Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/
Research Article
Turk J Math
(2017) 41: $508-514$
(C) TÜBITAKK
doi:10.3906/mat-1511-45

т $̈$ вітак

Ranges and kernels of derivations

Mohamed ECH-CHAD*

Department of Mathematics, Faculty of Sciences Kénitra, Kénitra, Morocco
Received: 13.11.2015 • Accepted/Published Online: 07.06.2016 • Final Version: 22.05.2017

Abstract: In this paper we establish some properties concerning the class of operators $A \in \mathcal{L}(\mathcal{H})$ that satisfy $\overline{\mathcal{R}\left(\delta_{A}\right)} \cap$ $\{A\}^{\prime}=\{0\}$, where $\overline{\mathcal{R}\left(\delta_{A}\right)}$ is the norm closure of the range of the inner derivation δ_{A}, defined on $\mathcal{L}(\mathcal{H})$ by $\delta_{A}(X)=$ $A X-X A$. Here \mathcal{H} stands for a Hilbert space; as a consequence, we show that the set $\left\{A \in \mathcal{L}(\mathcal{H}) / \overline{\mathcal{R}\left(\delta_{A}\right)} \cap\{A\}^{\prime}=\{0\}\right\}$ is norm-dense. We also describe some classes of operators A, B for which we have $\overline{\mathcal{R}\left(\delta_{A, B}\right)} \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)=\{0\}$ $\left(\operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)\right.$ is the kernel of the generalized derivation $\delta_{A^{*}, B^{*}}$ defined on $\mathcal{L}(\mathcal{H})$ by $\left.\delta_{A^{*}, B^{*}}(X)=A^{*} X-X B^{*}\right)$.

Key words: Generalized derivation, p-hyponormal operator, log-hyponormal operator, range and kernel

1. Introduction

Let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded operators acting on a complexe infinite dimensional Hilbert space \mathcal{H}. For $A, B \in \mathcal{L}(\mathcal{H})$ we define the generalized derivation $\delta_{A, B}$ associated with (A, B) by $\delta_{A, B}(X)=A X-X B$ for $X \in \mathcal{L}(\mathcal{H})$. If $A=B$, then $\delta_{A, A}=\delta_{A}$ is called the inner derivation implemented by $A \in \mathcal{L}(\mathcal{H})$. These concrete operators on $\mathcal{L}(\mathcal{H})$ occur in many settings in mathematical analysis and application, their properties, spectrum (see $[7,13,20]$), norm (see [23]), ranges, and kernels (see [4, 5, 8, 9, 15, 27]) have been much studied, and many of their problems remain also open (see [3, 18, 26]).

Let $\mathcal{N}=\bigcup_{A \in \mathcal{L}(\mathcal{H})} \mathcal{R}\left(\delta_{A}\right) \cap\{A\}^{\prime}$, where $\mathcal{R}\left(\delta_{A}\right)$ denotes the range of δ_{A} and $\{A\}^{\prime}$ is the commutant of A. In finite dimension, it is known that \mathcal{N} is exactly the set of nilpotent operators. In infinite dimension the theorem of Kleinecke-Shirokov [19] confirms that any operator in \mathcal{N} is quasinilpotent. However, an operator in $\overline{\mathcal{R}\left(\delta_{A}\right)} \cap\{A\}^{\prime}$ is not necessarily quasinilpotent (Anderson [1] proved that there exists an operator A in $\mathcal{L}(\mathcal{H})$ such that $\left.I \in \overline{\mathcal{R}\left(\delta_{A}\right)}\right)$, where $\overline{\mathcal{R}\left(\delta_{A}\right)}$ is the normal closure of $\mathcal{R}\left(\delta_{A}\right)$.

In [2] Anderson proved the remarkable result that $\overline{\mathcal{R}\left(\delta_{A}\right)} \cap\{A\}^{\prime}=\{0\}$ if A is normal or isometric. In the same direction, it should be noted that Bouali and Bouhafsi [6] showed that if A is a cyclic subnormal operator then $\overline{\mathcal{R}\left(\delta_{A}\right)} \cap\{A\}^{\prime}=\{0\}$.

