Turkish Journal of Mathematics
 http://journals.tubitak.gov.tr/math/
 Research Article
 Turk J Math
 (2017) 41: $500-507$
 (C) TÜBITAKK
 doi:10.3906/mat-1602-52

т $̈$ вітак

On certain semigroups of full contraction maps of a finite chain

Goje Uba GARBA, Muhammad Jamilu IBRAHIM, Abdussamad Tanko IMAM*
Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria

Received: 14.02.2016 • Accepted/Published Online: 06.06.2016 \quad Final Version: 22.05 .2017

Abstract

Let $X_{n}=\{1,2, \ldots, n\}$ with its natural order and let \mathcal{T}_{n} be the full transformation semigroup on X_{n}. A map $\alpha \in \mathcal{T}_{n}$ is said to be order-preserving if, for all $x, y \in X_{n}, x \leq y \Rightarrow x \alpha \leq y \alpha$. The map $\alpha \in \mathcal{T}_{n}$ is said to be a contraction if, for all $x, y \in X_{n},|x \alpha-y \alpha| \leq|x-y|$. Let $\mathcal{C} \mathcal{T}_{n}$ and $\mathcal{O C} \mathcal{T}_{n}$ denote, respectively, subsemigroups of all contraction maps and all order-preserving contraction maps in \mathcal{T}_{n}. In this paper we present characterisations of Green's relations on $\mathcal{C} \mathcal{T}_{n}$ and starred Green's relations on both $\mathcal{C} \mathcal{T}_{n}$ and $\mathcal{O C} \mathcal{T}_{n}$.

Key words: Full transformation, order-preserving, contraction, Green's relations, starred Green's relations

1. Introduction

The full transformation semigroup on $X_{n}=\{1,2, \ldots, n\}$, under its natural order, is denoted by \mathcal{T}_{n}. The importance of the study of \mathcal{T}_{n}, as a naturally occurring semigroup, is justified by its universal property in which every finite semigroup is embeddable in some \mathcal{T}_{n}. This is analogous to Cayley's theorem for symmetric group \mathcal{S}_{n}, of all permutations of X_{n}, in group theory. Thus, just as the study of alternating and dihedral groups has made a significant contribution to group theory, there is some interest in identifying and studying certain special subsemigroups of \mathcal{T}_{n}. The subsemigroups $\mathcal{O}_{n}=\left\{\alpha \in \mathcal{T}_{n}: x \leq y \Rightarrow x \alpha \leq y \alpha\right.$, for all $\left.x, y \in X_{n}\right\}$, of order-preserving elements and $S_{n}^{-}=\left\{\alpha \in \mathcal{T}_{n}: x \alpha \leq x\right.$, for all $\left.x \in X_{n}\right\}$, of order-decreasing elements of \mathcal{T}_{n} have been studied. In [14], Howie showed that every element of \mathcal{O}_{n} is expressible as a product of idempotents and also obtained formulae for the number of elements and the number of idempotents in \mathcal{O}_{n}. Umar in [22] showed that every element of S_{n}^{-}is expressible as a product of idempotents. The rank and idempotent rank of \mathcal{O}_{n} were computed by Gomes and Howie [12] to be n and $2(n-1)$, respectively. Maximal subsemigroups, maximal idempotent-generated/regular subsemigroups, and locally maximal idempotent-generated subsemigroups of \mathcal{O}_{n} were described and classified in [24-26]. The results of [26] were simplified in [28]. Maximal regular subsemibands of the two-sided ideals of \mathcal{O}_{n} were completely described by Zhao [27]. In [8], a description of the endomorphisms of \mathcal{O}_{n} was presented. Other algebraic properties in the semigroup \mathcal{O}_{n} and some of its notable subsemigroups and oversemigroups may be found in [3-7,9].

On a semigroup S the relation \mathcal{L}^{*} is defined by the rule that $(a, b) \in \mathcal{L}^{*}$ if and only if a, b are related by the Green's relation \mathcal{L} in some over semigroup of S. The relation \mathcal{R}^{*} is defined dually. These relations have played a fundamental role in the study of many important classes of semigroups; see for example the work by Fountain $[10,11]$. Moreover, many papers have appeared describing the relations \mathcal{L}^{*} and \mathcal{R}^{*} in certain

[^0]subsemigroups of \mathcal{T}_{n} preserving order and an equivalence relation. Araujo and Konieczny [2] characterised \mathcal{L}^{*} and \mathcal{R}^{*} in the subsemigroup of \mathcal{T}_{n}, consisting of all transformations preserving an equivalence relation and a cross-section of the relation. Pei and Zhou [18] characterised \mathcal{L}^{*} and \mathcal{R}^{*} in the subsemigroup of \mathcal{T}_{n}, consisting of all transformations preserving an equivalence relation. Similar characterisations of \mathcal{L}^{*} and \mathcal{R}^{*} were presented in [16-21]. In this current article we consider an algebra study for the so-called subsemigroups of contraction mappings of \mathcal{T}_{n}. In particular, we present characterisations of both Green's and starred Green's relations for these semigroups.

