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Abstract: In this paper we establish some properties concerning the class of operators A ∈ L(H) that satisfy R(δA) ∩

{A}′ = {0} , where R(δA) is the norm closure of the range of the inner derivation δA, defined on L(H) by δA(X) =

AX−XA . Here H stands for a Hilbert space; as a consequence, we show that the set {A ∈ L(H) / R(δA)∩{A}′ = {0}}

is norm-dense. We also describe some classes of operators A, B for which we have R(δA,B) ∩ ker(δA∗,B∗) = {0}
(ker(δA∗,B∗) is the kernel of the generalized derivation δA∗,B∗ defined on L(H) by δA∗,B∗(X) = A∗X −XB∗ ).

Key words: Generalized derivation, p-hyponormal operator, log-hyponormal operator, range and kernel

1. Introduction

Let L(H) be the algebra of all bounded operators acting on a complexe infinite dimensional Hilbert space H .

For A, B ∈ L(H) we define the generalized derivation δA,B associated with (A,B) by δA,B(X) = AX −XB

for X ∈ L(H). If A = B, then δA,A = δA is called the inner derivation implemented by A ∈ L(H). These

concrete operators on L(H) occur in many settings in mathematical analysis and application, their properties,

spectrum (see [7, 13, 20]), norm (see [23]), ranges, and kernels (see [4, 5, 8, 9, 15, 27]) have been much studied,

and many of their problems remain also open (see [3, 18, 26]).

Let N =
∪

A∈L(H) R(δA) ∩ {A}′, where R(δA) denotes the range of δA and {A}′ is the commutant of

A . In finite dimension, it is known that N is exactly the set of nilpotent operators. In infinite dimension the

theorem of Kleinecke–Shirokov [19] confirms that any operator in N is quasinilpotent. However, an operator in

R(δA) ∩ {A}′ is not necessarily quasinilpotent (Anderson [1] proved that there exists an operator A in L(H)

such that I ∈ R(δA)), where R(δA) is the normal closure of R(δA).

In [2] Anderson proved the remarkable result that R(δA)∩{A}′ = {0} if A is normal or isometric. In the

same direction, it should be noted that Bouali and Bouhafsi [6] showed that if A is a cyclic subnormal operator

then R(δA) ∩ {A}′ = {0} .
The purpose of the first section is to establish some properties of the class of operators A ∈ L(H)

that satisfy R(δA) ∩ {A}′ = {0} . As a consequence, we give a large class of operators A ⊕ B verifying

R(δA⊕B) ∩ {A ⊕ B}′ = {0} , and we prove that the set {A ∈ L(H) / R(δA) ∩ {A}′ = {0}} is norm-dense in

L(H).
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If H is a finite dimensional Hilbert space < X,Y >= tr(XY ∗) is an inner product on L(H) and

we have the orthogonal direct sum decomposition L(H) = R(δA)
⊕

{A∗}′ . However, when H is infinite

dimensional we do not have R(δA) ∩ {A∗}′ = {0} in general. The class of operators A that have the property

R(δA)∩{A∗}′ = {0} includes the normal operators [2], isometries [25], the cyclic subnormal operators [16], the

class of operators A such that P (A) is normal for some quadratic polynomial P [16], and Jordan operators

[22].

In [12] Elalami proved that R(δA,B) ∩ ker(δA∗,B∗) = {0} if A∗ and B are hyponormal operators,

where ker(δA∗,B∗) denotes the kernel of δA∗,B∗ . In the second section we consider this problem; we show

that R(δA,B) ∩ ker(δA∗,B∗) = {0} if (P (A), P (B)) and (P (B), P (A)) has the (F − P )L(H) property for some

quadratic polynomial P . Consequently, we extend the result of [16] to δA,B . Using the (F − P )L(H) property

we prove that R(δA,B) ∩ ker(δA∗,B∗) = {0} in each of the following cases:

(a) B is normal and A∗ is p-hyponormal or log-hyponormal, (0 < p ≤ 1).

(b) A is normal and B is p-hyponormal or log-hyponormal, (0 < p ≤ 1).

