal of  $\{A_1, A_2, \ldots, A_r\}$  if |A| = r and each  $A_i$   $(1 \leq i \leq r)$  contains exactly one point of A. The partition  $\{A_1, A_2, \ldots, A_r\}$  is called a convex partition if it possesses a convex transversal.

From the definition of contraction maps, it is easy to notice (which is also noticed in [1, Lemma 3.1.2]) that if  $\alpha \in \mathcal{T}_n$  is a contraction, then there exists  $s \in X_n$  such that

$$im(\alpha) = \{s, s+1, \dots, t-1, t\},\$$

in other words,  $im(\alpha)$  is convex.

Each map  $\alpha \in \mathcal{O}_n$  can be written as

$$\alpha = \begin{pmatrix} A_1 & A_2 & \cdots & A_r \\ a_1 & a_2 & \cdots & a_r \end{pmatrix},\tag{1}$$

where  $\operatorname{im}(\alpha) = \{a_1 < a_2 < \ldots < a_r\}$  and  $A_1, A_2, \ldots, A_r$  are equivalence classes under the equivalence  $\operatorname{ker}(\alpha) = \{(x, y) \in X_n \times X_n : x\alpha = y\alpha\}$ . Thus,  $x\alpha = a_i$  for all  $x \in A_i$   $(1 \le i \le r)$ . It is then easy to see, from the order-preserving property, that the  $\operatorname{ker}(\alpha)$ -classes  $A_i$   $(1 \le i \le r)$  are convex subsets of  $X_n$ . We start by characterising contraction maps in  $\mathcal{O}_n$ .

# **Lemma 2.1** $\alpha \in \mathcal{O}_n$ is a contraction if and only if $im(\alpha)$ is convex.

**Proof** Since  $\mathcal{O}_n$  is a subsemigroup of  $\mathcal{T}_n$  it is clear, from our observation just after Definition 2.1, that  $im(\alpha)$  is convex whenever  $\alpha \in \mathcal{O}_n$  is a contraction.

Conversely, suppose that  $\operatorname{im}(\alpha) = \{a_1 < a_2 < \ldots < a_r\}$  is convex. Then  $a_{i+1} = a_i + 1$   $(1 \le i \le r-1)$ . Let  $x, y \in X_n$  and suppose (without loss of generality) that x < y. Then either  $x, y \in a_i \alpha^{-1}$  (for some i) or  $x \in a_i \alpha^{-1}$  and  $y \in a_j \alpha^{-1}$  (for some i < j). In the former, we have  $|x\alpha - y\alpha| = |a_i - a_i| = 0 < |x - y|$ . In the latter, assume that j = i + k, where k is any positive integer, so that  $|x\alpha - y\alpha| = |a_{i+k} - a_i| = |a_i + k - a_i| = k \le |x - y|$  since  $\operatorname{ker}(\alpha)$ -classes  $a_i \alpha^{-1}$   $(1 \le i \le r)$  are convex. Thus,  $|x\alpha - y\alpha| \le |x - y|$  for all  $j \ge i$  and so  $\alpha$  is a contraction.

Next we characterise contraction maps in  $\mathcal{T}_n$ .

# **Theorem 2.2** Let $\alpha$ be an element of $\mathcal{T}_n$ of height r, where $r \leq n$ . Then $\alpha$ is contraction if and only if

(i)  $im(\alpha)$  is a convex subset of  $X_n$ , and

(ii) for each  $i \in im(\alpha)$  and each  $x \in i\alpha^{-1}$ , if  $x - 1 \in k\alpha^{-1}$  and  $x + 1 \in t\alpha^{-1}$ , then  $k, t \in \Phi_i$ , where

$$\Phi_i = \begin{cases} \{i, i+1\} & \text{if } i = 1\\ \{i-1, i, i+1\} & \text{if } 1 < i < r\\ \{i-1, i\} & \text{if } i = r. \end{cases}$$

