

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2017) 41: 508 – 514 © TÜBİTAK doi:10.3906/mat-1511-45

Research Article

Ranges and kernels of derivations

Mohamed ECH-CHAD*

Department of Mathematics, Faculty of Sciences Kénitra, Kénitra, Morocco

Received: 13.11.2015	٠	Accepted/Published Online: 07.06.2016	•	Final Version: 22.05.2017
----------------------	---	---------------------------------------	---	---------------------------

Abstract: In this paper we establish some properties concerning the class of operators $A \in \mathcal{L}(\mathcal{H})$ that satisfy $\overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}$, where $\overline{\mathcal{R}(\delta_A)}$ is the norm closure of the range of the inner derivation δ_A , defined on $\mathcal{L}(\mathcal{H})$ by $\delta_A(X) = AX - XA$. Here \mathcal{H} stands for a Hilbert space; as a consequence, we show that the set $\{A \in \mathcal{L}(\mathcal{H}) / \overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}\}$ is norm-dense. We also describe some classes of operators A, B for which we have $\overline{\mathcal{R}(\delta_{A,B})} \cap \ker(\delta_{A^*,B^*}) = \{0\}$ (ker (δ_{A^*,B^*}) is the kernel of the generalized derivation δ_{A^*,B^*} defined on $\mathcal{L}(\mathcal{H})$ by $\delta_{A^*,B^*}(X) = A^*X - XB^*$).

Key words: Generalized derivation, p-hyponormal operator, log-hyponormal operator, range and kernel

1. Introduction

Let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded operators acting on a complexe infinite dimensional Hilbert space \mathcal{H} . For $A, B \in \mathcal{L}(\mathcal{H})$ we define the generalized derivation $\delta_{A,B}$ associated with (A, B) by $\delta_{A,B}(X) = AX - XB$ for $X \in \mathcal{L}(\mathcal{H})$. If A = B, then $\delta_{A,A} = \delta_A$ is called the inner derivation implemented by $A \in \mathcal{L}(\mathcal{H})$. These concrete operators on $\mathcal{L}(\mathcal{H})$ occur in many settings in mathematical analysis and application, their properties, spectrum (see [7, 13, 20]), norm (see [23]), ranges, and kernels (see [4, 5, 8, 9, 15, 27]) have been much studied, and many of their problems remain also open (see [3, 18, 26]).

Let $\mathcal{N} = \bigcup_{A \in \mathcal{L}(\mathcal{H})} \mathcal{R}(\delta_A) \cap \{A\}'$, where $\mathcal{R}(\delta_A)$ denotes the range of δ_A and $\{A\}'$ is the commutant of A. In finite dimension, it is known that \mathcal{N} is exactly the set of nilpotent operators. In infinite dimension the theorem of Kleinecke–Shirokov [19] confirms that any operator in \mathcal{N} is quasinilpotent. However, an operator in $\overline{\mathcal{R}(\delta_A)} \cap \{A\}'$ is not necessarily quasinilpotent (Anderson [1] proved that there exists an operator A in $\mathcal{L}(\mathcal{H})$ such that $I \in \overline{\mathcal{R}(\delta_A)}$), where $\overline{\mathcal{R}(\delta_A)}$ is the normal closure of $\mathcal{R}(\delta_A)$.

In [2] Anderson proved the remarkable result that $\overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}$ if A is normal or isometric. In the same direction, it should be noted that Bouali and Bouhafsi [6] showed that if A is a cyclic subnormal operator then $\overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}$.

The purpose of the first section is to establish some properties of the class of operators $A \in \mathcal{L}(\mathcal{H})$ that satisfy $\overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}$. As a consequence, we give a large class of operators $A \oplus B$ verifying $\overline{\mathcal{R}(\delta_{A \oplus B})} \cap \{A \oplus B\}' = \{0\}$, and we prove that the set $\{A \in \mathcal{L}(\mathcal{H}) / \overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}\}$ is norm-dense in $\mathcal{L}(\mathcal{H})$.

^{*}Correspondence: m.echchad@yahoo.fr

²⁰¹⁰ AMS Mathematics Subject Classification: 47B47, secondary 47A30.