An operator A ∈ L(H) is p-hyponormal, 0 < p ≤ 1, if |A∗|2p ≤ |A|2p (a 1-hyponormal operator is hyponormal

and a 1
2−hyponormal operator is semihyponormal). It is an immediate consequence of the Lowner–Heinz

inequality that a p-hyponormal operator is q-hyponormal for all 0 < q ≤ p. An invertible operator A ∈ L(H)

is log-hyponormal if log|A∗|2p ≤ log|A|2p . An invertible p-hyponormal operator is log-hyponormal, but the

converse is false; see [17, p. 169] for a reference. Log-hyponormal and p-hyponormal operators, which share a

number of properties with hyponormal operators, have been considered by a number of authors in the recent

past; see [11, 17, 24] for further references.

2. Commutants and derivation ranges

Definition 2.1 A vector x ∈ H is cyclic for A ∈ L(H) if H is the smallest invariant subspace for A that

contains x . The operator A is said to be cyclic if it has a cyclic vector.

Definition 2.2 Let A ∈ L(H) . The operator A is said to be subnormal if there exists a normal operator N

on a Hilbert space K such that H is a subspace of K , invariant under the operator N , and the restriction of

N to H coincides with A .

Consider the set MC(H) = {A ∈ L(H) / R(δA) ∩ {A}′ = {0}} .

Theorem 2.3 Let A and B be in MC(H) , such that σ(A) ∩ σ(B) = ∅ . Then A⊕B ∈ MC(H⊕H).

Proof Assume that A,B ∈ MC(H), and σ(A) ∩ σ(B) = ∅ . Let C = A ⊕ B ∈ L(H⊕H), and D =(
D1 D2

D3 D4

)
∈ R(δC) ∩ {C}′ . Then there exists a net (Xn)n ⊂ L(H⊕H) such that Xn =

(
X1

n X2
n

X3
n X4

n

)
,

CXn −XnC
∥.∥−→ D and CD = DC.

A simple calculation shows that

AX1
n −X1

nA
∥.∥−→ D1 and AD1 = D1A,
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BX4
n −X4

nB
∥.∥−→ D4 and BD4 = D4B,

BX3
n −X3

nA
∥.∥−→ D3 and BD3 = D3A,

AX2
n −X2

nB
∥.∥−→ D2 and AD2 = D2B.

Hence D1 ∈ R(δA) ∩ {A}′ = {0}, D4 ∈ R(δB) ∩ {B}′ = {0}, D3 ∈ R(δB,A) ∩ ker(δB,A), and D2 ∈

R(δA,B) ∩ ker(δA,B). Since σ(A) ∩ σ(B) = ∅, it follows from Rosemblem’s theorem [21] that D2 = D3 = 0.

Thus A⊕B ∈ MC(H⊕H). 2

Theorem 2.4 Let A, B ∈ L(H) , with B similar to A and A ∈ MC(H) . Then B ∈ MC(H).

Proof Let A, B ∈ L(H), such that A ∈ MC(H) and there exists an invertible operator S ∈ L(H) verifying

B = S−1AS . Then for all X ∈ L(H),

S−1(AX −XA)S = B(S−1XS)− (S−1XS)B.

Thus S−1R(δA)S = R(δB). Hence

R(δB) ∩ {B}′ =
[
S−1R(δA)S

]
∩
[
S−1{A}′S

]
= S−1

[
R(δA) ∩ {A}′

]
S

= {0}.

This completes the proof. 2

Corollary 2.5 Let A ∈ L(H) . If A is similar to a normal, isometric, or cyclic subnormal operator then

R(δA) ∩ {A}′ = {0}.

Proof Anderson proved that R(δA) ∩ {A}′ = {0} if A is normal or isometric [2], and in [6] Bouali and

Bouhafsi showed that if A is cyclic subnormal then R(δA) ∩ {A}′ = {0} . 2

Corollary 2.6 Let A, B ∈ L(H) , with σ(A) ∩ σ(B) = ∅ . If A and B are similar to normal, isometric, or

cyclic subnormal operators, all combinations are allowed; then

R(δA⊕B) ∩ {A⊕B}′ = {0}.