**Proof** Suppose that  $\alpha$  in  $\mathcal{T}_n$  is a contraction. Then, by [1, Lemma 3.1.2], part (i) holds, that is,  $\operatorname{im}(\alpha)$  is convex. Now suppose that, for each  $i \in \operatorname{im}(\alpha)$  and each  $x \in i\alpha^{-1}$ ,  $x - 1 \in s\alpha^{-1}$  and  $x + 1 \in t\alpha^{-1}$ . We need to show that  $s, t \in \Phi_i$ . Suppose that either  $s \notin \Phi_i$  or  $t \notin \Phi_i$ . Then

$$|x\alpha - (x-1)\alpha| = |i-s| > 1 = |x - (x-1)|$$

or

$$|(x+1)\alpha - x\alpha| = |t-i| > 1|(x+1) - x|,$$

so that, in both cases,  $\alpha$  cannot be a contraction. This is a contradiction to the choice of  $\alpha$ . Thus both s and t must be in  $\Phi_i$ .

Conversely, suppose that  $\alpha \in \mathcal{T}_n$  satisfies the two conditions of the theorem and let  $x, y \in X_n$ . If both x and y belong to the same block of  $\alpha$ , then

$$|x\alpha - y\alpha| = 0 \le |x - y|.$$

On the other hand, if x and y belong to different blocks of  $\alpha$ , say  $x \in s\alpha^{-1}$  and  $y \in t\alpha^{-1}$ , where  $s, t \in im(\alpha)$ and  $s \neq t$ , it is then not so hard to see that the two conditions of the theorem ensure that

$$|x\alpha - y\alpha| = |s - t| \le |x - y|.$$

Thus,  $\alpha$  is a contraction.

#### 3. Green's relations

For the definition of Green's relations  $\mathcal{L}, \mathcal{R}, \mathcal{H}, \mathcal{D}$ , and  $\mathcal{J}$  on a semigroup see [15]. As in [23], we shall throughout this and the next sections write  $\mathcal{K}(S)$  to emphasise that  $\mathcal{K}$  is a relation on a semigroup S. In this section we characterise the relations  $\mathcal{L}, \mathcal{R}, \mathcal{H}, \mathcal{D}$ , and  $\mathcal{J}$  on  $\mathcal{CT}_n$ .

Let  $\operatorname{Ker}(\alpha)$  be the set of all the equivalence classes of the equivalence relation  $\operatorname{ker}(\alpha)$  on  $X_n$ , that is  $\operatorname{Ker}(\alpha) = X_n/\operatorname{ker}(\alpha)$ .

**Theorem 3.1** Let  $\alpha, \beta \in \mathcal{CT}_n$ . Then

- (i)  $(\alpha, \beta) \in \mathcal{L}(\mathcal{CT}_n)$  if and only if  $\operatorname{im}(\alpha) = \operatorname{im}(\beta)$ , and both  $\operatorname{Ker}(\alpha)$  and  $\operatorname{Ker}(\beta)$  are convex partitions of  $X_n$ ;
- (*ii*)  $(\alpha, \beta) \in \mathcal{R}(\mathcal{CT}_n)$  if and only if  $\ker(\alpha) = \ker(\beta)$ ;
- (iii)  $(\alpha, \beta) \in \mathcal{D}(\mathcal{CT}_n)$  if and only if  $|\operatorname{im}(\alpha)| = |\operatorname{im}(\beta)|$ , and both  $\operatorname{Ker}(\alpha)$  and  $\operatorname{Ker}(\beta)$  are convex partitions of  $X_n$ .

