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Abstract: Let Xn = {1, 2, . . . , n} with its natural order and let Tn be the full transformation semigroup on Xn . A

map α ∈ Tn is said to be order-preserving if, for all x, y ∈ Xn , x ≤ y ⇒ xα ≤ yα . The map α ∈ Tn is said to be a

contraction if, for all x, y ∈ Xn , |xα − yα| ≤ |x − y| . Let CT n and OCT n denote, respectively, subsemigroups of all

contraction maps and all order-preserving contraction maps in Tn . In this paper we present characterisations of Green’s

relations on CT n and starred Green’s relations on both CT n and OCT n .
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1. Introduction

The full transformation semigroup on Xn = {1, 2, . . . , n} , under its natural order, is denoted by Tn . The

importance of the study of Tn , as a naturally occurring semigroup, is justified by its universal property in

which every finite semigroup is embeddable in some Tn . This is analogous to Cayley’s theorem for symmetric

group Sn , of all permutations of Xn , in group theory. Thus, just as the study of alternating and dihedral groups

has made a significant contribution to group theory, there is some interest in identifying and studying certain

special subsemigroups of Tn . The subsemigroups On = {α ∈ Tn : x ≤ y ⇒ xα ≤ yα, for all x, y ∈ Xn} , of
order-preserving elements and S−

n = {α ∈ Tn : xα ≤ x, for all x ∈ Xn} , of order-decreasing elements of Tn have

been studied. In [14], Howie showed that every element of On is expressible as a product of idempotents and

also obtained formulae for the number of elements and the number of idempotents in On . Umar in [22] showed

that every element of S−
n is expressible as a product of idempotents. The rank and idempotent rank of On

were computed by Gomes and Howie [12] to be n and 2(n−1), respectively. Maximal subsemigroups, maximal

idempotent-generated/regular subsemigroups, and locally maximal idempotent-generated subsemigroups of On

were described and classified in [24–26]. The results of [26] were simplified in [28]. Maximal regular subsemibands

of the two-sided ideals of On were completely described by Zhao [27]. In [8], a description of the endomorphisms

of On was presented. Other algebraic properties in the semigroup On and some of its notable subsemigroups

and oversemigroups may be found in [3–7,9].

On a semigroup S the relation L∗ is defined by the rule that (a, b) ∈ L∗ if and only if a, b are related

by the Green’s relation L in some over semigroup of S . The relation R∗ is defined dually. These relations

have played a fundamental role in the study of many important classes of semigroups; see for example the work

by Fountain [10, 11]. Moreover, many papers have appeared describing the relations L∗ and R∗ in certain
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subsemigroups of Tn preserving order and an equivalence relation. Araujo and Konieczny [2] characterised L∗

and R∗ in the subsemigroup of Tn , consisting of all transformations preserving an equivalence relation and a

cross-section of the relation. Pei and Zhou [18] characterised L∗ and R∗ in the subsemigroup of Tn , consisting
of all transformations preserving an equivalence relation. Similar characterisations of L∗ and R∗ were presented

in [16–21]. In this current article we consider an algebra study for the so-called subsemigroups of contraction

mappings of Tn . In particular, we present characterisations of both Green’s and starred Green’s relations for

these semigroups.

A map α in Tn is said to be a contraction if |xα − yα| ≤ |x − y| , for all x, y ∈ Xn . The sets of all

contraction maps and of all order-preserving contraction maps in Tn are, respectively, denoted by CT n and

OCT n , which are subsemigroups of Tn . The term contraction map first appeared in [13] but algebraic and

combinatorial studies of the semigroups CT n and OCT n were initiated by Dauda [1]. Orders and regularity

for both CT n and OCT n were investigated in [1]. He also characterises Green’s relations on OCT n . Here we

investigate Green’s relations on CT n and starred Green’s relations on both CT n and OCT n .

2. Preliminaries

Let On = {α ∈ Tn \ Sn : (∀x, y ∈ Xn) x ≤ y ⇒ xα ≤ yα} , CT n = {α ∈ Tn \ Sn : (∀x, y ∈ Xn) |xα − yα| ≤
|x− y|} , and OCT n = CT n ∩ On be the subsemigroups of Tn \ Sn consisting of all order-preserving maps, all

contraction maps, and all order-preserving contraction maps, respectively.

Definition 2.1 Let A be a subset of Xn and let {A1, A2, . . . , Ar} be a partition of Xn . Then A is called

convex if, for all x, y ∈ Xn , (x, y ∈ A and x ≤ z ≤ y) ⇒ z ∈ A . A is called a transversal of {A1, A2, . . . , Ar}
if |A| = r and each Ai (1 ≤ i ≤ r ) contains exactly one point of A . The partition {A1, A2, . . . , Ar} is called

a convex partition if it possesses a convex transversal.