A map α in \mathcal{T}_{n} is said to be a contraction if $|x \alpha-y \alpha| \leq|x-y|$, for all $x, y \in X_{n}$. The sets of all contraction maps and of all order-preserving contraction maps in \mathcal{T}_{n} are, respectively, denoted by $\mathcal{C} \mathcal{T}_{n}$ and $\mathcal{O C} \mathcal{T}_{n}$, which are subsemigroups of \mathcal{T}_{n}. The term contraction map first appeared in [13] but algebraic and combinatorial studies of the semigroups $\mathcal{C} \mathcal{T}_{n}$ and $\mathcal{O C} \mathcal{T}_{n}$ were initiated by Dauda [1]. Orders and regularity for both $\mathcal{C} \mathcal{T}_{n}$ and $\mathcal{O C} \mathcal{T}_{n}$ were investigated in [1]. He also characterises Green's relations on $\mathcal{O C} \mathcal{T}_{n}$. Here we investigate Green's relations on $\mathcal{C} \mathcal{T}_{n}$ and starred Green's relations on both $\mathcal{C} \mathcal{T}_{n}$ and $\mathcal{O C} \mathcal{T}_{n}$.

2. Preliminaries

Let $\mathcal{O}_{n}=\left\{\alpha \in \mathcal{T}_{n} \backslash \mathcal{S}_{n}:\left(\forall x, y \in X_{n}\right) x \leq y \Rightarrow x \alpha \leq y \alpha\right\}, \mathcal{C} \mathcal{T}_{n}=\left\{\alpha \in \mathcal{T}_{n} \backslash \mathcal{S}_{n}:\left(\forall x, y \in X_{n}\right)|x \alpha-y \alpha| \leq\right.$ $|x-y|\}$, and $\mathcal{O C} \mathcal{T}_{n}=\mathcal{C} \mathcal{T}_{n} \cap \mathcal{O}_{n}$ be the subsemigroups of $\mathcal{T}_{n} \backslash \mathcal{S}_{n}$ consisting of all order-preserving maps, all contraction maps, and all order-preserving contraction maps, respectively.

Definition 2.1 Let A be a subset of X_{n} and let $\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$ be a partition of X_{n}. Then A is called convex if, for all $x, y \in X_{n},(x, y \in A$ and $x \leq z \leq y) \Rightarrow z \in A$. A is called a transversal of $\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$ if $|A|=r$ and each $A_{i}(1 \leq i \leq r)$ contains exactly one point of A. The partition $\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$ is called a convex partition if it possesses a convex transversal.

From the definition of contraction maps, it is easy to notice (which is also noticed in [1, Lemma 3.1.2]) that if $\alpha \in \mathcal{T}_{n}$ is a contraction, then there exists $s \in X_{n}$ such that

$$
\operatorname{im}(\alpha)=\{s, s+1, \ldots, t-1, t\}
$$

in other words, $\operatorname{im}(\alpha)$ is convex.
Each map $\alpha \in \mathcal{O}_{n}$ can be written as

$$
\alpha=\left(\begin{array}{llll}
A_{1} & A_{2} & \cdots & A_{r} \tag{1}\\
a_{1} & a_{2} & \cdots & a_{r}
\end{array}\right)
$$

where $\operatorname{im}(\alpha)=\left\{a_{1}<a_{2}<\ldots<a_{r}\right\}$ and $A_{1}, A_{2}, \ldots, A_{r}$ are equivalence classes under the equivalence $\operatorname{ker}(\alpha)=\left\{(x, y) \in X_{n} \times X_{n}: x \alpha=y \alpha\right\}$. Thus, $x \alpha=a_{i}$ for all $x \in A_{i}(1 \leq i \leq r)$. It is then easy to see, from the order-preserving property, that the $\operatorname{ker}(\alpha)$-classes $A_{i}(1 \leq i \leq r)$ are convex subsets of X_{n}. We start by characterising contraction maps in \mathcal{O}_{n}.