**Proof** (i) Suppose that  $(\alpha, \beta) \in \mathcal{L}(\mathcal{CT}_n)$ , then

$$\delta \beta = \alpha \quad \text{and} \quad \gamma \alpha = \beta \quad \text{for some} \quad \delta, \gamma \in \mathcal{CT}_n^1.$$

This clearly implies that  $\operatorname{im}(\alpha) = \operatorname{im}(\beta)$ . Therefore,  $\operatorname{im}(\gamma)$  and  $\operatorname{im}(\delta)$  must be transversal of  $\operatorname{Ker}(\alpha)$  and  $\operatorname{Ker}(\beta)$ , respectively. However, since  $\delta, \gamma \in \mathcal{CT}_n^1$  it follows, by Theorem 2.2(i), that  $\operatorname{im}(\delta)$  and  $\operatorname{im}(\gamma)$  are convex subsets of  $X_n$ . Thus,  $\operatorname{Ker}(\alpha)$  and  $\operatorname{Ker}(\beta)$  are convex partitions of  $X_n$ .

Conversely, suppose that  $\operatorname{im}(\alpha) = \operatorname{im}(\beta) = \{c_1, c_2, \ldots, c_r\}$  and  $\operatorname{Ker}(\alpha)$ ,  $\operatorname{Ker}(\beta)$  are convex partitions of  $X_n$ . Let  $\{a_1, a_2, \ldots, a_r\}$  and  $\{b_1, b_2, \ldots, b_r\}$  be convex transversal of  $\operatorname{Ker}(\alpha)$  and  $\operatorname{Ker}(\beta)$ , respectively, arranged in a way that  $a_i \in c_i \alpha^{-1}$  and  $b_i \in c_i \beta^{-1}$  for each  $1 \leq i \leq r$ . Define maps  $\delta$  and  $\gamma$  by  $\operatorname{ker}(\delta) = \operatorname{ker}(\alpha)$ ,  $\operatorname{ker}(\gamma) = \operatorname{ker}(\beta)$ ,  $(c_i \alpha^{-1})\delta = b_i$ , and  $(c_i \beta^{-1})\gamma = a_i$ , for each  $1 \leq i \leq r$ . Then  $\delta, \gamma \in \mathcal{CT}_n$  and  $\delta\beta = \alpha$ ,  $\gamma\alpha = \beta$ so that  $(\alpha, \beta) \in \mathcal{L}(\mathcal{CT}_n)$ .

(ii) Suppose that  $(\alpha, \beta) \in \mathcal{R}(\mathcal{CT}_n)$ ; then

$$\beta \delta = \alpha \quad \text{and} \quad \alpha \gamma = \beta \quad \text{for some} \quad \delta, \gamma \in \mathcal{CT}_n^1.$$

From this it follows that  $\ker(\alpha) = \ker(\beta)$ .

Conversely, suppose that  $\operatorname{Ker}(\alpha) = \operatorname{Ker}(\beta) = \{C_1, C_2, \ldots, C_r\}$ . Then, since  $\alpha, \beta \in \mathcal{CT}_n$ , we may (without loss of generality) write

$$\alpha = \begin{pmatrix} C_1 & C_2 & \cdots & C_r \\ i & i+1 & \cdots & i+r-1 \end{pmatrix} \text{ and } \beta = \begin{pmatrix} C_1 & C_2 & \cdots & C_r \\ j & j+1 & \cdots & j+r-1 \end{pmatrix}$$

for some  $i, j \in X_n$ . Then the maps

$$\delta = \begin{pmatrix} \{1, 2, \dots, j\} & j+1 & \cdots & j+r-2 & \{j+r-1, j+r, \dots, n\} \\ i & i+1 & \cdots & i+r-2 & i+r-1 \end{pmatrix}$$

and

$$\gamma = \begin{pmatrix} \{1, 2, \dots, i\} & i+1 & \cdots & i+r-2 & \{i+r-1, i+r, \dots, n\} \\ j & j+1 & \cdots & j+r-2 & j+r-1 \end{pmatrix}$$

are in  $\mathcal{CT}_n^1$  and satisfy  $\beta \delta = \alpha$ ,  $\alpha \gamma = \beta$  so that  $(\alpha, \beta) \in \mathcal{R}(\mathcal{CT}_n)$ .