ECH-CHAD/Turk J Math

If H is a finite dimensional Hilbert space $\langle X, Y \rangle = tr(XY^*)$ is an inner product on $\mathcal{L}(\mathcal{H})$ and we have the orthogonal direct sum decomposition $\mathcal{L}(\mathcal{H}) = \mathcal{R}(\delta_A) \bigoplus \{A^*\}'$. However, when H is infinite dimensional we do not have $\overline{\mathcal{R}(\delta_A)} \cap \{A^*\}' = \{0\}$ in general. The class of operators A that have the property $\overline{\mathcal{R}(\delta_A)} \cap \{A^*\}' = \{0\}$ includes the normal operators [2], isometries [25], the cyclic subnormal operators [16], the class of operators A such that P(A) is normal for some quadratic polynomial P [16], and Jordan operators [22].

In [12] Elalami proved that $\overline{\mathcal{R}(\delta_{A,B})} \cap \ker(\delta_{A^*,B^*}) = \{0\}$ if A^* and B are hyponormal operators, where $\ker(\delta_{A^*,B^*})$ denotes the kernel of δ_{A^*,B^*} . In the second section we consider this problem; we show that $\overline{\mathcal{R}(\delta_{A,B})} \cap \ker(\delta_{A^*,B^*}) = \{0\}$ if (P(A), P(B)) and (P(B), P(A)) has the $(F - P)_{\mathcal{L}(\mathcal{H})}$ property for some quadratic polynomial P. Consequently, we extend the result of [16] to $\delta_{A,B}$. Using the $(F - P)_{\mathcal{L}(\mathcal{H})}$ property we prove that $\overline{\mathcal{R}(\delta_{A,B})} \cap \ker(\delta_{A^*,B^*}) = \{0\}$ in each of the following cases:

- (a) B is normal and A^* is p-hyponormal or log-hyponormal, (0 .
- (b) A is normal and B is p-hyponormal or log-hyponormal, (0 .

An operator $A \in \mathcal{L}(\mathcal{H})$ is p-hyponormal, $0 , if <math>|A^*|^{2p} \leq |A|^{2p}$ (a 1-hyponormal operator is hyponormal and a $\frac{1}{2}$ -hyponormal operator is semihyponormal). It is an immediate consequence of the Lowner-Heinz inequality that a p-hyponormal operator is q-hyponormal for all $0 < q \leq p$. An invertible operator $A \in \mathcal{L}(\mathcal{H})$ is log-hyponormal if $\log |A^*|^{2p} \leq \log |A|^{2p}$. An invertible p-hyponormal operator is log-hyponormal, but the converse is false; see [17, p. 169] for a reference. Log-hyponormal and p-hyponormal operators, which share a number of properties with hyponormal operators, have been considered by a number of authors in the recent past; see [11, 17, 24] for further references.

2. Commutants and derivation ranges

Definition 2.1 A vector $x \in \mathcal{H}$ is cyclic for $A \in \mathcal{L}(\mathcal{H})$ if \mathcal{H} is the smallest invariant subspace for A that contains x. The operator A is said to be cyclic if it has a cyclic vector.

Definition 2.2 Let $A \in \mathcal{L}(\mathcal{H})$. The operator A is said to be subnormal if there exists a normal operator N on a Hilbert space \mathcal{K} such that \mathcal{H} is a subspace of \mathcal{K} , invariant under the operator N, and the restriction of N to \mathcal{H} coincides with A.

Consider the set $\mathcal{M}_{\mathcal{C}}(\mathcal{H}) = \{A \in \mathcal{L}(\mathcal{H}) / \overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}\}.$

Theorem 2.3 Let A and B be in $\mathcal{M}_{\mathcal{C}}(\mathcal{H})$, such that $\sigma(A) \cap \sigma(B) = \emptyset$. Then $A \oplus B \in \mathcal{M}_{\mathcal{C}}(\mathcal{H} \oplus \mathcal{H})$.

Proof Assume that $A, B \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$, and $\sigma(A) \cap \sigma(B) = \emptyset$. Let $C = A \oplus B \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H})$, and $D = \begin{pmatrix} D_1 & D_2 \\ D_3 & D_4 \end{pmatrix} \in \overline{\mathcal{R}(\delta_C)} \cap \{C\}'$. Then there exists a net $(X_n)_n \subset \mathcal{L}(\mathcal{H} \oplus \mathcal{H})$ such that $X_n = \begin{pmatrix} X_n^1 & X_n^2 \\ X_n^3 & X_n^4 \end{pmatrix}$,

$$CX_n - X_n C \xrightarrow{\|\cdot\|} D$$
 and $CD = DC$.