From the definition of contraction maps, it is easy to notice (which is also noticed in [1, Lemma 3.1.2])

that if α ∈ Tn is a contraction, then there exists s ∈ Xn such that

im(α) = {s, s+ 1, . . . , t− 1, t},

in other words, im(α) is convex.

Each map α ∈ On can be written as

α =

(
A1 A2 · · · Ar

a1 a2 · · · ar

)
, (1)

where im(α) = {a1 < a2 < . . . < ar} and A1, A2, . . . , Ar are equivalence classes under the equivalence

ker(α) = {(x, y) ∈ Xn ×Xn : xα = yα} . Thus, xα = ai for all x ∈ Ai (1 ≤ i ≤ r ). It is then easy to see, from

the order-preserving property, that the ker(α)-classes Ai (1 ≤ i ≤ r ) are convex subsets of Xn . We start by

characterising contraction maps in On .

Lemma 2.1 α ∈ On is a contraction if and only if im(α) is convex.

Proof Since On is a subsemigroup of Tn it is clear, from our observation just after Definition 2.1, that im(α)

is convex whenever α ∈ On is a contraction.
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Conversely, suppose that im(α) = {a1 < a2 < . . . < ar} is convex. Then ai+1 = ai + 1 (1 ≤ i ≤ r − 1).

Let x, y ∈ Xn and suppose (without loss of generality) that x < y . Then either x, y ∈ aiα
−1 (for some i) or

x ∈ aiα
−1 and y ∈ ajα

−1 (for some i < j ). In the former, we have |xα− yα| = |ai − ai| = 0 < |x− y| . In the

latter, assume that j = i+ k , where k is any positive integer, so that |xα− yα| = |ai+k − ai| = |ai + k− ai| =
k ≤ |x− y| since ker(α)-classes aiα

−1 (1 ≤ i ≤ r ) are convex. Thus, |xα− yα| ≤ |x− y| for all j ≥ i and so

α is a contraction. 2

Next we characterise contraction maps in Tn .

Theorem 2.2 Let α be an element of Tn of height r , where r ≤ n . Then α is contraction if and only if

(i) im(α) is a convex subset of Xn , and

(ii) for each i ∈ im(α) and each x ∈ iα−1 , if x− 1 ∈ kα−1 and x+ 1 ∈ tα−1 , then k, t ∈ Φi , where

Φi =

 {i, i+ 1} if i = 1
{i− 1, i, i+ 1} if 1 < i < r
{i− 1, i} if i = r.

Proof Suppose that α in Tn is a contraction. Then, by [1, Lemma 3.1.2], part (i) holds, that is, im(α) is

convex. Now suppose that, for each i ∈ im(α) and each x ∈ iα−1 , x− 1 ∈ sα−1 and x+ 1 ∈ tα−1 . We need

to show that s, t ∈ Φi . Suppose that either s /∈ Φi or t /∈ Φi . Then

|xα− (x− 1)α| = |i− s| > 1 = |x− (x− 1)|

or
|(x+ 1)α− xα| = |t− i| > 1|(x+ 1)− x|,

so that, in both cases, α cannot be a contraction. This is a contradiction to the choice of α . Thus both s and

t must be in Φi .

Conversely, suppose that α ∈ Tn satisfies the two conditions of the theorem and let x, y ∈ Xn . If both

x and y belong to the same block of α , then

|xα− yα| = 0 ≤ |x− y|.

On the other hand, if x and y belong to different blocks of α , say x ∈ sα−1 and y ∈ tα−1 , where s, t ∈ im(α)

and s ̸= t , it is then not so hard to see that the two conditions of the theorem ensure that

|xα− yα| = |s− t| ≤ |x− y|.

Thus, α is a contraction. 2

3. Green’s relations

For the definition of Green’s relations L,R,H,D , and J on a semigroup see [15]. As in [23], we shall throughout

this and the next sections write K(S) to emphasise that K is a relation on a semigroup S . In this section we

characterise the relations L,R , H , D , and J on CT n .

Let Ker(α) be the set of all the equivalence classes of the equivalence relation ker(α) on Xn , that is

Ker(α) = Xn/ker(α).
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Theorem 3.1 Let α, β ∈ CT n . Then

(i) (α, β) ∈ L(CT n) if and only if im(α) = im(β) , and both Ker(α) and Ker(β) are convex partitions of

Xn ;

(ii) (α, β) ∈ R(CT n) if and only if ker(α) = ker(β) ;

(iii) (α, β) ∈ D(CT n) if and only if |im(α)| = |im(β)| , and both Ker(α) and Ker(β) are convex partitions of

Xn .