The purpose of the first section is to establish some properties of the class of operators $A \in \mathcal{L}(\mathcal{H})$ that satisfy $\overline{\mathcal{R}\left(\delta_{A}\right)} \cap\{A\}^{\prime}=\{0\}$. As a consequence, we give a large class of operators $A \oplus B$ verifying $\overline{\mathcal{R}\left(\delta_{A \oplus B}\right)} \cap\{A \oplus B\}^{\prime}=\{0\}$, and we prove that the set $\left\{A \in \mathcal{L}(\mathcal{H}) / \overline{\mathcal{R}\left(\delta_{A}\right)} \cap\{A\}^{\prime}=\{0\}\right\}$ is norm-dense in $\mathcal{L}(\mathcal{H})$.

[^0]If H is a finite dimensional Hilbert space $<X, Y>=\operatorname{tr}\left(X Y^{*}\right)$ is an inner product on $\mathcal{L}(\mathcal{H})$ and we have the orthogonal direct sum decomposition $\mathcal{L}(\mathcal{H})=\mathcal{R}\left(\delta_{A}\right) \bigoplus\left\{A^{*}\right\}^{\prime}$. However, when H is infinite dimensional we do not have $\overline{\mathcal{R}\left(\delta_{A}\right)} \cap\left\{A^{*}\right\}^{\prime}=\{0\}$ in general. The class of operators A that have the property $\overline{\mathcal{R}\left(\delta_{A}\right)} \cap\left\{A^{*}\right\}^{\prime}=\{0\}$ includes the normal operators [2], isometries [25], the cyclic subnormal operators [16], the class of operators A such that $P(A)$ is normal for some quadratic polynomial P [16], and Jordan operators [22].

In [12] Elalami proved that $\overline{\mathcal{R}\left(\delta_{A, B}\right)} \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)=\{0\}$ if A^{*} and B are hyponormal operators, where $\operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)$ denotes the kernel of $\delta_{A^{*}, B^{*}}$. In the second section we consider this problem; we show that $\overline{\mathcal{R}\left(\delta_{A, B}\right)} \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)=\{0\}$ if $(P(A), P(B))$ and $(P(B), P(A))$ has the $(F-P)_{\mathcal{L}(\mathcal{H})}$ property for some quadratic polynomial P. Consequently, we extend the result of $[16]$ to $\delta_{A, B}$. Using the $(F-P)_{\mathcal{L}(\mathcal{H})}$ property we prove that $\overline{\mathcal{R}\left(\delta_{A, B}\right)} \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)=\{0\}$ in each of the following cases:
(a) B is normal and A^{*} is p-hyponormal or log-hyponormal, $(0<p \leq 1)$.
(b) A is normal and B is p-hyponormal or log-hyponormal, $(0<p \leq 1)$.

An operator $A \in \mathcal{L}(\mathcal{H})$ is p-hyponormal, $0<p \leq 1$, if $\left|A^{*}\right|^{2 p} \leq|A|^{2 p}$ (a 1-hyponormal operator is hyponormal and a $\frac{1}{2}$-hyponormal operator is semihyponormal). It is an immediate consequence of the Lowner-Heinz inequality that a p-hyponormal operator is q-hyponormal for all $0<q \leq p$. An invertible operator $A \in \mathcal{L}(\mathcal{H})$ is log-hyponormal if $\log \left|A^{*}\right|^{2 p} \leq \log |A|^{2 p}$. An invertible p-hyponormal operator is log-hyponormal, but the converse is false; see [17, p. 169] for a reference. Log-hyponormal and p-hyponormal operators, which share a number of properties with hyponormal operators, have been considered by a number of authors in the recent past; see [11, 17, 24] for further references.

2. Commutants and derivation ranges

Definition 2.1 A vector $x \in \mathcal{H}$ is cyclic for $A \in \mathcal{L}(\mathcal{H})$ if \mathcal{H} is the smallest invariant subspace for A that contains x. The operator A is said to be cyclic if it has a cyclic vector.