A simple calculation shows that

$$AX_n^1 - X_n^1 A \xrightarrow{\parallel \cdot \parallel} D_1$$
 and $AD_1 = D_1 A$

$$BX_n^4 - X_n^4 B \xrightarrow{\parallel \cdot \parallel} D_4 \quad \text{and} \quad BD_4 = D_4 B,$$

$$BX_n^3 - X_n^3 A \xrightarrow{\parallel \cdot \parallel} D_3 \quad \text{and} \quad BD_3 = D_3 A,$$

$$AX_n^2 - X_n^2 B \xrightarrow{\parallel \cdot \parallel} D_2 \quad \text{and} \quad AD_2 = D_2 B.$$

Hence $D_1 \in \overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}, \quad D_4 \in \overline{\mathcal{R}(\delta_B)} \cap \{B\}' = \{0\}, \quad D_3 \in \overline{\mathcal{R}(\delta_{B,A})} \cap \ker(\delta_{B,A}), \text{ and } D_2 \in \overline{\mathcal{R}(\delta_{A,B})} \cap \ker(\delta_{A,B}).$ Since $\sigma(A) \cap \sigma(B) = \emptyset$, it follows from Rosemblem's theorem [21] that $D_2 = D_3 = 0$. Thus $A \oplus B \in \mathcal{M}_{\mathcal{C}}(\mathcal{H} \oplus \mathcal{H}).$

Theorem 2.4 Let $A, B \in \mathcal{L}(\mathcal{H})$, with B similar to A and $A \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$. Then $B \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$. **Proof** Let $A, B \in \mathcal{L}(\mathcal{H})$, such that $A \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$ and there exists an invertible operator $S \in \mathcal{L}(\mathcal{H})$ verifying $B = S^{-1}AS$. Then for all $X \in \mathcal{L}(\mathcal{H})$,

$$S^{-1}(AX - XA)S = B(S^{-1}XS) - (S^{-1}XS)B.$$

Thus $S^{-1}\overline{\mathcal{R}(\delta_A)}S = \overline{\mathcal{R}(\delta_B)}$. Hence

$$\overline{\mathcal{R}}(\delta_B) \cap \{B\}' = \left[S^{-1}\overline{\mathcal{R}}(\delta_A)S\right] \cap \left[S^{-1}\{A\}'S\right]$$
$$= S^{-1}\left[\overline{\mathcal{R}}(\delta_A) \cap \{A\}'\right]S$$
$$= \{0\}.$$

This completes the proof.

Corollary 2.5 Let $A \in \mathcal{L}(\mathcal{H})$. If A is similar to a normal, isometric, or cyclic subnormal operator then

$$\overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}.$$

Proof Anderson proved that $\overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}$ if A is normal or isometric [2], and in [6] Bouali and Bouhafsi showed that if A is cyclic subnormal then $\overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}$.

Corollary 2.6 Let $A, B \in \mathcal{L}(\mathcal{H})$, with $\sigma(A) \cap \sigma(B) = \emptyset$. If A and B are similar to normal, isometric, or cyclic subnormal operators, all combinations are allowed; then

$$\overline{\mathcal{R}(\delta_{A\oplus B})} \cap \{A \oplus B\}' = \{0\}.$$

Definition 2.7 [14] we shall say that a certain property (P) of operators acting on a Hilbert space \mathcal{H} is a bad-property, or b-property, if:

- (i) Whenever A satisfies (P), then for $\alpha \in \mathbb{C}$, with $\alpha \neq 0$, and $\beta \in \mathbb{C}$, the operator $\alpha A + \beta$ satisfies (P);
- (ii) If B is similar to A, and A satisfies (P), then B also satisfies (P);

(iii) If A and B satisfy (P), such that $\sigma(A) \cap \sigma(B) = \emptyset$, then $A \oplus B$ satisfies (P).

Theorem 2.8 $\mathcal{M}_{\mathcal{C}}(\mathcal{H})$ is norm-dense in $\mathcal{L}(\mathcal{H})$.