(iii) Suppose that  $(\alpha, \beta) \in \mathcal{D}(\mathcal{CT}_n)$ ; then  $(\alpha, \gamma) \in \mathcal{L}(\mathcal{CT}_n)$  and  $(\gamma, \beta) \in \mathcal{R}(\mathcal{CT}_n)$ , for some  $\gamma \in \mathcal{CT}_n$ . Using Theorem 3.1, we have that  $\operatorname{im}(\alpha) = \operatorname{im}(\gamma)$ ,  $\operatorname{ker}(\gamma) = \operatorname{ker}(\beta)$ , and  $\operatorname{Ker}(\alpha)$ ,  $\operatorname{Ker}(\gamma)$  are convex partitions of  $X_n$ . This implies that  $|\operatorname{im}(\alpha)| = |\operatorname{im}(\beta)|$  and  $\operatorname{Ker}(\alpha)$ ,  $\operatorname{Ker}(\beta)$  are convex partitions of  $X_n$ .

Conversely, suppose that  $|\operatorname{im}(\alpha)| = |\operatorname{im}(\beta)|$ , and both  $\operatorname{Ker}(\alpha)$  and  $\operatorname{Ker}(\beta)$  are convex partitions of  $X_n$ . Then we can choose  $\gamma \in \mathcal{CT}_n$  such that  $\operatorname{ker}(\gamma) = \operatorname{ker}(\beta)$  and  $\operatorname{im}(\gamma) = \operatorname{im}(\alpha)$ . It is then clear that  $(\alpha, \gamma) \in \mathcal{L}(\mathcal{CT}_n)$  and  $(\gamma, \beta) \in \mathcal{R}(\mathcal{CT}_n)$ , so that  $(\alpha, \beta) \in \mathcal{D}(\mathcal{CT}_n)$ .

# GARBA et al./Turk J Math

# 4. Starred Green's relations

Recall that on a semigroup S the relation  $\mathcal{L}^*$  is defined by the rule that  $(a, b) \in \mathcal{L}^*$  if and only if a, b are related by the Green's relation  $\mathcal{L}$  in some oversemigroup of S. The relation  $\mathcal{R}^*$  is defined dually. These relations also have the following characterisations (see [10])

$$\mathcal{L}^*(S) = \{(a,b) : (\forall x, y \in S^1) ax = ay \Leftrightarrow bx = by\}$$

$$\tag{2}$$

and

$$\mathcal{R}^*(S) = \{(a,b) : (\forall x, y \in S^1) x a = ya \Leftrightarrow xb = yb\}.$$
(3)

The join of the relations  $\mathcal{L}^*$  and  $\mathcal{R}^*$  is denoted by  $\mathcal{D}^*$  and their intersection by  $\mathcal{H}^*$ .

**Theorem 4.1** Let  $S \in \{\mathcal{CT}_n, \mathcal{OCT}_n\}$  and let  $\alpha, \beta \in S$ . Then

(i)  $(\alpha, \beta) \in \mathcal{L}^*(S)$  if and only if  $\operatorname{im}(\alpha) = \operatorname{im}(\beta)$ ,

(*ii*)  $(\alpha, \beta) \in \mathcal{R}^*(S)$  if and only if  $\ker(\alpha) = \ker(\beta)$ ,

- $(iii) \ (\alpha,\beta) \in \mathcal{H}^*(S) \quad \textit{if and only if} \quad \mathrm{im}(\alpha) = \mathrm{im}(\beta) \ \textit{and} \ \mathrm{ker}(\alpha) = \mathrm{ker}(\beta) \,,$
- (iv)  $(\alpha, \beta) \in \mathcal{D}^*(S)$  if and only if  $|\operatorname{im}(\alpha)| = |\operatorname{im}(\beta)|$ .