Proof (i) Suppose that (α, β) ∈ L(CT n), then

δβ = α and γα = β for some δ, γ ∈ CT 1
n.

This clearly implies that im(α) = im(β). Therefore, im(γ) and im(δ) must be transversal of Ker(α) and

Ker(β), respectively. However, since δ, γ ∈ CT 1
n it follows, by Theorem 2.2(i), that im(δ) and im(γ) are convex

subsets of Xn . Thus, Ker(α) and Ker(β) are convex partitions of Xn .

Conversely, suppose that im(α) = im(β) = {c1, c2, . . . , cr} and Ker(α), Ker(β) are convex partitions

of Xn . Let {a1, a2, . . . , ar} and {b1, b2, . . . , br} be convex transversal of Ker(α) and Ker(β), respectively,

arranged in a way that ai ∈ ciα
−1 and bi ∈ ciβ

−1 for each 1 ≤ i ≤ r . Define maps δ and γ by ker(δ) = ker(α),

ker(γ) = ker(β), (ciα
−1)δ = bi , and (ciβ

−1)γ = ai , for each 1 ≤ i ≤ r . Then δ, γ ∈ CT n and δβ = α , γα = β

so that (α, β) ∈ L(CT n).

(ii) Suppose that (α, β) ∈ R(CT n); then

βδ = α and αγ = β for some δ, γ ∈ CT 1
n.

From this it follows that ker(α) = ker(β).

Conversely, suppose that Ker(α) = Ker(β) = {C1, C2, . . . , Cr} . Then, since α, β ∈ CT n , we may

(without loss of generality) write

α =

(
C1 C2 · · · Cr

i i+ 1 · · · i+ r − 1

)
and β =

(
C1 C2 · · · Cr

j j + 1 · · · j + r − 1

)
for some i, j ∈ Xn . Then the maps

δ =

(
{1, 2, . . . , j} j + 1 · · · j + r − 2 {j + r − 1, j + r, . . . , n}

i i+ 1 · · · i+ r − 2 i+ r − 1

)
and

γ =

(
{1, 2, . . . , i} i+ 1 · · · i+ r − 2 {i+ r − 1, i+ r, . . . , n}

j j + 1 · · · j + r − 2 j + r − 1

)
are in CT 1

n and satisfy βδ = α , αγ = β so that (α, β) ∈ R(CT n).

(iii) Suppose that (α, β) ∈ D(CT n); then (α, γ) ∈ L(CT n) and (γ, β) ∈ R(CT n), for some γ ∈ CT n . Using

Theorem 3.1, we have that im(α) = im(γ), ker(γ) = ker(β), and Ker(α), Ker(γ) are convex partitions of Xn .

This implies that |im(α)| = |im(β)| and Ker(α), Ker(β) are convex partitions of Xn .

Conversely, suppose that |im(α)| = |im(β)| , and both Ker(α) and Ker(β) are convex partitions of

Xn . Then we can choose γ ∈ CT n such that ker(γ) = ker(β) and im(γ) = im(α). It is then clear that

(α, γ) ∈ L(CT n) and (γ, β) ∈ R(CT n), so that (α, β) ∈ D(CT n). 2
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4. Starred Green’s relations

Recall that on a semigroup S the relation L∗ is defined by the rule that (a, b) ∈ L∗ if and only if a, b are

related by the Green’s relation L in some oversemigroup of S . The relation R∗ is defined dually. These

relations also have the following characterisations (see [10])

L∗(S) = {(a, b) : (∀x, y ∈ S1)ax = ay ⇔ bx = by} (2)

and

R∗(S) = {(a, b) : (∀x, y ∈ S1)xa = ya ⇔ xb = yb}. (3)

The join of the relations L∗ and R∗ is denoted by D∗ and their intersection by H∗ .

Theorem 4.1 Let S ∈ {CT n,OCT n} and let α, β ∈ S . Then

(i) (α, β) ∈ L∗(S) if and only if im(α) = im(β) ,

(ii) (α, β) ∈ R∗(S) if and only if ker(α) = ker(β) ,

(iii) (α, β) ∈ H∗(S) if and only if im(α) = im(β) and ker(α) = ker(β) ,

(iv) (α, β) ∈ D∗(S) if and only if |im(α)| = |im(β)| .