Definition 2.7 [14] we shall say that a certain property (P ) of operators acting on a Hilbert space H is a

bad-property, or b-property, if:

(i) Whenever A satisfies (P ) , then for α ∈ IC , with α ̸= 0 , and β ∈ IC , the operator αA+ β satisfies (P ) ;

(ii) If B is similar to A , and A satisfies (P ) , then B also satisfies (P ) ;
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(iii) If A and B satisfy (P ) , such that σ(A) ∩ σ(B) = ∅ , then A⊕B satisfies (P ) .

Theorem 2.8 MC(H) is norm-dense in L(H).

Proof Using [14], theorem 3.5.1, it is sufficient to establish that the property A ∈ MC(H) is a b-property.

(i) If A ∈ MC(H), then for α ∈ IC , with α ̸= 0, and β ∈ IC ,

R(δαA+β) ∩ {αA+ β}′ = R(δA) ∩ {A}′ = {0}.

Thus αA+ β ∈ MC(H). This proves the first condition.

(ii) By theorem 2.4, A ∈ MC(H) is invariant for similarity. The second condition is then verified.

(iii) By theorem 2.3, the third condition of the b-property is fulfilled. This completes the proof.

2

Remark 2.9 In [16], theorem 2, Ho shows that N = {A ∈ L(H) / I /∈ R(δA)} is norm-dense in L(H) .

Clearly MC(H) ⊂ N . Theorem 2.8 generalizes Ho’s result.

3. Ranges and kernels of generalized derivations

Definition 3.1 Let A , B be in L(H). The pair (A,B) is said to possess the Fuglede–Putnam property

(F − P )L(H) if; AT = TB and T ∈ L(H) implies A∗T = TB∗.

Lemma 3.2 Let A, X ∈ L(H) such that P ≥ 0 and PX +XP = 0 . Then PX = XP = 0 .

Proof Assume that PX +XP = 0. Then P 2X = XP 2, and since P ∈ {P 2}′′ ({P 2}′′ is the bicommutant

of P 2 ), it follows that PX = XP. Thus PX = XP = 0. 2

Lemma 3.3 Let A, B ∈ L(H) . If (A,B) has the (F − P )L(H) property, then

R(δA,B) ∩ ker(δA,B) = {0}.

Proof In the proof of theorem 1 [27], Yusun shows that ∥δA,B(X) + T∥ ≥ ∥T∥ for all X ∈ L(H) and

T ∈ ker(δA,B), if (A,B) has the (F − P )L(H) property. 2

Theorem 3.4 Let A , B be in L(H) . If (P (A), P (B)) and (P (B), P (A)) have the (F − P )L(H) property for

some quadratic polynomial P then

R(δA,B) ∩ ker(δA∗,B∗) = {0}.

Proof Since for all (α, β) ∈ IC2, with α ̸= 0,

R(δαA+β,αB+β) = R(δA,B) and ker(δαA+β,αB+β) = ker(δA,B)
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we may assume without loss of generality that (A2, B2) and (B2, A2) have the (F − P )L(H) property. Let

T ∗ ∈ R(δA,B) ∩ ker(δA∗,B∗). Then there exists a sequence (Xn)n in L(H) such that:

AXn −XnB
∥.∥−→ T ∗ and TA = BT.

This implies that

A2Xn −XnB
2 ∥.∥−→ AT ∗ + T ∗B and TA2 = B2T.

Since (B2, A2) has the (F − P )L(H) property, it follows that A2T ∗ = T ∗B2 . Hence A2(AT ∗ + T ∗B) =

(AT ∗ + T ∗B)B2 . Consequently,

AT ∗ + T ∗B ∈ R(δA2,B2) ∩ ker(δA2,B2).

