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Abstract: Let X, = {1,2,...,n} with its natural order and let 7, be the full transformation semigroup on X, . A
map « € T, is said to be order-preserving if, for all z,y € X,,, <y = za < ya. The map a € T, is said to be a
contraction if, for all z,y € X,, |[za —ya| < |z —y|. Let CT, and OCT, denote, respectively, subsemigroups of all
contraction maps and all order-preserving contraction maps in 7, . In this paper we present characterisations of Green’s
relations on C7T, and starred Green’s relations on both C7, and OCT.,.
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1. Introduction
The full transformation semigroup on X, = {1,2,...,n}, under its natural order, is denoted by 7,. The
importance of the study of 7,, as a naturally occurring semigroup, is justified by its universal property in
which every finite semigroup is embeddable in some 7, . This is analogous to Cayley’s theorem for symmetric
group S, , of all permutations of X, , in group theory. Thus, just as the study of alternating and dihedral groups
has made a significant contribution to group theory, there is some interest in identifying and studying certain
special subsemigroups of 7,,. The subsemigroups O, = {a € 7, : ¢ < y = za < ya, forall z,y € X,,}, of
order-preserving elements and S, = {« € T,, : za < z,for all z € X, }, of order-decreasing elements of 7, have
been studied. In [14], Howie showed that every element of O, is expressible as a product of idempotents and
also obtained formulae for the number of elements and the number of idempotents in O,,. Umar in [22] showed
that every element of S, is expressible as a product of idempotents. The rank and idempotent rank of O,
were computed by Gomes and Howie [12] to be n and 2(n — 1), respectively. Maximal subsemigroups, maximal
idempotent-generated /regular subsemigroups, and locally maximal idempotent-generated subsemigroups of O,
were described and classified in [24-26]. The results of [26] were simplified in [28]. Maximal regular subsemibands
of the two-sided ideals of O,, were completely described by Zhao [27]. In [8], a description of the endomorphisms
of O,, was presented. Other algebraic properties in the semigroup O,, and some of its notable subsemigroups
and oversemigroups may be found in [3-7,9].

On a semigroup S the relation £* is defined by the rule that (a,b) € L£* if and only if a,b are related
by the Green’s relation £ in some over semigroup of S. The relation R* is defined dually. These relations
have played a fundamental role in the study of many important classes of semigroups; see for example the work

by Fountain [10, 11]. Moreover, many papers have appeared describing the relations £* and R* in certain
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subsemigroups of 7, preserving order and an equivalence relation. Araujo and Konieczny [2] characterised £*
and R* in the subsemigroup of 7, , consisting of all transformations preserving an equivalence relation and a
cross-section of the relation. Pei and Zhou [18] characterised £* and R* in the subsemigroup of 7, consisting
of all transformations preserving an equivalence relation. Similar characterisations of £* and R* were presented
in [16-21]. In this current article we consider an algebra study for the so-called subsemigroups of contraction
mappings of 7, . In particular, we present characterisations of both Green’s and starred Green’s relations for
these semigroups.

A map « in 7, is said to be a contraction if |xa —ya| < |x —yl|, for all x,y € X,,. The sets of all
contraction maps and of all order-preserving contraction maps in 7, are, respectively, denoted by C7T, and
OCT,,, which are subsemigroups of 7,. The term contraction map first appeared in [13] but algebraic and
combinatorial studies of the semigroups CT,, and OCT,, were initiated by Dauda [1]. Orders and regularity
for both CT,, and OCT,, were investigated in [1]. He also characterises Green’s relations on OCT,,. Here we
investigate Green’s relations on C7T,, and starred Green’s relations on both C7, and OCT,,.

2. Preliminaries
Let O, ={a e T, \Sn: (V,y € X)) z <y=za<ya}l, CTp,={acT,\S : (Vz,y € X)) |ra —ya| <
|z —y|}, and OCT,, = CT, N O, be the subsemigroups of 7, \ S, consisting of all order-preserving maps, all

contraction maps, and all order-preserving contraction maps, respectively.