Proof (i) Suppose that (α, β) ∈ L∗(S). Let im(α) = {a1, . . . , ar} , where (by [1, Lemma 3.1.2], or Lemma

2.1) ai+1 = ai + 1 for each i = 1, . . . , n− 1. Then

α ·
(
{1, . . . , a1} a2 · · · ar−1 {ar, . . . , n}

a1 a2 · · · ar−1 ar

)
= α · 1Xn

and, by Equation (2), if and only if

β ·
(
{1, . . . , a1} a2 · · · ar−1 {ar, . . . , n}

a1 a2 · · · ar−1 ar

)
= β · 1Xn

which implies that im(β) ⊆ {a1, . . . , ar} = im(α). Similarly, we can show that im(α) ⊆ im(β), and so

im(α) = im(β).

Conversely, suppose that im(α) = im(β). Then (α, β) ∈ L(Tn) and, since Tn is an oversemigroup of S ,

it follows from definition that (α, β) ∈ L∗(S).

(ii) Suppose that (α, β) ∈ R∗(S). Then

(x, y) ∈ ker(α) ⇐⇒ xα = yα

⇐⇒
(
Xn

x

)
· α =

(
Xn

y

)
· α

⇐⇒
(
Xn

x

)
· β =

(
Xn

y

)
· β (by Equation(3))

⇐⇒ xβ = yβ

⇐⇒ (x, y) ∈ ker(β).

Hence ker(α) = ker(β).
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Similarly, the converse part is clear.

(iii) This follows from parts (i) and (ii).

(iv) Suppose (α, β) ∈ D∗(S). Then, by [15, Proposition 1.5.11], for some n ∈ N , there exist elements

δ1, δ2, . . . , δ2n−1 ∈ S such that

(α, δ1) ∈ L∗(S), (δ1, δ2) ∈ R∗(S), (δ2, δ3) ∈ L∗(S), . . . , (δ2n−1, β) ∈ R∗(S).

Now, by parts (i) and (ii) of the theorem, we have |im(α)| = |im(δ1)| = |Xn/ker(δ1)| = |Xn/ker(δ2)| =

|im(δ2)| = |im(δ3)| = · · · = |Xn/ker(δ2n−1)| = |Xn/ker(β)| = |im(β)| .
Conversely, suppose that |im(α)| = |im(β)| and let

α =

(
A1 A2 · · · Ar

a1 a2 · · · ar

)
and β =

(
B1 B2 · · · Br

b1 b2 · · · br

)
where ai+1 = ai + 1, bi+1 = bi + 1 for each i = 1, 2, . . . , r − 1. Then the map

γ =

(
B1 B2 · · · Br

a1 a2 · · · ar

)
is in S and, by parts (i) and (ii), (α, γ) ∈ L∗(S) and (γ, β) ∈ R∗(S) so that, by [15, Proposition 1.5.11],

(α, β) ∈ D∗(S). 2

The L∗ − class containing an element a is denoted by L∗
a and corresponding notations are used for the

remaining starred relations. We define a left(right) ∗ − ideal of a semigroup S to be a left(right) ideal I of S

for which L∗
a ⊆ I (R∗

a ⊆ I ) for all a ∈ I . A subset I of S is a ∗ − ideal if it is both left and right ∗ − ideals

of S . The principal ∗ − ideal , J∗(a), generated by a ∈ S is the intersection of all ∗ − ideals of S to which a

belongs. The relation J ∗ is defined by the rule that: aJ ∗b if and only if J∗(a) = J∗(b).

Now we are going to show that on the semigroup S ∈ {CT n,OCT n} , D∗ = J ∗ but first we record the

following lemma from [11].

Lemma 4.2 Let a, b be elements of a semigroup S . Then b ∈ J∗(a) if and only if there are elements

a0, a1, . . . , an ∈ S , x1, . . . , xn, y1, . . . , yn ∈ S1 such that a = a0, b = an and (ai, xiai−1yi) ∈ D∗(S) for

i = 1, . . . , n .

Immediately we adopt the method used in [23] to have

Lemma 4.3 Let S ∈ {CT n,OCT n} . Then for each α, β ∈ S , α ∈ J∗(β) implies |im(α)| ≤ |im(β)| .

Proof Let α ∈ J∗(β), then by Lemma 4.2, there exist β0, . . . , βn ∈ S , δ1, . . . , δn, γ1, . . . , γn ∈ S1 such that

β = β0, α = βn and (βi, δiβi−1γi) ∈ D∗(S), for i = 1, . . . , n . However, by Theorem 4.1(iv), this implies that

|im(βi)| = |im(δiβi−1γi)| ≤ |im(βi−1)|

for all i = 1, . . . , n , which implies |im(α)| ≤ |im(β)| as required. 2

The fact that D∗ ⊆ J ∗ together with Lemma 4.3 gives the following result.

Theorem 4.4 On the semigroup S ∈ {CT n,OCT n} , D∗ = J ∗ .
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