Proof Using [14], theorem 3.5.1, it is sufficient to establish that the property $A \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$ is a b-property.

(i) If $A \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$, then for $\alpha \in \mathcal{C}$, with $\alpha \neq 0$, and $\beta \in \mathcal{C}$,

$$\overline{\mathcal{R}(\delta_{\alpha A+\beta})} \cap \{\alpha A+\beta\}' = \overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}.$$

Thus $\alpha A + \beta \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$. This proves the first condition.

- (ii) By theorem 2.4, $A \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$ is invariant for similarity. The second condition is then verified.
- (iii) By theorem 2.3, the third condition of the b-property is fulfilled. This completes the proof.

Remark 2.9 In [16], theorem 2, Ho shows that $N = \{A \in \mathcal{L}(\mathcal{H}) \mid I \notin \overline{\mathcal{R}(\delta_A)}\}$ is norm-dense in $\mathcal{L}(\mathcal{H})$. Clearly $\mathcal{M}_{\mathcal{C}}(\mathcal{H}) \subset N$. Theorem 2.8 generalizes Ho's result.

3. Ranges and kernels of generalized derivations

Definition 3.1 Let A, B be in $\mathcal{L}(\mathcal{H})$. The pair (A, B) is said to possess the Fuglede–Putnam property $(F - P)_{\mathcal{L}(\mathcal{H})}$ if; AT = TB and $T \in \mathcal{L}(\mathcal{H})$ implies $A^*T = TB^*$.

Lemma 3.2 Let $A, X \in \mathcal{L}(\mathcal{H})$ such that $P \ge 0$ and PX + XP = 0. Then PX = XP = 0. **Proof** Assume that PX + XP = 0. Then $P^2X = XP^2$, and since $P \in \{P^2\}''$ $(\{P^2\}''$ is the bicommutant of P^2), it follows that PX = XP. Thus PX = XP = 0.

Lemma 3.3 Let $A, B \in \mathcal{L}(\mathcal{H})$. If (A, B) has the $(F - P)_{\mathcal{L}(\mathcal{H})}$ property, then

$$\overline{\mathcal{R}(\delta_{A,B})} \cap \ker(\delta_{A,B}) = \{0\}.$$

Proof In the proof of theorem 1 [27], Yusun shows that $\|\delta_{A,B}(X) + T\| \ge \|T\|$ for all $X \in \mathcal{L}(\mathcal{H})$ and $T \in \ker(\delta_{A,B})$, if (A, B) has the $(F - P)_{\mathcal{L}(\mathcal{H})}$ property. \Box

Theorem 3.4 Let A, B be in $\mathcal{L}(\mathcal{H})$. If (P(A), P(B)) and (P(B), P(A)) have the $(F - P)_{\mathcal{L}(\mathcal{H})}$ property for some quadratic polynomial P then

$$\overline{\mathcal{R}(\delta_{A,B})} \cap \ker(\delta_{A^*,B^*}) = \{0\}.$$

Proof Since for all $(\alpha, \beta) \in \mathbb{C}^2$, with $\alpha \neq 0$,

$$\mathcal{R}(\delta_{\alpha A+\beta,\alpha B+\beta}) = \mathcal{R}(\delta_{A,B})$$
 and $\ker(\delta_{\alpha A+\beta,\alpha B+\beta}) = \ker(\delta_{A,B})$

we may assume without loss of generality that (A^2, B^2) and (B^2, A^2) have the $(F - P)_{\mathcal{L}(\mathcal{H})}$ property. Let $T^* \in \overline{\mathcal{R}(\delta_{A,B})} \cap \ker(\delta_{A^*,B^*})$. Then there exists a sequence $(X_n)_n$ in $\mathcal{L}(\mathcal{H})$ such that:

$$AX_n - X_n B \xrightarrow{\parallel \cdot \parallel} T^*$$
 and $TA = BT$.

This implies that

$$A^2X_n - X_nB^2 \xrightarrow{\parallel \cdot \parallel} AT^* + T^*B$$
 and $TA^2 = B^2T$.