Definition 2.1 Let A be a subset of X, and let {A;, As,..., A} be a partition of X,,. Then A is called
convex if, for all z,y € X,,, (z,y € Aandax <z2<y)=z2€ A. A is called a transversal of {A;, As,..., A}
if |Al =r and each A; (1 < i <1t ) contains exactly one point of A. The partition {Ay, Aa,..., A} is called

a convex partition if it possesses a convex transversal.

From the definition of contraction maps, it is easy to notice (which is also noticed in [1, Lemma 3.1.2])

that if o € T, is a contraction, then there exists s € X,, such that
im(a) ={s,s+1,...,t —1,t},

in other words, im(«) is convex.

Each map o € O,, can be written as

a:(Al Ay e Ar), (1)

a1 as . a,

where im(a) = {a; < a3 < ... < a,} and Aj, As,..., A, are equivalence classes under the equivalence
ker(a) = {(z,y) € X,, x X, : v = ya}. Thus, xa = a; for all z € A; (1 <4 <r). It is then easy to see, from
the order-preserving property, that the ker(a)-classes A; (1 < i < r) are convex subsets of X,,. We start by

characterising contraction maps in O, .

Lemma 2.1 «a € O, is a contraction if and only if im(«) is convez.

Proof Since O, is a subsemigroup of 7, it is clear, from our observation just after Definition 2.1, that im(«)

is convex whenever o € 0, is a contraction.
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Conversely, suppose that im(a) = {a; < as < ... < a,} is convex. Then a;11 =a;+1 (1 <i<r—1).
Let z,y € X,, and suppose (without loss of generality) that = < y. Then either z,y € a;a™! (for some i) or
z € a;a”! and y € aja~! (for some i < j). In the former, we have |za — ya| = |a; —a;| =0 < |z — y|. In the
latter, assume that j =i+ k, where k is any positive integer, so that |za —ya| = |aj+x — ai| = |a; +k — a;| =
k < |z — y| since ker(a)-classes a;a~! (1 <i <r) are convex. Thus, |za —ya| < |z —y| for all j > i and so
o is a contraction. O

Next we characterise contraction maps in 7, .
Theorem 2.2 Let a be an element of T, of height r, where r <n. Then « is contraction if and only if
(i) im(c) is a convex subset of X,,, and

(ii) for each i € im(a) and each z € ia™1, if v —1 € ka™! and x +1 € ta™!, then k,t € ®;, where

{iyi+1} ifi=1
& ={ {i—1lii+1} fl<i<r
{i—1,i} ifi=r.

Proof Suppose that « in 7, is a contraction. Then, by [1, Lemma 3.1.2], part (i) holds, that is, im(«a) is
convex. Now suppose that, for each i € im(«) and each z € ia™!, x —1 € sa™! and x + 1 € ta=. We need
to show that s,t € ®;. Suppose that either s ¢ ®; or ¢t ¢ ®,;. Then

[za—(x —Da|=|i—s| > 1=z —(x—1)]

or
[(x+Da—zal =t —i] > 1|(x+1) — x|,
so that, in both cases, a cannot be a contraction. This is a contradiction to the choice of a. Thus both s and
t must be in ®;.
Conversely, suppose that « € 7T, satisfies the two conditions of the theorem and let x,y € X,,. If both

x and y belong to the same block of «, then
[ —yal =0 < [z —yl.

On the other hand, if x and y belong to different blocks of «, say x € sa~! and y € ta™!, where s,t € im(«)

and s # t, it is then not so hard to see that the two conditions of the theorem ensure that
[z —ya| =[s — 1] < |z —yl.

Thus, « is a contraction. O

3. Green’s relations
For the definition of Green’s relations £, R, H, D, and J on a semigroup see [15]. As in [23], we shall throughout
this and the next sections write (S) to emphasise that K is a relation on a semigroup S. In this section we
characterise the relations £, R, H, D, and J on CT,,.