Definition 2.2 Let $A \in \mathcal{L}(\mathcal{H})$. The operator A is said to be subnormal if there exists a normal operator N on a Hilbert space \mathcal{K} such that \mathcal{H} is a subspace of \mathcal{K}, invariant under the operator N, and the restriction of N to \mathcal{H} coincides with A.

Consider the set $\mathcal{M}_{\mathcal{C}}(\mathcal{H})=\left\{A \in \mathcal{L}(\mathcal{H}) / \overline{\mathcal{R}\left(\delta_{A}\right)} \cap\{A\}^{\prime}=\{0\}\right\}$.
Theorem 2.3 Let A and B be in $\mathcal{M}_{\mathcal{C}}(\mathcal{H})$, such that $\sigma(A) \cap \sigma(B)=\emptyset$. Then $A \oplus B \in \mathcal{M}_{\mathcal{C}}(\mathcal{H} \oplus \mathcal{H})$.
Proof Assume that $A, B \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$, and $\sigma(A) \cap \sigma(B)=\emptyset$. Let $C=A \oplus B \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H})$, and $D=$ $\left(\begin{array}{ll}D_{1} & D_{2} \\ D_{3} & D_{4}\end{array}\right) \in \overline{\mathcal{R}\left(\delta_{C}\right)} \cap\{C\}^{\prime}$. Then there exists a net $\left(X_{n}\right)_{n} \subset \mathcal{L}(\mathcal{H} \oplus \mathcal{H})$ such that $X_{n}=\left(\begin{array}{ll}X_{n}^{1} & X_{n}^{2} \\ X_{n}^{3} & X_{n}^{4}\end{array}\right)$,

$$
C X_{n}-X_{n} C \xrightarrow{\|\cdot\|} D \quad \text { and } \quad C D=D C
$$

A simple calculation shows that

$$
A X_{n}^{1}-X_{n}^{1} A \xrightarrow{\|\cdot\|} D_{1} \quad \text { and } \quad A D_{1}=D_{1} A
$$

$$
\begin{aligned}
& B X_{n}^{4}-X_{n}^{4} B \xrightarrow{\|\cdot\|} D_{4} \quad \text { and } \quad B D_{4}=D_{4} B \\
& B X_{n}^{3}-X_{n}^{3} A \xrightarrow{\|\cdot\|} D_{3} \quad \text { and } \quad B D_{3}=D_{3} A \\
& A X_{n}^{2}-X_{n}^{2} B \xrightarrow{\|\cdot\|} D_{2} \quad \text { and } \quad A D_{2}=D_{2} B
\end{aligned}
$$

Hence $D_{1} \in \overline{\mathcal{R}\left(\delta_{A}\right)} \cap\{A\}^{\prime}=\{0\}, \quad D_{4} \in \overline{\mathcal{R}\left(\delta_{B}\right)} \cap\{B\}^{\prime}=\{0\}, \quad D_{3} \in \overline{\mathcal{R}\left(\delta_{B, A}\right)} \cap \operatorname{ker}\left(\delta_{B, A}\right)$, and $D_{2} \in$ $\overline{\mathcal{R}\left(\delta_{A, B}\right)} \cap \operatorname{ker}\left(\delta_{A, B}\right)$. Since $\sigma(A) \cap \sigma(B)=\emptyset$, it follows from Rosemblem's theorem [21] that $D_{2}=D_{3}=0$. Thus $A \oplus B \in \mathcal{M}_{\mathcal{C}}(\mathcal{H} \oplus \mathcal{H})$.

Theorem 2.4 Let $A, B \in \mathcal{L}(\mathcal{H})$, with B similar to A and $A \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$. Then $B \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$.
Proof Let $A, B \in \mathcal{L}(\mathcal{H})$, such that $A \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$ and there exists an invertible operator $S \in \mathcal{L}(\mathcal{H})$ verifying $B=S^{-1} A S$. Then for all $X \in \mathcal{L}(\mathcal{H})$,

$$
S^{-1}(A X-X A) S=B\left(S^{-1} X S\right)-\left(S^{-1} X S\right) B
$$

Thus $S^{-1} \overline{\mathcal{R}\left(\delta_{A}\right)} S=\overline{\mathcal{R}\left(\delta_{B}\right)}$. Hence

$$
\begin{aligned}
\overline{\mathcal{R}\left(\delta_{B}\right)} \cap\{B\}^{\prime} & =\left[S^{-1} \overline{\mathcal{R}\left(\delta_{A}\right)} S\right] \cap\left[S^{-1}\{A\}^{\prime} S\right] \\
& =S^{-1}\left[\overline{\mathcal{R}\left(\delta_{A}\right)} \cap\{A\}^{\prime}\right] S \\
& =\{0\}
\end{aligned}
$$

This completes the proof.