Lemma $2.1 \alpha \in \mathcal{O}_{n}$ is a contraction if and only if $\operatorname{im}(\alpha)$ is convex.
Proof Since \mathcal{O}_{n} is a subsemigroup of \mathcal{T}_{n} it is clear, from our observation just after Definition 2.1, that $\operatorname{im}(\alpha)$ is convex whenever $\alpha \in \mathcal{O}_{n}$ is a contraction.

Conversely, suppose that $\operatorname{im}(\alpha)=\left\{a_{1}<a_{2}<\ldots<a_{r}\right\}$ is convex. Then $a_{i+1}=a_{i}+1(1 \leq i \leq r-1)$. Let $x, y \in X_{n}$ and suppose (without loss of generality) that $x<y$. Then either $x, y \in a_{i} \alpha^{-1}$ (for some i) or $x \in a_{i} \alpha^{-1}$ and $y \in a_{j} \alpha^{-1}$ (for some $i<j$). In the former, we have $|x \alpha-y \alpha|=\left|a_{i}-a_{i}\right|=0<|x-y|$. In the latter, assume that $j=i+k$, where k is any positive integer, so that $|x \alpha-y \alpha|=\left|a_{i+k}-a_{i}\right|=\left|a_{i}+k-a_{i}\right|=$ $k \leq|x-y|$ since $\operatorname{ker}(\alpha)$-classes $a_{i} \alpha^{-1}(1 \leq i \leq r)$ are convex. Thus, $|x \alpha-y \alpha| \leq|x-y|$ for all $j \geq i$ and so α is a contraction.

Next we characterise contraction maps in \mathcal{T}_{n}.
Theorem 2.2 Let α be an element of \mathcal{T}_{n} of height r, where $r \leq n$. Then α is contraction if and only if
(i) $\operatorname{im}(\alpha)$ is a convex subset of X_{n}, and
(ii) for each $i \in \operatorname{im}(\alpha)$ and each $x \in i \alpha^{-1}$, if $x-1 \in k \alpha^{-1}$ and $x+1 \in t^{-1}$, then $k, t \in \Phi_{i}$, where

$$
\Phi_{i}= \begin{cases}\{i, i+1\} & \text { if } i=1 \\ \{i-1, i, i+1\} & \text { if } 1<i<r \\ \{i-1, i\} & \text { if } i=r\end{cases}
$$

Proof Suppose that α in \mathcal{T}_{n} is a contraction. Then, by [1, Lemma 3.1.2], part (i) holds, that is, im (α) is convex. Now suppose that, for each $i \in \operatorname{im}(\alpha)$ and each $x \in i \alpha^{-1}, x-1 \in s \alpha^{-1}$ and $x+1 \in t \alpha^{-1}$. We need to show that $s, t \in \Phi_{i}$. Suppose that either $s \notin \Phi_{i}$ or $t \notin \Phi_{i}$. Then

$$
|x \alpha-(x-1) \alpha|=|i-s|>1=|x-(x-1)|
$$

or

$$
|(x+1) \alpha-x \alpha|=|t-i|>1|(x+1)-x|
$$

so that, in both cases, α cannot be a contraction. This is a contradiction to the choice of α. Thus both s and t must be in Φ_{i}.

Conversely, suppose that $\alpha \in \mathcal{T}_{n}$ satisfies the two conditions of the theorem and let $x, y \in X_{n}$. If both x and y belong to the same block of α, then

$$
|x \alpha-y \alpha|=0 \leq|x-y|
$$

On the other hand, if x and y belong to different blocks of α, say $x \in s \alpha^{-1}$ and $y \in t \alpha^{-1}$, where $s, t \in \operatorname{im}(\alpha)$ and $s \neq t$, it is then not so hard to see that the two conditions of the theorem ensure that

$$
|x \alpha-y \alpha|=|s-t| \leq|x-y|
$$

Thus, α is a contraction.

3. Green's relations

For the definition of Green's relations $\mathcal{L}, \mathcal{R}, \mathcal{H}, \mathcal{D}$, and \mathcal{J} on a semigroup see [15]. As in [23], we shall throughout this and the next sections write $\mathcal{K}(S)$ to emphasise that \mathcal{K} is a relation on a semigroup S. In this section we characterise the relations $\mathcal{L}, \mathcal{R}, \mathcal{H}, \mathcal{D}$, and \mathcal{J} on $\mathcal{C} \mathcal{T}_{n}$.