**Proof** (i) Suppose that  $(\alpha, \beta) \in \mathcal{L}^*(S)$ . Let  $\operatorname{im}(\alpha) = \{a_1, \ldots, a_r\}$ , where (by [1, Lemma 3.1.2], or Lemma 2.1)  $a_{i+1} = a_i + 1$  for each  $i = 1, \ldots, n-1$ . Then

$$\alpha \cdot \begin{pmatrix} \{1, \dots, a_1\} & a_2 & \cdots & a_{r-1} & \{a_r, \dots, n\} \\ a_1 & a_2 & \cdots & a_{r-1} & a_r \end{pmatrix} = \alpha \cdot 1_{X_n}$$

and, by Equation (2), if and only if

$$\beta \cdot \begin{pmatrix} \{1, \dots, a_1\} & a_2 & \cdots & a_{r-1} & \{a_r, \dots, n\} \\ a_1 & a_2 & \cdots & a_{r-1} & a_r \end{pmatrix} = \beta \cdot 1_{X_n}$$

which implies that  $\operatorname{im}(\beta) \subseteq \{a_1, \ldots, a_r\} = \operatorname{im}(\alpha)$ . Similarly, we can show that  $\operatorname{im}(\alpha) \subseteq \operatorname{im}(\beta)$ , and so  $\operatorname{im}(\alpha) = \operatorname{im}(\beta)$ .

Conversely, suppose that  $\operatorname{im}(\alpha) = \operatorname{im}(\beta)$ . Then  $(\alpha, \beta) \in \mathcal{L}(\mathcal{T}_n)$  and, since  $\mathcal{T}_n$  is an oversemigroup of S, it follows from definition that  $(\alpha, \beta) \in \mathcal{L}^*(S)$ .

(ii) Suppose that  $(\alpha, \beta) \in \mathcal{R}^*(S)$ . Then

$$(x,y) \in \ker(\alpha) \iff x\alpha = y\alpha$$
$$\iff \begin{pmatrix} X_n \\ x \end{pmatrix} \cdot \alpha = \begin{pmatrix} X_n \\ y \end{pmatrix} \cdot \alpha$$
$$\iff \begin{pmatrix} X_n \\ x \end{pmatrix} \cdot \beta = \begin{pmatrix} X_n \\ y \end{pmatrix} \cdot \beta \quad (by \text{ Equation(3)})$$
$$\iff x\beta = y\beta$$
$$\iff (x,y) \in \ker(\beta).$$

Hence  $\ker(\alpha) = \ker(\beta)$ .

Similarly, the converse part is clear.

(iii) This follows from parts (i) and (ii).

(iv) Suppose  $(\alpha, \beta) \in \mathcal{D}^*(S)$ . Then, by [15, Proposition 1.5.11], for some  $n \in \mathbb{N}$ , there exist elements  $\delta_1, \delta_2, \ldots, \delta_{2n-1} \in S$  such that

$$(\alpha, \delta_1) \in \mathcal{L}^*(S), (\delta_1, \delta_2) \in \mathcal{R}^*(S), (\delta_2, \delta_3) \in \mathcal{L}^*(S), \dots, (\delta_{2n-1}, \beta) \in \mathcal{R}^*(S)$$

Now, by parts (i) and (ii) of the theorem, we have  $|\operatorname{im}(\alpha)| = |\operatorname{im}(\delta_1)| = |X_n/\operatorname{ker}(\delta_1)| = |X_n/\operatorname{ker}(\delta_2)| = |\operatorname{im}(\delta_2)| = |\operatorname{im}(\delta_3)| = \cdots = |X_n/\operatorname{ker}(\delta_{2n-1})| = |X_n/\operatorname{ker}(\beta)| = |\operatorname{im}(\beta)|.$ 

Conversely, suppose that  $|im(\alpha)| = |im(\beta)|$  and let

$$\alpha = \begin{pmatrix} A_1 & A_2 & \cdots & A_r \\ a_1 & a_2 & \cdots & a_r \end{pmatrix} \quad \text{and} \quad \beta = \begin{pmatrix} B_1 & B_2 & \cdots & B_r \\ b_1 & b_2 & \cdots & b_r \end{pmatrix}$$

where  $a_{i+1} = a_i + 1$ ,  $b_{i+1} = b_i + 1$  for each i = 1, 2, ..., r - 1. Then the map

$$\gamma = \begin{pmatrix} B_1 & B_2 & \cdots & B_r \\ a_1 & a_2 & \cdots & a_r \end{pmatrix}$$

is in S and, by parts (i) and (ii),  $(\alpha, \gamma) \in \mathcal{L}^*(S)$  and  $(\gamma, \beta) \in \mathcal{R}^*(S)$  so that, by [15, Proposition 1.5.11],  $(\alpha, \beta) \in \mathcal{D}^*(S)$ .