Let Ker(a) be the set of all the equivalence classes of the equivalence relation ker(a) on X,,, that is
Ker(a) = X, /ker(a).
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Theorem 3.1 Let o,8€CT,,. Then

(i) (a,B) € L(CT,) if and only if im(«) = im(B), and both Ker(a) and Ker(B) are convex partitions of
Xns

(ii) (o, B) € R(CTy) if and only if ker(a)) = ker(B) ;
(i1i) (o, B) € D(CT4) if and only if |im(«)| = [im(B)|, and both Ker(a) and Ker(8) are convex partitions of

X..
Proof (i) Suppose that (o, 3) € L(CT), then

§f=a and ya = forsome 6,v€CTL.

This clearly implies that im(«) = im(f5). Therefore, im(y) and im(d) must be transversal of Ker(a) and
Ker(3), respectively. However, since 6,y € CT % it follows, by Theorem 2.2(i), that im(§) and im(y) are convex
subsets of X,,. Thus, Ker(«) and Ker(3) are convex partitions of X, .

Conversely, suppose that im(a) = im(8) = {c1,¢2,...,¢-} and Ker(a), Ker(8) are convex partitions
of X,,. Let {a1,aq2,...,a,} and {b1,ba,...,b.} be convex transversal of Ker(a) and Ker(5), respectively,
arranged in a way that a; € c;a™! and b; € ¢;37! for each 1 < i < r. Define maps ¢ and + by ker(§) = ker(a),
ker(y) = ker(8), (c;a™)d =b;, and (¢;371)y = a;, for each 1 <i < r. Then §,7 € CT,, and 03 = a, ya = 3
so that (a,8) € L(CTy)-

(ii) Suppose that («a, 8) € R(CT,); then

B=ca and ay=p forsome 6&,veCT..

From this it follows that ker(«) = ker(3).
Conversely, suppose that Ker(a) = Ker(8) = {C1,Cs,...,C.}. Then, since «,8 € CT,, we may

(without loss of generality) write

_(C Oy - C, d 5 c;, Cy - C,
=i il e igr—1) ® “\j o4l o j4r—1
for some i,j € X,,. Then the maps
5— {1,2,...,5} 741 -+ j4+r—-2 {j4+r—-1,j4r,...,n}
o i i+1 - it+r—2 i+r—1
and
_({y,2,...,4} i+1 -+ di4+r—2 {i+r—1Lli+r,...,n}
T J Jj+1 - j4r—2 j+r—1
are in CT,, and satisfy 86 =, ay = § so that (a,3) € R(CT,).

(ili) Suppose that (a, ) € D(CT,); then (o,v) € L(CT,) and (v,8) € R(CTy), for some v € CT,,. Using
Theorem 3.1, we have that im(a) = im(y), ker(y) = ker(8), and Ker(a), Ker(y) are convex partitions of X, .
This implies that |[im(a)| = |[im(8)| and Ker(«), Ker(5) are convex partitions of X, .

Conversely, suppose that |[im(a)| = [im(8)|, and both Ker(a) and Ker(5) are convex partitions of
X,. Then we can choose v € CT,, such that ker(vy) = ker(8) and im(y) = im(«). It is then clear that
(a,7) € L(CTy) and (v, 8) € R(CT ), so that («,8) € D(CT,). O
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4. Starred Green’s relations

Recall that on a semigroup S the relation £* is defined by the rule that (a,b) € £L* if and only if a,b are

related by the Green’s relation £ in some oversemigroup of S. The relation R* is defined dually.

relations also have the following characterisations (see [10])

L£*(8) = {(a,b) : (Va,y € SYazx = ay < bx = by}

and
R*(S) = {(a,b) : (Va,y € SY)za = ya & xb = yb}.

The join of the relations £* and R* is denoted by D* and their intersection by H*.
Theorem 4.1 Let S € {CT,,OCT,} and let o, € S. Then

(i) (@,B) € L*(S) if and only if im(a) = im(B),

(i) (o, B) € R*(S) if and only if ker(a) = ker(B),

(ii1) (o, B) € H*(S) if and only if im(a) =im(B) and ker(a) = ker(B),

(iv) (o, 8) € D*(S) if and only if |im(a)| = |im(5)].