Let $\operatorname{Ker}(\alpha)$ be the set of all the equivalence classes of the equivalence relation $\operatorname{ker}(\alpha)$ on X_{n}, that is $\operatorname{Ker}(\alpha)=X_{n} / \operatorname{ker}(\alpha)$.

GARBA et al./Turk J Math

Theorem 3.1 Let $\alpha, \beta \in \mathcal{C} \mathcal{T}_{n}$. Then
(i) $(\alpha, \beta) \in \mathcal{L}\left(\mathcal{C} \mathcal{T}_{n}\right)$ if and only if $\operatorname{im}(\alpha)=\operatorname{im}(\beta)$, and both $\operatorname{Ker}(\alpha)$ and $\operatorname{Ker}(\beta)$ are convex partitions of X_{n};
(ii) $(\alpha, \beta) \in \mathcal{R}\left(\mathcal{C} \mathcal{T}_{n}\right)$ if and only if $\operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$;
(iii) $(\alpha, \beta) \in \mathcal{D}\left(\mathcal{C T}_{n}\right)$ if and only if $|\operatorname{im}(\alpha)|=|\operatorname{im}(\beta)|$, and both $\operatorname{Ker}(\alpha)$ and $\operatorname{Ker}(\beta)$ are convex partitions of X_{n}.
Proof (i) Suppose that $(\alpha, \beta) \in \mathcal{L}\left(\mathcal{C} \mathcal{T}_{n}\right)$, then

$$
\delta \beta=\alpha \quad \text { and } \quad \gamma \alpha=\beta \quad \text { for some } \quad \delta, \gamma \in \mathcal{C} \mathcal{T}_{n}^{1} .
$$

This clearly implies that $\operatorname{im}(\alpha)=\operatorname{im}(\beta)$. Therefore, $\operatorname{im}(\gamma)$ and $\operatorname{im}(\delta)$ must be transversal of $\operatorname{Ker}(\alpha)$ and $\operatorname{Ker}(\beta)$, respectively. However, since $\delta, \gamma \in \mathcal{C} \mathcal{T}_{n}^{1}$ it follows, by Theorem $2.2(\mathrm{i})$, that $\mathrm{im}(\delta)$ and $\operatorname{im}(\gamma)$ are convex subsets of X_{n}. Thus, $\operatorname{Ker}(\alpha)$ and $\operatorname{Ker}(\beta)$ are convex partitions of X_{n}.

Conversely, suppose that $\operatorname{im}(\alpha)=\operatorname{im}(\beta)=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ and $\operatorname{Ker}(\alpha), \operatorname{Ker}(\beta)$ are convex partitions of X_{n}. Let $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{r}\right\}$ be convex transversal of $\operatorname{Ker}(\alpha)$ and $\operatorname{Ker}(\beta)$, respectively, arranged in a way that $a_{i} \in c_{i} \alpha^{-1}$ and $b_{i} \in c_{i} \beta^{-1}$ for each $1 \leq i \leq r$. Define maps δ and γ by $\operatorname{ker}(\delta)=\operatorname{ker}(\alpha)$, $\operatorname{ker}(\gamma)=\operatorname{ker}(\beta),\left(c_{i} \alpha^{-1}\right) \delta=b_{i}$, and $\left(c_{i} \beta^{-1}\right) \gamma=a_{i}$, for each $1 \leq i \leq r$. Then $\delta, \gamma \in \mathcal{C} \mathcal{T}_{n}$ and $\delta \beta=\alpha, \gamma \alpha=\beta$ so that $(\alpha, \beta) \in \mathcal{L}\left(\mathcal{C} \mathcal{T}_{n}\right)$.
(ii) Suppose that $(\alpha, \beta) \in \mathcal{R}\left(\mathcal{C} \mathcal{T}_{n}\right)$; then

$$
\beta \delta=\alpha \quad \text { and } \quad \alpha \gamma=\beta \quad \text { for some } \quad \delta, \gamma \in \mathcal{C} \mathcal{T}_{n}^{1} .
$$