Corollary 2.5 Let $A \in \mathcal{L}(\mathcal{H})$. If A is similar to a normal, isometric, or cyclic subnormal operator then

$$
\overline{\mathcal{R}\left(\delta_{A}\right)} \cap\{A\}^{\prime}=\{0\}
$$

Proof Anderson proved that $\overline{\mathcal{R}\left(\delta_{A}\right)} \cap\{A\}^{\prime}=\{0\}$ if A is normal or isometric [2], and in [6] Bouali and Bouhafsi showed that if A is cyclic subnormal then $\overline{\mathcal{R}\left(\delta_{A}\right)} \cap\{A\}^{\prime}=\{0\}$.

Corollary 2.6 Let $A, B \in \mathcal{L}(\mathcal{H})$, with $\sigma(A) \cap \sigma(B)=\emptyset$. If A and B are similar to normal, isometric, or cyclic subnormal operators, all combinations are allowed; then

$$
\overline{\mathcal{R}\left(\delta_{A \oplus B}\right)} \cap\{A \oplus B\}^{\prime}=\{0\} .
$$

Definition 2.7 [14] we shall say that a certain property (P) of operators acting on a Hilbert space \mathcal{H} is a bad-property, or b-property, if:
(i) Whenever A satisfies (P), then for $\alpha \in \mathbb{C}$, with $\alpha \neq 0$, and $\beta \in \mathbb{C}$, the operator $\alpha A+\beta$ satisfies (P);
(ii) If B is similar to A, and A satisfies (P), then B also satisfies (P);
(iii) If A and B satisfy (P), such that $\sigma(A) \cap \sigma(B)=\emptyset$, then $A \oplus B$ satisfies (P).

Theorem $2.8 \mathcal{M}_{\mathcal{C}}(\mathcal{H})$ is norm-dense in $\mathcal{L}(\mathcal{H})$.
Proof Using [14], theorem 3.5.1, it is sufficient to establish that the property $A \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$ is a b-property.
(i) If $A \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$, then for $\alpha \in \mathscr{C}$, with $\alpha \neq 0$, and $\beta \in \mathscr{C}$,

$$
\overline{\mathcal{R}\left(\delta_{\alpha A+\beta}\right)} \cap\{\alpha A+\beta\}^{\prime}=\overline{\mathcal{R}\left(\delta_{A}\right)} \cap\{A\}^{\prime}=\{0\}
$$

Thus $\alpha A+\beta \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$. This proves the first condition.
(ii) By theorem 2.4, $A \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$ is invariant for similarity. The second condition is then verified.
(iii) By theorem 2.3, the third condition of the b-property is fulfilled. This completes the proof.

Remark 2.9 In [16], theorem 2, Ho shows that $N=\left\{A \in \mathcal{L}(\mathcal{H}) / I \notin \overline{\mathcal{R}\left(\delta_{A}\right)}\right\}$ is norm-dense in $\mathcal{L}(\mathcal{H})$. Clearly $\mathcal{M}_{\mathcal{C}}(\mathcal{H}) \subset N$. Theorem 2.8 generalizes Ho's result.

3. Ranges and kernels of generalized derivations

Definition 3.1 Let A, B be in $\mathcal{L}(\mathcal{H})$. The pair (A, B) is said to possess the Fuglede-Putnam property $(F-P)_{\mathcal{L}(\mathcal{H})}$ if; $A T=T B$ and $T \in \mathcal{L}(\mathcal{H})$ implies $A^{*} T=T B^{*}$.