The  $\mathcal{L}^* - class$  containing an element a is denoted by  $L_a^*$  and corresponding notations are used for the remaining starred relations. We define a left(right) \* - ideal of a semigroup S to be a left(right) ideal I of S for which  $L_a^* \subseteq I$  ( $R_a^* \subseteq I$ ) for all  $a \in I$ . A subset I of S is a \* - ideal if it is both left and right \* - ideals of S. The principal \* - ideal,  $J^*(a)$ , generated by  $a \in S$  is the intersection of all \* - ideals of S to which a belongs. The relation  $\mathcal{J}^*$  is defined by the rule that:  $a\mathcal{J}^*b$  if and only if  $J^*(a) = J^*(b)$ .

Now we are going to show that on the semigroup  $S \in \{CT_n, OCT_n\}, D^* = J^*$  but first we record the following lemma from [11].

**Lemma 4.2** Let a, b be elements of a semigroup S. Then  $b \in J^*(a)$  if and only if there are elements  $a_0, a_1, \ldots, a_n \in S$ ,  $x_1, \ldots, x_n, y_1, \ldots, y_n \in S^1$  such that  $a = a_0, b = a_n$  and  $(a_i, x_i a_{i-1} y_i) \in \mathcal{D}^*(S)$  for  $i = 1, \ldots, n$ .

Immediately we adopt the method used in [23] to have

**Lemma 4.3** Let  $S \in \{\mathcal{CT}_n, \mathcal{OCT}_n\}$ . Then for each  $\alpha, \beta \in S$ ,  $\alpha \in J^*(\beta)$  implies  $|\operatorname{im}(\alpha)| \leq |\operatorname{im}(\beta)|$ .

**Proof** Let  $\alpha \in J^*(\beta)$ , then by Lemma 4.2, there exist  $\beta_0, \ldots, \beta_n \in S$ ,  $\delta_1, \ldots, \delta_n$ ,  $\gamma_1, \ldots, \gamma_n \in S^1$  such that  $\beta = \beta_0, \alpha = \beta_n$  and  $(\beta_i, \delta_i \beta_{i-1} \gamma_i) \in \mathcal{D}^*(S)$ , for  $i = 1, \ldots, n$ . However, by Theorem 4.1(iv), this implies that

$$|\operatorname{im}(\beta_i)| = |\operatorname{im}(\delta_i \beta_{i-1} \gamma_i)| \le |\operatorname{im}(\beta_{i-1})|$$

for all i = 1, ..., n, which implies  $|im(\alpha)| \le |im(\beta)|$  as required.

The fact that  $\mathcal{D}^* \subseteq \mathcal{J}^*$  together with Lemma 4.3 gives the following result.