From this it follows that $\operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$.
Conversely, suppose that $\operatorname{Ker}(\alpha)=\operatorname{Ker}(\beta)=\left\{C_{1}, C_{2}, \ldots, C_{r}\right\}$. Then, since $\alpha, \beta \in \mathcal{C} \mathcal{T}_{n}$, we may (without loss of generality) write

$$
\alpha=\left(\begin{array}{cccc}
C_{1} & C_{2} & \cdots & C_{r} \\
i & i+1 & \cdots & i+r-1
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{cccc}
C_{1} & C_{2} & \cdots & C_{r} \\
j & j+1 & \cdots & j+r-1
\end{array}\right)
$$

for some $i, j \in X_{n}$. Then the maps

$$
\delta=\left(\begin{array}{ccccc}
\{1,2, \ldots, j\} & j+1 & \cdots & j+r-2 & \{j+r-1, j+r, \ldots, n\} \\
i & i+1 & \cdots & i+r-2 & i+r-1
\end{array}\right)
$$

and

$$
\gamma=\left(\begin{array}{ccccc}
\{1,2, \ldots, i\} & i+1 & \cdots & i+r-2 & \{i+r-1, i+r, \ldots, n\} \\
j & j+1 & \cdots & j+r-2 & j+r-1
\end{array}\right)
$$

are in $\mathcal{C} \mathcal{T}_{n}^{1}$ and satisfy $\beta \delta=\alpha, \alpha \gamma=\beta$ so that $(\alpha, \beta) \in \mathcal{R}\left(\mathcal{C} \mathcal{T}_{n}\right)$.
(iii) Suppose that $(\alpha, \beta) \in \mathcal{D}\left(\mathcal{C} \mathcal{T}_{n}\right)$; then $(\alpha, \gamma) \in \mathcal{L}\left(\mathcal{C} \mathcal{T}_{n}\right)$ and $(\gamma, \beta) \in \mathcal{R}\left(\mathcal{C} \mathcal{T}_{n}\right)$, for some $\gamma \in \mathcal{C} \mathcal{T}_{n}$. Using Theorem 3.1, we have that $\operatorname{im}(\alpha)=\operatorname{im}(\gamma), \operatorname{ker}(\gamma)=\operatorname{ker}(\beta)$, and $\operatorname{Ker}(\alpha), \operatorname{Ker}(\gamma)$ are convex partitions of X_{n}. This implies that $|\operatorname{im}(\alpha)|=|\operatorname{im}(\beta)|$ and $\operatorname{Ker}(\alpha), \operatorname{Ker}(\beta)$ are convex partitions of X_{n}.

Conversely, suppose that $|\operatorname{im}(\alpha)|=|\operatorname{im}(\beta)|$, and both $\operatorname{Ker}(\alpha)$ and $\operatorname{Ker}(\beta)$ are convex partitions of X_{n}. Then we can choose $\gamma \in \mathcal{C} \mathcal{T}_{n}$ such that $\operatorname{ker}(\gamma)=\operatorname{ker}(\beta)$ and $\operatorname{im}(\gamma)=\operatorname{im}(\alpha)$. It is then clear that $(\alpha, \gamma) \in \mathcal{L}\left(\mathcal{C} \mathcal{T}_{n}\right)$ and $(\gamma, \beta) \in \mathcal{R}\left(\mathcal{C} \mathcal{T}_{n}\right)$, so that $(\alpha, \beta) \in \mathcal{D}\left(\mathcal{C} \mathcal{T}_{n}\right)$.

4. Starred Green's relations

Recall that on a semigroup S the relation \mathcal{L}^{*} is defined by the rule that $(a, b) \in \mathcal{L}^{*}$ if and only if a, b are related by the Green's relation \mathcal{L} in some oversemigroup of S. The relation \mathcal{R}^{*} is defined dually. These relations also have the following characterisations (see [10])

$$
\begin{equation*}
\mathcal{L}^{*}(S)=\left\{(a, b):\left(\forall x, y \in S^{1}\right) a x=a y \Leftrightarrow b x=b y\right\} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{R}^{*}(S)=\left\{(a, b):\left(\forall x, y \in S^{1}\right) x a=y a \Leftrightarrow x b=y b\right\} \tag{3}
\end{equation*}
$$

The join of the relations \mathcal{L}^{*} and \mathcal{R}^{*} is denoted by \mathcal{D}^{*} and their intersection by \mathcal{H}^{*}.
Theorem 4.1 Let $S \in\left\{\mathcal{C T}_{n}, \mathcal{O C T}_{n}\right\}$ and let $\alpha, \beta \in S$. Then
(i) $(\alpha, \beta) \in \mathcal{L}^{*}(S) \quad$ if and only if $\quad \operatorname{im}(\alpha)=\operatorname{im}(\beta)$,
(ii) $(\alpha, \beta) \in \mathcal{R}^{*}(S) \quad$ if and only if $\quad \operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$,
(iii) $(\alpha, \beta) \in \mathcal{H}^{*}(S) \quad$ if and only if $\quad \operatorname{im}(\alpha)=\operatorname{im}(\beta)$ and $\operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$,
(iv) $(\alpha, \beta) \in \mathcal{D}^{*}(S) \quad$ if and only if $\quad|\operatorname{im}(\alpha)|=|\operatorname{im}(\beta)|$.