Lemma 3.2 Let $A, X \in \mathcal{L}(\mathcal{H})$ such that $P \geq 0$ and $P X+X P=0$. Then $P X=X P=0$.
Proof Assume that $P X+X P=0$. Then $P^{2} X=X P^{2}$, and since $P \in\left\{P^{2}\right\}^{\prime \prime}\left(\left\{P^{2}\right\}^{\prime \prime}\right.$ is the bicommutant of P^{2}), it follows that $P X=X P$. Thus $P X=X P=0$.

Lemma 3.3 Let $A, B \in \mathcal{L}(\mathcal{H})$. If (A, B) has the $(F-P)_{\mathcal{L}(\mathcal{H})}$ property, then

$$
\overline{\mathcal{R}\left(\delta_{A, B}\right)} \cap \operatorname{ker}\left(\delta_{A, B}\right)=\{0\}
$$

Proof In the proof of theorem 1 [27], Yusun shows that $\left\|\delta_{A, B}(X)+T\right\| \geq\|T\|$ for all $X \in \mathcal{L}(\mathcal{H})$ and $T \in \operatorname{ker}\left(\delta_{A, B}\right)$, if (A, B) has the $(F-P)_{\mathcal{L}(\mathcal{H})}$ property.

Theorem 3.4 Let A, B be in $\mathcal{L}(\mathcal{H})$. If $(P(A), P(B))$ and $(P(B), P(A))$ have the $(F-P)_{\mathcal{L}(\mathcal{H})}$ property for some quadratic polynomial P then

$$
\overline{\mathcal{R}\left(\delta_{A, B}\right)} \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)=\{0\}
$$

Proof Since for all $(\alpha, \beta) \in \mathbb{C}^{2}$, with $\alpha \neq 0$,

$$
\mathcal{R}\left(\delta_{\alpha A+\beta, \alpha B+\beta}\right)=\mathcal{R}\left(\delta_{A, B}\right) \text { and } \operatorname{ker}\left(\delta_{\alpha A+\beta, \alpha B+\beta}\right)=\operatorname{ker}\left(\delta_{A, B}\right)
$$

we may assume without loss of generality that $\left(A^{2}, B^{2}\right)$ and $\left(B^{2}, A^{2}\right)$ have the $(F-P)_{\mathcal{L}(\mathcal{H})}$ property. Let $T^{*} \in \overline{\mathcal{R}\left(\delta_{A, B}\right)} \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)$. Then there exists a sequence $\left(X_{n}\right)_{n}$ in $\mathcal{L}(\mathcal{H})$ such that:

$$
A X_{n}-X_{n} B \xrightarrow{\|\cdot\|} T^{*} \quad \text { and } \quad T A=B T .
$$

This implies that

$$
A^{2} X_{n}-X_{n} B^{2} \xrightarrow{\|\cdot\|} A T^{*}+T^{*} B \quad \text { and } \quad T A^{2}=B^{2} T .
$$

Since $\left(B^{2}, A^{2}\right)$ has the $(F-P)_{\mathcal{L}(\mathcal{H})}$ property, it follows that $A^{2} T^{*}=T^{*} B^{2}$. Hence $A^{2}\left(A T^{*}+T^{*} B\right)=$ $\left(A T^{*}+T^{*} B\right) B^{2}$. Consequently,

$$
A T^{*}+T^{*} B \in \overline{\mathcal{R}\left(\delta_{A^{2}, B^{2}}\right)} \cap \operatorname{ker}\left(\delta_{A^{2}, B^{2}}\right)
$$

Using lemma 3.3 we have $A T^{*}+T^{*} B=0$. By multiplication right by T, and using $B T=T A$, we obtain $A P+P A=0$ with $P=T^{*} T$. It follows from lemma 3.2 that $A P=P A=0$. On the other hand, $A\left(X_{n} T\right)-\left(X_{n} T\right) A \xrightarrow{\|\cdot\|} T^{*} T=P$; and by multiplication of right and left by P , we get $P^{3}=0$. Since P is self-adjoint, then $P=0$, and this necessarily implies $T=0$. Thus $\overline{\mathcal{R}\left(\delta_{A, B}\right)} \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)=\{0\}$.