Since (B^2, A^2) has the $(F - P)_{\mathcal{L}(\mathcal{H})}$ property, it follows that $A^2T^* = T^*B^2$. Hence $A^2(AT^* + T^*B) = (AT^* + T^*B)B^2$. Consequently,

$$AT^* + T^*B \in \overline{\mathcal{R}(\delta_{A^2, B^2})} \cap \ker(\delta_{A^2, B^2}).$$

Using lemma 3.3 we have $AT^* + T^*B = 0$. By multiplication right by T, and using BT = TA, we obtain AP + PA = 0 with $P = T^*T$. It follows from lemma 3.2 that AP = PA = 0. On the other hand, $A(X_nT) - (X_nT)A \xrightarrow{\parallel \cdot \parallel} T^*T = P$; and by multiplication of right and left by P, we get $P^3 = 0$. Since P is self-adjoint, then P = 0, and this necessarily implies T = 0. Thus $\overline{\mathcal{R}(\delta_{A,B})} \cap \ker(\delta_{A^*,B^*}) = \{0\}$.

Corollary 3.5 [16] Let $A \in \mathcal{L}(\mathcal{H})$. If P(A) is normal for some quadratic polynomial P, then $\overline{\mathcal{R}(\delta_A)} \cap \{A^*\}' = \{0\}$.

Corollary 3.6 Let A, $B \in \mathcal{L}(\mathcal{H})$. If P(A) and P(B) are normal operators for some quadratic polynomial P, then $\overline{\mathcal{R}(\delta_{A,B})} \cap \ker(\delta_{A^*,B^*}) = \{0\}.$

Proposition 3.7 Let A, B be in $\mathcal{L}(\mathcal{H})$, such that (B, A) has the $(F - P)_{\mathcal{L}(\mathcal{H})}$ property. If $T \in \overline{\mathcal{R}(\delta_{A,B})} \cap \ker(\delta_{A^*,B^*})$, then $T^*T \in \overline{\mathcal{R}(\delta_B)} \cap \{B\}'$ and $TT^* \in \overline{\mathcal{R}(\delta_A)} \cap \{A\}'$.

Proof Assume that $T \in \overline{\mathcal{R}(\delta_{A,B})} \cap \ker(\delta_{A^*,B^*})$. Then there exists a sequence $(X_n)_n$ of elements of $\mathcal{L}(\mathcal{H})$ such that

$$AX_n - X_n B \xrightarrow{\parallel \cdot \parallel} T$$
 and $BT^* = T^* A$.

Since right and left multiplication are continuous with respect to the norm topology, it follows that

$$B(T^*X_n) - (T^*X_n)B = T^*(AX_n - X_nB) \xrightarrow{\parallel \cdot \parallel} T^*T,$$

and

$$A(X_nT^*) - (X_nT^*)A = (AX_n - X_nB)T^* \xrightarrow{\parallel \cdot \parallel} TT^*$$

Hence $T^*T \in \overline{\mathcal{R}(\delta_B)}$ and $TT^* \in \overline{\mathcal{R}(\delta_A)}$. On the other hand, (B, A) has the $(F - P)_{\mathcal{L}(\mathcal{H})}$ property; then TB = AT. Consequently we get $T^*T \in \overline{\mathcal{R}(\delta_B)} \cap \{B\}'$ and $TT^* \in \overline{\mathcal{R}(\delta_A)} \cap \{A\}'$.

Corollary 3.8 Let A, B be in $\mathcal{L}(\mathcal{H})$, such that (B, A) has the $(F - P)_{\mathcal{L}(\mathcal{H})}$ property. If $A \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$ or $B \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$, then $\overline{\mathcal{R}(\delta_{A,B})} \cap \ker(\delta_{A^*,B^*}) = \{0\}.$

Corollary 3.9 Let A, B in $\mathcal{L}(H)$, then $\overline{\mathcal{R}(\delta_{A,B})} \cap \ker(\delta_{A^*,B^*}) = \{0\}$ in one of the following conditions:

(1) B is normal and A^* is p-hyponormal or log-hyponormal, (0 .

(2) A is normal and B is p-hyponormal or log-hyponormal, (0 .

Proof (1). Assume that *B* is normal and A^* is p-hyponormal or log-hyponormal. Then *B* is p-hyponormal and A^* is p-hyponormal or log-hyponormal. It follows from lemma 2.1 [10] that (B, A) has the $(F - P)_{\mathcal{L}(\mathcal{H})}$ property. Since *B* is normal, $B \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$ [2]. Using the corollary 3.8 we obtain $\overline{\mathcal{R}}(\delta_{A,B}) \cap \ker(\delta_{A^*,B^*}) = \{0\}$. We obtain (2) in the same way.