Proof (i) Suppose that $(\alpha, \beta) \in \mathcal{L}^{*}(S)$. Let $\operatorname{im}(\alpha)=\left\{a_{1}, \ldots, a_{r}\right\}$, where (by [1, Lemma 3.1.2], or Lemma 2.1) $a_{i+1}=a_{i}+1$ for each $i=1, \ldots, n-1$. Then

$$
\alpha \cdot\left(\begin{array}{ccccc}
\left\{1, \ldots, a_{1}\right\} & a_{2} & \cdots & a_{r-1} & \left\{a_{r}, \ldots, n\right\} \\
a_{1} & a_{2} & \cdots & a_{r-1} & a_{r}
\end{array}\right)=\alpha \cdot 1_{X_{n}}
$$

and, by Equation (2), if and only if

$$
\beta \cdot\left(\begin{array}{ccccc}
\left\{1, \ldots, a_{1}\right\} & a_{2} & \cdots & a_{r-1} & \left\{a_{r}, \ldots, n\right\} \\
a_{1} & a_{2} & \cdots & a_{r-1} & a_{r}
\end{array}\right)=\beta \cdot 1_{X_{n}}
$$

which implies that $\operatorname{im}(\beta) \subseteq\left\{a_{1}, \ldots, a_{r}\right\}=\operatorname{im}(\alpha)$. Similarly, we can show that $\operatorname{im}(\alpha) \subseteq \operatorname{im}(\beta)$, and so $\operatorname{im}(\alpha)=\operatorname{im}(\beta)$.

Conversely, suppose that $\operatorname{im}(\alpha)=\operatorname{im}(\beta)$. Then $(\alpha, \beta) \in \mathcal{L}\left(\mathcal{T}_{n}\right)$ and, since \mathcal{T}_{n} is an oversemigroup of S, it follows from definition that $(\alpha, \beta) \in \mathcal{L}^{*}(S)$.
(ii) Suppose that $(\alpha, \beta) \in \mathcal{R}^{*}(S)$. Then

$$
\begin{aligned}
(x, y) \in \operatorname{ker}(\alpha) & \Longleftrightarrow x \alpha=y \alpha \\
& \Longleftrightarrow\binom{X_{n}}{x} \cdot \alpha=\binom{X_{n}}{y} \cdot \alpha \\
& \Longleftrightarrow \quad\binom{X_{n}}{x} \cdot \beta=\binom{X_{n}}{y} \cdot \beta \quad \text { (by Equation(3)) } \\
& \Longleftrightarrow x \beta=y \beta \\
& \Longleftrightarrow \quad(x, y) \in \operatorname{ker}(\beta)
\end{aligned}
$$

Hence $\operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$.

Similarly, the converse part is clear.
(iii) This follows from parts (i) and (ii).
(iv) Suppose $(\alpha, \beta) \in \mathcal{D}^{*}(S)$. Then, by [15, Proposition 1.5.11], for some $n \in \mathbb{N}$, there exist elements $\delta_{1}, \delta_{2}, \ldots, \delta_{2 n-1} \in S$ such that

$$
\left(\alpha, \delta_{1}\right) \in \mathcal{L}^{*}(S),\left(\delta_{1}, \delta_{2}\right) \in \mathcal{R}^{*}(S),\left(\delta_{2}, \delta_{3}\right) \in \mathcal{L}^{*}(S), \ldots,\left(\delta_{2 n-1}, \beta\right) \in \mathcal{R}^{*}(S)
$$

Now, by parts (i) and (ii) of the theorem, we have $|\operatorname{im}(\alpha)|=\left|\operatorname{im}\left(\delta_{1}\right)\right|=\left|X_{n} / \operatorname{ker}\left(\delta_{1}\right)\right|=\left|X_{n} / \operatorname{ker}\left(\delta_{2}\right)\right|=$ $\left|\operatorname{im}\left(\delta_{2}\right)\right|=\left|\operatorname{im}\left(\delta_{3}\right)\right|=\cdots=\left|X_{n} / \operatorname{ker}\left(\delta_{2 n-1}\right)\right|=\left|X_{n} / \operatorname{ker}(\beta)\right|=|\operatorname{im}(\beta)|$.