**Theorem 4.4** On the semigroup  $S \in \{\mathcal{CT}_n, \mathcal{OCT}_n\}, \mathcal{D}^* = \mathcal{J}^*$ .

### References

- Adeshola DA. Some Semigroups of Full Contraction Mappings of a Finite Chain, PhD Thesis, University of Ilorin, Nigeria. 2013.
- [2] Araujo J, Konieczny J. Semigroups of transformations preserving an equivalence relation and a cross-section. Comm Algebra 2004; 32: 1917-1935.
- [3] Dimitrova I, Koppitz J. On the maximal regular subsemigroups of ideals of order-preserving or order-reversing transformations. Semigroup Forum 2011; 82: 172-180.
- [4] Fernandes VH. Semigroup of order preserving mappings on a finite chain: a new class of divisors. Semigroup Forum 1997; 54: 230-236.
- [5] Fernandes VH, Gomes GMS, Jesus MM. Congruence on monoids of transformations preserving the orientation on a finite chain. J Algebra 2009; 321: 743-757.
- [6] Fernandes VH, Gomes GMS, Jesus MM. Congruence on monoids of order-preserving or order-reversing transformations on a finite chain. Glasgow Math J 2005; 47: 413-424.
- [7] Fernandes VH, Gomes GMS, Jesus MM. Presentations for some monoids of partial transformations on a finite chain. Comm Algebra 2005; 33: 587-604.
- [8] Fernandes VH, Jesus MM, Maltcev V, Mitchell JD. Endomorphisms of the semigroup of order-preserving mappings. Semigroup Forum 2010; 81: 277-285.
- [9] Fernandes VH, Volkov MV. On divisors of semigroups of order-preserving mappings of a finite chain. Semigroup Forum 2010; 81: 551-554.
- [10] Fountain JB. Adequate semigroups. Proc Edinburgh Math Soc 1979; 22: 113-125.
- [11] Fountain JB. Abundant semigroups. Proc London Math Soc 1982; 44: 103-129.
- [12] Gomes GMS, Howie JM. On the ranks of certain semigroups of order-preserving transformations. Semigroup Forum 1992; 45: 272-282.
- [13] Higgins PM, Howie JM, Mitchell JD, Ruskuc N. Countable versus uncountable rank in finite semigroups of transformations and relations. Proc Edinburgh Math Soc 2003; 46: 531-544.
- [14] Howie JM. Products of idempotents in certain semigroups of transformations. Proc. Edinburgh Math. Soc. 1971; 17: 223-236.
- [15] Howie JM. Fundamentals of semigroup theory. London Mathematical Society, New Series 12. Oxford, UK: The Clarendon Press, Oxford University Press, 1995.
- [16] Ma M, You T, Luo S, Yang Y, Wang L. Regularity and Green's relations for finite E-order-preserving transformations semigroups. Semigroup Forum. 2010; 80: 164-173.
- [17] Pei H, Deng W. The natural order for the E-order-preserving transformation semigroups. Asian Eur J Math 2012; 5: 1250035.
- [18] Pei H, Zhou H. Abundant semigroups of transformations preserving an equivalence relation. Algebra Colloq 2011; 18: 77-82.
- [19] Sun L. A note on abundance of certain semigroups of transformations with restricted range. Semigroup Forum 2013; 87: 681-684.
- [20] Sun L, Han X. Abundance of *E*-order-preserving transformation semigroups. Turk J Math 2016; 40: 32-37.
- [21] Sun L, Wang L. Abundance of the semigroup of all transformations of a set that reflect an equivalence relation. J Algebra Appl 2014; 13: 1350088.
- [22] Umar A. On the semigroup of order-decreasing full transformation. Proc Roy Soc Edinburgh 1992; 120A: 129-142.
- [23] Umar A. On the semigroup of partial one-one order-decreasing finite transformation. Proc Roy Soc Edinburgh 1993; 123A: 355-363.

# GARBA et al./Turk J Math

- [24] Xu B, Zhao P, Li P. Locally maximal idempotent-generated subsemigroups of singular order-preserving transformation semigroups. Semigroup Forum 2006; 72: 488-492.
- [25] Yang X. A classification of maximal subsemigroups on finite order-preserving transformation semigroups. Comm Algebra 2000; 28: 1503-1513.
- [26] Yang X, Lu C. Maximal properties of some subsemigroups in finite order-preserving transformation semigroups. Comm Algebra 2000; 28: 3125-3135.
- [27] Zhao P. Maximal regular subsemibands of finite order-preserving transformation semigroups K(n, r). Semigroup Forum 2012; 84: 97-115.
- [28] Zhao P, Xu B, Yang M. A note on maximal properties of some subsemigroups on finite order-preserving transformation semigroups. Comm Algebra 2012; 40: 1116-1121.