Using lemma 3.3 we have AT ∗ + T ∗B = 0. By multiplication right by T , and using BT = TA, we ob-

tain AP + PA = 0 with P = T ∗T . It follows from lemma 3.2 that AP = PA = 0. On the other hand,

A(XnT ) − (XnT )A
∥.∥−→ T ∗T = P ; and by multiplication of right and left by P, we get P 3 = 0. Since P is

self-adjoint, then P = 0, and this necessarily implies T = 0. Thus R(δA,B) ∩ ker(δA∗,B∗) = {0}. 2

Corollary 3.5 [16] Let A ∈ L(H). If P (A) is normal for some quadratic polynomial P , then R(δA)∩{A∗}′ =
{0} .

Corollary 3.6 Let A, B ∈ L(H). If P (A) and P (B) are normal operators for some quadratic polynomial P ,

then R(δA,B) ∩ ker(δA∗,B∗) = {0}.

Proposition 3.7 Let A , B be in L(H) , such that (B,A) has the (F − P )L(H) property. If T ∈ R(δA,B) ∩

ker(δA∗,B∗) , then T ∗T ∈ R(δB) ∩ {B}′ and TT ∗ ∈ R(δA) ∩ {A}′ .

Proof Assume that T ∈ R(δA,B) ∩ ker(δA∗,B∗). Then there exists a sequence (Xn)n of elements of L(H)

such that

AXn −XnB
∥.∥−→ T and BT ∗ = T ∗A.

Since right and left multiplication are continuous with respect to the norm topology, it follows that

B(T ∗Xn)− (T ∗Xn)B = T ∗(AXn −XnB)
∥.∥−→ T ∗T,

and

A(XnT
∗)− (XnT

∗)A = (AXn −XnB)T ∗ ∥.∥−→ TT ∗.

Hence T ∗T ∈ R(δB) and TT ∗ ∈ R(δA). On the other hand, (B,A) has the (F − P )L(H) property; then

TB = AT. Consequently we get T ∗T ∈ R(δB) ∩ {B}′ and TT ∗ ∈ R(δA) ∩ {A}′ . 2
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Corollary 3.8 Let A , B be in L(H) , such that (B,A) has the (F − P )L(H) property. If A ∈ MC(H) or

B ∈ MC(H) , then R(δA,B) ∩ ker(δA∗,B∗) = {0}.

Corollary 3.9 Let A, B in L(H) , then R(δA,B) ∩ ker(δA∗,B∗) = {0} in one of the follwing conditions:

(1) B is normal and A∗ is p-hyponormal or log-hyponormal, (0 < p ≤ 1).

(2) A is normal and B is p-hyponormal or log-hyponormal, (0 < p ≤ 1).

Proof (1). Assume that B is normal and A∗ is p-hyponormal or log-hyponormal. Then B is p-hyponormal

and A∗ is p-hyponormal or log-hyponormal. It follows from lemma 2.1 [10] that (B,A) has the (F − P )L(H)

property. Since B is normal, B ∈ MC(H) [2]. Using the corollary 3.8 we obtain R(δA,B) ∩ ker(δA∗,B∗) = {0} .
We obtain (2) in the same way. 2
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Proc Amer Math Soc 1998; 126: 167-171 (article in French with an abstract in English).

[6] Bouali S, Bouhafsi Y. P-symmetric operators and the range of a subnormal derivation. Acta Sci Math (Szeged)

2006; 72: 701-708.

[7] Bouali S, Charles J. generalized derivation and numerical range. Acta Sci Math (Szeged) 1997; 63: 563-570.

[8] Bouali S, Ech-chad M. Generalized D-symmetric operators I. Serdica Math J 2008; 34: 557-562.

[9] Bouali S, Ech-chad M. Generalized D-symmetric operators II. Canad Math Bull 2011; 54: 21-27.

[10] Duggal BP. An elementary operator with log-hyponormal, p-hyponormal entries. Linear Algebra and its Applications

2008; 428: 1109-1116.

[11] Duggal BP. Quasi-similar p-hyponormal operators. Integral Equations Operator Theory 1996; 26: 338-345.

[12] Elalami SN. Commutants et fermeture de l’image d’une dérivation. Thèse, Univ de Montpellier, France 1988.
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