Conversely, suppose that $|\operatorname{im}(\alpha)|=|\operatorname{im}(\beta)|$ and let

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{r} \\
a_{1} & a_{2} & \cdots & a_{r}
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{cccc}
B_{1} & B_{2} & \cdots & B_{r} \\
b_{1} & b_{2} & \cdots & b_{r}
\end{array}\right)
$$

where $a_{i+1}=a_{i}+1, b_{i+1}=b_{i}+1$ for each $i=1,2, \ldots, r-1$. Then the map

$$
\gamma=\left(\begin{array}{llll}
B_{1} & B_{2} & \cdots & B_{r} \\
a_{1} & a_{2} & \cdots & a_{r}
\end{array}\right)
$$

is in S and, by parts (i) and (ii), $(\alpha, \gamma) \in \mathcal{L}^{*}(S)$ and $(\gamma, \beta) \in \mathcal{R}^{*}(S)$ so that, by [15, Proposition 1.5.11], $(\alpha, \beta) \in \mathcal{D}^{*}(S)$.

The \mathcal{L}^{*} - class containing an element a is denoted by L_{a}^{*} and corresponding notations are used for the remaining starred relations. We define a left(right) $*$ - ideal of a semigroup S to be a left(right) ideal I of S for which $L_{a}^{*} \subseteq I\left(R_{a}^{*} \subseteq I\right)$ for all $a \in I$. A subset I of S is a $*-i d e a l$ if it is both left and right $*-i d e a l s$ of S. The principal $*-i d e a l, J^{*}(a)$, generated by $a \in S$ is the intersection of all $*$ ideals of S to which a belongs. The relation \mathcal{J}^{*} is defined by the rule that: $a \mathcal{J}^{*} b$ if and only if $J^{*}(a)=J^{*}(b)$.

Now we are going to show that on the semigroup $S \in\left\{\mathcal{C} \mathcal{T}_{n}, \mathcal{O C} \mathcal{T}_{n}\right\}, \mathcal{D}^{*}=\mathcal{J}^{*}$ but first we record the following lemma from [11].

Lemma 4.2 Let a, b be elements of a semigroup S. Then $b \in J^{*}(a)$ if and only if there are elements $a_{0}, a_{1}, \ldots, a_{n} \in S, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in S^{1}$ such that $a=a_{0}, b=a_{n}$ and $\left(a_{i}, x_{i} a_{i-1} y_{i}\right) \in \mathcal{D}^{*}(S)$ for $i=1, \ldots, n$.

Immediately we adopt the method used in [23] to have
Lemma 4.3 Let $S \in\left\{\mathcal{C} \mathcal{T}_{n}, \mathcal{O C} \mathcal{T}_{n}\right\}$. Then for each $\alpha, \beta \in S, \alpha \in J^{*}(\beta)$ implies $|\operatorname{im}(\alpha)| \leq|\operatorname{im}(\beta)|$.
Proof Let $\alpha \in J^{*}(\beta)$, then by Lemma 4.2, there exist $\beta_{0}, \ldots, \beta_{n} \in S, \delta_{1}, \ldots, \delta_{n}, \gamma_{1}, \ldots, \gamma_{n} \in S^{1}$ such that $\beta=\beta_{0}, \alpha=\beta_{n}$ and $\left(\beta_{i}, \delta_{i} \beta_{i-1} \gamma_{i}\right) \in \mathcal{D}^{*}(S)$, for $i=1, \ldots, n$. However, by Theorem 4.1(iv), this implies that

$$
\left|\operatorname{im}\left(\beta_{i}\right)\right|=\left|\operatorname{im}\left(\delta_{i} \beta_{i-1} \gamma_{i}\right)\right| \leq\left|\operatorname{im}\left(\beta_{i-1}\right)\right|
$$

for all $i=1, \ldots, n$, which implies $|\operatorname{im}(\alpha)| \leq|\operatorname{im}(\beta)|$ as required.
The fact that $\mathcal{D}^{*} \subseteq \mathcal{J}^{*}$ together with Lemma 4.3 gives the following result.
Theorem 4.4 On the semigroup $S \in\left\{\mathcal{C} \mathcal{T}_{n}, \mathcal{O C} \mathcal{T}_{n}\right\}, \mathcal{D}^{*}=\mathcal{J}^{*}$.