These

(2)

Proof (i) Suppose that («,3) € £L*(S). Let im(a) = {a1,...,a,}, where (by [1, Lemma 3.1.2], or Lemma

2.1) ajy1 =a;+1 foreach i =1,...,n — 1. Then

a-<{17~"va1} @2 Gt {am.a“’n}>oz-lx

ai az -+ Qr—1

n

and, by Equation (2), if and only if

a1 az - Ap-1

which implies that im(8) C {ai1,...,a,} = im(e). Similarly, we can show that im(«) C im(8), and so

im(«) = im(f).

Conversely, suppose that im(a) = im(8). Then («, 8) € £L(T,) and, since T, is an oversemigroup of S,

it follows from definition that (a, 8) € L*(S).
(i) Suppose that (a, 8) € R*(S). Then

(z,y) € ker(a) <= za=ya

= (3)e=(V)

= (X”> B= (X”> B (by Equation(3))

— zf=yp
e

Hence ker(a) = ker(5).
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Similarly, the converse part is clear.

(iii) This follows from parts (i) and (ii).

(iv) Suppose («, ) € D*(S). Then, by [15, Proposition 1.5.11], for some n € N, there exist elements
61,02, ...,02,_1 € S such that

(a,él) S E*(S), ((51,52) S R*(S), (52,(53) S ,C*(S), . ((Sgn_hﬂ) S R*(S)

Now, by parts (i) and (ii) of the theorem, we have |im(«)| = |[im(d1)| = |X,/ker(d1)| = |Xn/ker(d2)] =

im(d2)] = [im(ds)| = - - - = [Xn/ker(02n—1)| = | X /ker(B)] = [im(3)].
Conversely, suppose that |[im(a)| = [im(8)| and let
(AL Ay o A, (B, B, - B,
a_(al as - a, and = by by --- b,
where a;41 =a;+ 1, bj+1 =b;+1 foreach i =1,2,...,r — 1. Then the map
_(Bi By, - B,
,‘Y - <a1 a2 DR a/’,‘>
is in S and, by parts (i) and (ii), (a,v) € £*(S) and (v,8) € R*(S) so that, by [15, Proposition 1.5.11],
(o, B) € D*(S). =

The L£* — class containing an element a is denoted by L} and corresponding notations are used for the
remaining starred relations. We define a left(right) * — ideal of a semigroup S to be a left(right) ideal I of S
for which LY CI (R C1I)forall ael. Asubset I of S isa *—ideal if it is both left and right * — ideals
of S. The principal * —ideal, J*(a), generated by a € S is the intersection of all * — ideals of S to which a
belongs. The relation J* is defined by the rule that: a7*b if and only if J*(a) = J*(b).

Now we are going to show that on the semigroup S € {CT,,OCT .}, D* = J* but first we record the

following lemma from [11].

Lemma 4.2 Let a,b be elements of a semigroup S. Then b € J*(a) if and only if there are elements
a0, A1,y 0n € S, XT1yee s T, Y1y--o,Yn € St such that a = ag,b = a, and (a;,x;a;_1y;) € D*(S) for

1=1,...,n.

Immediately we adopt the method used in [23] to have

Lemma 4.3 Let S € {CT,,OCT,}. Then for each o, € S, a € J*(8) implies |im(a)| < [im(B)].

Proof Let a € J*(83), then by Lemma 4.2, there exist 8y,...,8, € S, 015--+,0n, V1,--->7n € St such that
B = Po,a =P, and (B;,0;8i—17v:) € D*(S), for i =1,...,n. However, by Theorem 4.1(iv), this implies that

[im(B;)] = [im(0;3i—17:)| < [im(Bi—1)]

for all i =1,...,n, which implies |im(a)| < |im(B)| as required. O
The fact that D* C J* together with Lemma 4.3 gives the following result.

Theorem 4.4 On the semigroup S € {CT,,OCT,}, D*=J*.
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