Acknowledgment

It is our great pleasure to thank the referee for his careful reading of the paper and for several helpful suggestions.

References

- [1] Anderson JH. Derivation ranges and the identity. Bull Amer Math Soc 1973; 79: 705-708.
- [2] Anderson JH. On normal derivations. Proc Amer Math Soc 1973; 38: 135-140.
- [3] Anderson JH, Bunce JW, Deddens JA, Williams JP. C*-algebras and derivation ranges. Acta Sci Math (Szeged) 1978; 40: 211-227.
- [4] Apostol C, Fialkow L. Structural properties of elementary operators. Canadian J Math 1986; 38: 1485-1524.
- [5] Benlarbi M, Bouali S, Cherki S. Une remarque sur l'orthogonalité de l'image au noyau d'une dérivation généralisée. Proc Amer Math Soc 1998; 126: 167-171 (article in French with an abstract in English).
- [6] Bouali S, Bouhafsi Y. P-symmetric operators and the range of a subnormal derivation. Acta Sci Math (Szeged) 2006; 72: 701-708.
- [7] Bouali S, Charles J. generalized derivation and numerical range. Acta Sci Math (Szeged) 1997; 63: 563-570.
- [8] Bouali S, Ech-chad M. Generalized D-symmetric operators I. Serdica Math J 2008; 34: 557-562.
- [9] Bouali S, Ech-chad M. Generalized D-symmetric operators II. Canad Math Bull 2011; 54: 21-27.
- [10] Duggal BP. An elementary operator with log-hyponormal, p-hyponormal entries. Linear Algebra and its Applications 2008; 428: 1109-1116.
- [11] Duggal BP. Quasi-similar p-hyponormal operators. Integral Equations Operator Theory 1996; 26: 338-345.
- [12] Elalami SN. Commutants et fermeture de l'image d'une dérivation. Thèse, Univ de Montpellier, France 1988.
- [13] Fialkow LA. Spectral properties of elementary operators II. J Am Math Soc 1985; 290: 415-429.
- [14] Herrero DA. Approximation of Hilbert Space Operators I. Boston, MA, USA: Pitman Advanced Publishing Program, 1982.
- [15] Herrero DA. Intersections of commutants with closures of derivation ranges. Proc Amer Math Soc 1979; 74: 29-34.
- [16] Ho Y. Commutants and derivation ranges. Tohoku Math J 1975; 27: 509-514.
- [17] Jeon IH, Tanahashi K, Uchiyama A. On quasi-similarity for log-hyponormal operators. Glasg Math J 2004; 46: 169-176.

ECH-CHAD/Turk J Math

- [18] Kim HW. On compact operators in the weak closure of the range of a derivation. Proc Amer Math Soc 1973; 40: 482-486.
- [19] Kleinecke DC. On operator commutators. Proc Amer Math Soc 1957; 8: 535-536.
- [20] Mathieu M. Spectral theory for multiplication operators on C*-algebras. Proceedings of the Royal Irish Academy 1983; 83A: 231-249.
- [21] Rosemblum M. On the operator equation BX XA = Q. Duke Math J 1956; 23: 263-269.
- [22] Seddik A, Charles J. Derivation and Jordan operators. Integral Equations Operator Theory 1997; 28: 120-124.
- [23] Stampfli JG. The norm of a derivation. Pacific J Math 1970; 33: 737-747.
- [24] Uchiyama A, Tanahachi K. Fuglede-Putnam theorem for p-hyponormal or log-hyponormal operators. Glasg Math J 2002; 44: 397-410.
- [25] Williams JP. On the range of derivation II. Proceedings of the Royal Irish Academy Section A 1974; 74: 299-310.
- [26] Williams JP. Derivation ranges: open problems. In Topics in Modern Operator Theory, 5th International Conference on Operator Theory, Timioara and Herculane (Romania); 2–12 June 1980; Basel, Switzerland: Birkhauser-Verlag, 1981, pp. 319-328.
- [27] Yusun T. Kernels of generalized derivations. Acta Sci Math 1990; 54: 159-169.