Corollary 3.5 [16] Let $A \in \mathcal{L}(\mathcal{H})$. If $P(A)$ is normal for some quadratic polynomial P, then $\overline{\mathcal{R}\left(\delta_{A}\right)} \cap\left\{A^{*}\right\}^{\prime}=$ $\{0\}$.

Corollary 3.6 Let $A, B \in \mathcal{L}(\mathcal{H})$. If $P(A)$ and $P(B)$ are normal operators for some quadratic polynomial P, then $\overline{\mathcal{R}\left(\delta_{A, B}\right)} \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)=\{0\}$.

Proposition 3.7 Let A, B be in $\mathcal{L}(\mathcal{H})$, such that (B, A) has the $(F-P)_{\mathcal{L}(\mathcal{H})}$ property. If $T \in \overline{\mathcal{R}\left(\delta_{A, B}\right)} \cap$ $\operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)$, then $T^{*} T \in \overline{\mathcal{R}\left(\delta_{B}\right)} \cap\{B\}^{\prime}$ and $T T^{*} \in \overline{\mathcal{R}\left(\delta_{A}\right)} \cap\{A\}^{\prime}$.
Proof Assume that $T \in \overline{\mathcal{R}\left(\delta_{A, B}\right)} \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)$. Then there exists a sequence $\left(X_{n}\right)_{n}$ of elements of $\mathcal{L}(\mathcal{H})$ such that

$$
A X_{n}-X_{n} B \xrightarrow{\|\cdot\|} T \quad \text { and } \quad B T^{*}=T^{*} A .
$$

Since right and left multiplication are continuous with respect to the norm topology, it follows that

$$
B\left(T^{*} X_{n}\right)-\left(T^{*} X_{n}\right) B=T^{*}\left(A X_{n}-X_{n} B\right) \xrightarrow{\|\cdot\|} T^{*} T,
$$

and

$$
A\left(X_{n} T^{*}\right)-\left(X_{n} T^{*}\right) A=\left(A X_{n}-X_{n} B\right) T^{*} \xrightarrow{\|\cdot\|} T T^{*} .
$$

Hence $T^{*} T \in \overline{\mathcal{R}\left(\delta_{B}\right)}$ and $T T^{*} \in \overline{\mathcal{R}\left(\delta_{A}\right)}$. On the other hand, (B, A) has the $(F-P)_{\mathcal{L}(\mathcal{H})}$ property; then $T B=A T$. Consequently we get $T^{*} T \in \overline{\mathcal{R}\left(\delta_{B}\right)} \cap\{B\}^{\prime}$ and $T T^{*} \in \overline{\mathcal{R}\left(\delta_{A}\right)} \cap\{A\}^{\prime}$.

Corollary 3.8 Let A, B be in $\mathcal{L}(\mathcal{H})$, such that (B, A) has the $(F-P)_{\mathcal{L}(\mathcal{H})}$ property. If $A \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$ or $B \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$, then $\overline{\mathcal{R}\left(\delta_{A, B}\right)} \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)=\{0\}$.

Corollary 3.9 Let A, B in $\mathcal{L}(H)$, then $\overline{\mathcal{R}\left(\delta_{A, B}\right)} \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)=\{0\}$ in one of the follwing conditions:
(1) B is normal and A^{*} is p-hyponormal or log-hyponormal, $(0<p \leq 1)$.
(2) A is normal and B is p-hyponormal or log-hyponormal, $(0<p \leq 1)$.

Proof (1). Assume that B is normal and A^{*} is p-hyponormal or \log-hyponormal. Then B is p-hyponormal and A^{*} is p-hyponormal or log-hyponormal. It follows from lemma $2.1[10]$ that (B, A) has the $(F-P)_{\mathcal{L}(\mathcal{H})}$ property. Since B is normal, $B \in \mathcal{M}_{\mathcal{C}}(\mathcal{H})$ [2]. Using the corollary 3.8 we obtain $\overline{\mathcal{R}\left(\delta_{A, B}\right)} \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)=\{0\}$. We obtain (2) in the same way.