GARBA et al./Turk J Math

References

[1] Adeshola DA. Some Semigroups of Full Contraction Mappings of a Finite Chain, PhD Thesis, University of Ilorin, Nigeria. 2013.
[2] Araujo J, Konieczny J. Semigroups of transformations preserving an equivalence relation and a cross-section. Comm Algebra 2004; 32: 1917-1935.
[3] Dimitrova I, Koppitz J. On the maximal regular subsemigroups of ideals of order-preserving or order-reversing transformations. Semigroup Forum 2011; 82: 172-180.
[4] Fernandes VH. Semigroup of order preserving mappings on a finite chain: a new class of divisors. Semigroup Forum 1997; 54: 230-236.
[5] Fernandes VH, Gomes GMS, Jesus MM. Congruence on monoids of transformations preserving the orientation on a finite chain. J Algebra 2009; 321: 743-757.
[6] Fernandes VH, Gomes GMS, Jesus MM. Congruence on monoids of order-preserving or order-reversing transformations on a finite chain. Glasgow Math J 2005; 47: 413-424.
[7] Fernandes VH, Gomes GMS, Jesus MM. Presentations for some monoids of partial transformations on a finite chain. Comm Algebra 2005; 33: 587-604.
[8] Fernandes VH, Jesus MM, Maltcev V, Mitchell JD. Endomorphisms of the semigroup of order-preserving mappings. Semigroup Forum 2010; 81: 277-285.
[9] Fernandes VH, Volkov MV. On divisors of semigroups of order-preserving mappings of a finite chain. Semigroup Forum 2010; 81: 551-554.
[10] Fountain JB. Adequate semigroups. Proc Edinburgh Math Soc 1979; 22: 113-125.
[11] Fountain JB. Abundant semigroups. Proc London Math Soc 1982; 44: 103-129.
[12] Gomes GMS, Howie JM. On the ranks of certain semigroups of order-preserving transformations. Semigroup Forum 1992; 45: 272-282.
[13] Higgins PM, Howie JM, Mitchell JD, Ruskuc N. Countable versus uncountable rank in finite semigroups of transformations and relations. Proc Edinburgh Math Soc 2003; 46: 531-544.
[14] Howie JM. Products of idempotents in certain semigroups of transformations. Proc. Edinburgh Math. Soc. 1971; 17: 223-236.
[15] Howie JM. Fundamentals of semigroup theory. London Mathematical Society, New Series 12. Oxford, UK: The Clarendon Press, Oxford University Press, 1995.
[16] Ma M, You T, Luo S, Yang Y, Wang L. Regularity and Green's relations for finite E-order-preserving transformations semigroups. Semigroup Forum. 2010; 80: 164-173.
[17] Pei H, Deng W. The natural order for the E-order-preserving transformation semigroups. Asian Eur J Math 2012; 5: 1250035.
[18] Pei H, Zhou H. Abundant semigroups of transformations preserving an equivalence relation. Algebra Colloq 2011; 18: 77-82.
[19] Sun L. A note on abundance of certain semigroups of transformations with restricted range. Semigroup Forum 2013; 87: 681-684.
[20] Sun L, Han X. Abundance of E-order-preserving transformation semigroups. Turk J Math 2016; 40: 32-37.
[21] Sun L, Wang L. Abundance of the semigroup of all transformations of a set that reflect an equivalence relation. J Algebra Appl 2014; 13: 1350088.
[22] Umar A. On the semigroup of order-decreasing full transformation. Proc Roy Soc Edinburgh 1992; 120A: 129-142.
[23] Umar A. On the semigroup of partial one-one order-decreasing finite transformation. Proc Roy Soc Edinburgh 1993; 123A: 355-363.
[24] Xu B, Zhao P, Li P. Locally maximal idempotent-generated subsemigroups of singular order-preserving transformation semigroups. Semigroup Forum 2006; 72: 488-492.
[25] Yang X. A classification of maximal subsemigroups on finite order-preserving transformation semigroups. Comm Algebra 2000; 28: 1503-1513.
[26] Yang X, Lu C. Maximal properties of some subsemigroups in finite order-preserving transformation semigroups. Comm Algebra 2000; 28: 3125-3135.
[27] Zhao P. Maximal regular subsemibands of finite order-preserving transformation semigroups $K(n, r)$. Semigroup Forum 2012; 84: 97-115.
[28] Zhao P, Xu B, Yang M. A note on maximal properties of some subsemigroups on finite order-preserving transformation semigroups. Comm Algebra 2012; 40: 1116-1121.

[^0]: *Correspondence: atimam@abu.edu.ng
 2010 AMS Mathematics Subject Classification: 20M20.