Acknowledgment

It is our great pleasure to thank the referee for his careful reading of the paper and for several helpful suggestions.

References

[1] Anderson JH. Derivation ranges and the identity. Bull Amer Math Soc 1973; 79: 705-708.
[2] Anderson JH. On normal derivations. Proc Amer Math Soc 1973; 38: 135-140.
[3] Anderson JH, Bunce JW, Deddens JA, Williams JP. C*-algebras and derivation ranges. Acta Sci Math (Szeged) 1978; 40: 211-227.
[4] Apostol C, Fialkow L. Structural properties of elementary operators. Canadian J Math 1986; 38: 1485-1524.
[5] Benlarbi M, Bouali S, Cherki S. Une remarque sur l'orthogonalité de l'image au noyau d'une dérivation généralisée. Proc Amer Math Soc 1998; 126: 167-171 (article in French with an abstract in English).
[6] Bouali S, Bouhafsi Y. P-symmetric operators and the range of a subnormal derivation. Acta Sci Math (Szeged) 2006; 72: 701-708.
[7] Bouali S, Charles J. generalized derivation and numerical range. Acta Sci Math (Szeged) 1997; 63: 563-570.
[8] Bouali S, Ech-chad M. Generalized D-symmetric operators I. Serdica Math J 2008; 34: 557-562.
[9] Bouali S, Ech-chad M. Generalized D-symmetric operators II. Canad Math Bull 2011; 54: 21-27.
[10] Duggal BP. An elementary operator with log-hyponormal, p-hyponormal entries. Linear Algebra and its Applications 2008; 428: 1109-1116.
[11] Duggal BP. Quasi-similar p-hyponormal operators. Integral Equations Operator Theory 1996; 26: 338-345.
[12] Elalami SN. Commutants et fermeture de l'image d'une dérivation. Thèse, Univ de Montpellier, France 1988.
[13] Fialkow LA. Spectral properties of elementary operators II. J Am Math Soc 1985; 290: 415-429.
[14] Herrero DA. Approximation of Hilbert Space Operators I. Boston, MA, USA: Pitman Advanced Publishing Program, 1982.
[15] Herrero DA. Intersections of commutants with closures of derivation ranges. Proc Amer Math Soc 1979; 74: 29-34.
[16] Ho Y. Commutants and derivation ranges. Tohoku Math J 1975; 27: 509-514.
[17] Jeon IH, Tanahashi K, Uchiyama A. On quasi-similarity for log-hyponormal operators. Glasg Math J 2004; 46: 169-176.
[18] Kim HW. On compact operators in the weak closure of the range of a derivation. Proc Amer Math Soc 1973; 40: 482-486.
[19] Kleinecke DC. On operator commutators. Proc Amer Math Soc 1957; 8: 535-536.
[20] Mathieu M. Spectral theory for multiplication operators on C*-algebras. Proceedings of the Royal Irish Academy 1983; 83A: 231-249.
[21] Rosemblum M. On the operator equation $B X-X A=Q$. Duke Math J 1956; 23: 263-269.
[22] Seddik A, Charles J. Derivation and Jordan operators. Integral Equations Operator Theory 1997; 28: 120-124.
[23] Stampfli JG. The norm of a derivation. Pacific J Math 1970; 33: 737-747.
[24] Uchiyama A, Tanahachi K. Fuglede-Putnam theorem for p-hyponormal or log-hyponormal operators. Glasg Math J 2002; 44: 397-410.
[25] Williams JP. On the range of derivation II. Proceedings of the Royal Irish Academy Section A 1974; 74: 299-310.
[26] Williams JP. Derivation ranges: open problems. In Topics in Modern Operator Theory, 5th International Conference on Operator Theory, Timioara and Herculane (Romania); 2-12 June 1980; Basel, Switzerland: Birkhauser-Verlag, 1981, pp. 319-328.
[27] Yusun T. Kernels of generalized derivations. Acta Sci Math 1990; 54: 159-169.

[^0]: *Correspondence: m.echchad@yahoo.fr
 2010 AMS Mathematics Subject Classification: 47B47, secondary 47A30.

