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Abstract: In this article we obtain the Andoyer equations for noncollinear planar central configurations taking into

account the center of mass of the system. We apply these equations to study two configurations. In the first one we

prove that it is not possible to put a square central configuration and an equilateral triangle central configuration as a

cocircular central configuration. In the second one we give the central configurations for the noncollinear planar 4–body

problem with one pair of equal positive masses and two null masses.
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1. Introduction and statement of the main results

The classical Newtonian n–body problem consists of the study of a system formed by n punctual bodies with

positives masses m1, . . . ,mn interacting by Newton’s gravitational law [11]. That is, if the position vectors are

given by r1, . . . , rn in Rd , d = 2, 3, the equations of motion are

r̈i = Fi = −
n∑

j=1
j ̸=i

mj

r3ij
(ri − rj), (1)

for i = 1, . . . , n , where rij = |ri − rj | is the Euclidean distance between the bodies at ri and rj . In (1) we

consider the gravitational constant G = 1. The vector r = (r1, . . . , rn) ∈ Rnd denotes a configuration of the n

bodies and we assume that ri ̸= rj , for i ̸= j .

One integral of motion of system (1) is the linear momentum

P =
n∑

j=1

mj

M
ṙj , (2)

where M = m1 + . . .+mn is the total mass. This implies that the center of mass of the system, which is given

by

c =
n∑

j=1

mj

M
rj ,
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describes a uniform motion. Eq. (2) also implies that the total force on the system FT =
∑n

i=1 Fi equals the

null vector.

Another integral of motion of system (1) is the angular momentum

J =

n∑
j=1

mjrj ∧ ṙi.

This implies that the torque of the system T =
∑n

i=1 ri ∧ Fi equals the null vector.

Finally the last integral of motion of system (1) is the energy

E =
n∑

j=1

mj ṙ
2
j

2
−

∑
i<j

mimj

rij
.

The above integrals of motion can be used in system (1) to reduce at most ten degrees of freedom. Thus

the study of such a system via first integrals is not adequate for n ≥ 3. Therefore, the knowledge of particular

solutions became important in order to understand this problem.

An interesting class of particular solutions of (1) can be found in the literature as homographic solutions

in which the shape of the configuration is preserved as time varies. The first homographic solutions are due to

Euler [4] and Lagrange [7].

At a given instant t = t0 the n bodies are in a central configuration if there exists λ ̸= 0 such that

r̈i = λ(ri − c), for all i = 1, . . . , n . Such configurations are closely related to homographic solutions. See

[10, 12, 13, 15].

Note that to find a central configuration is essentially an algebraic problem since, from equations (1) and

the definition, we must solve the following set of equations

λ(ri − c) = −
n∑

j=1
j ̸=i

mj

r3ij
(ri − rj), (3)

for i = 1, . . . , n . Eqs. (3) are called equations of central configurations. A simple computation leads to

λ = − U

2I
, U =

∑
1≤i<j≤n

mimj

rij
, I =

1

2M

∑
i<j

mjmi|ri − rj |2,

where U is the Newtonian potential and I is the inertia moment of the system.

Two central configurations (r1, . . . , rn) and (r̄1, . . . , r̄n) of the n bodies are related if we can pass from

one to the other through a dilation or a rotation (centered at the center of mass). Thus we can study the classes

of central configurations defined by the above equivalence relation.

Taking into account this equivalence we have exactly five classes of central configurations in the 3–body

problem. The finiteness of the number of central configurations performed by n bodies with positive masses

is a question posed by Chazy in [2] and Wintner in [15], and reformulated to the planar case by Smale in [14].

For n = 4 this problem has an affirmative answer [6]. Alternatively, see [1] for a proof of the finiteness when

n = 4 and a partial answer when n = 5. This question remains open when n > 5.

516



FERNANDES and MELLO/Turk J Math

Consider the equations

fij =
n∑

k=1
k ̸=i,j

mk (Rik −Rjk) ∆ijk = 0, (4)

for 1 ≤ i < j ≤ n , where Rij = 1/r3ij and ∆ijk = (ri − rj) ∧ (ri − rk). Note that ∆ijk is twice the oriented

area of the triangle formed by the bodies at ri , rj , and rk (see [5]). These n(n − 1)/2 equations are called

Dziobek–Laura–Andoyer equations or simply Andoyer equations. We have the following theorem.

Theorem 1 Consider n bodies with positive masses m1,m2, . . . ,mn and position vectors r1, r2, . . . , rn in a

planar noncollinear configuration. Then Eqs. (3) are equivalent to Eqs. (4).

It is important to mention that Theorem 1 was proved in [5] and in [8] for the case where the center of

mass is at the origin, that is c = 0.

It is well known that three bodies with arbitrary positive masses at the vertices of an equilateral triangle

are in a central configuration. Another well-known result states that n bodies with equal positive masses at

the vertices of a n–gon are in a central configuration, for n > 3.

As an application of Theorem 1 we prove that it is not possible to obtain a square central configuration

(four bodies with equal positive masses at the vertices a square) and an equilateral triangle central configuration

(three bodies with arbitrary positive masses at the vertices an equilateral triangle) as a cocircular central

configuration.

Theorem 2 Consider a configuration of seven bodies with cocircular position vectors r1, . . . , r7 and positive

masses m1, . . . ,m7 . See Figure 1. Assume that r1, r2, r3, r4 are at the vertices of a square, m = m1 = m2 =

m3 = m4 and r5, r6, r7 are at the vertices of an equilateral triangle. Then there are no positive masses in order

that this configuration performs a central configuration.

For a deep study of cocircular central configurations see [3, 9].

As another application of Theorem 1 we have the following theorem.

Theorem 3 Consider the noncollinear planar 4–body problem with position vectors r1, r2, r3, r4 and masses

m = m1 = m2 > 0 , m3 = m4 = 0 . Then we have the following possibilities for a central configuration:

1. The position vectors r1, r2 , and r4 are at the vertices of an equilateral triangle and r3 is either in the middle

point between r1 and r2 or in a special position in the straight line through r1 and r2 . See Figure 2a and

2b, respectively.

2. The four bodies are at the vertices of a rhombus with the bodies of equal masses in opposite vertices. See

Figures 2c.

This article is organized as follows. Theorem 1 is proved in Section 2, Theorem 2 is proved in Section 3,

and Theorem 3 is proved in Section 4.

2. Proof of Theorem 1

In this section we prove Theorem 1. Suppose that

λ(ri − c) = −
∑
k ̸=i

mkRik(ri − rk)
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Figure 1. Coordinates for the proof of Theorem 2.
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Figure 2. Three possibilities of a noncollinear planar 4–body central configuration with masses m1 = m2 > 0 and

m3 = m4 = 0.

holds for 1 ≤ i ≤ n . Taking i, j ∈ {1, 2, . . . , n} , j ̸= i , we have

λ(ri − c) = −
∑
k ̸=i,j

mkRik(ri − rk)−mjRij(ri − rj) (5)

and

λ(rj − c) = −
∑
k ̸=i,j

mkRjk(rj − rk)−miRji(rj − ri). (6)
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The difference between (6) and (5) gives

λ(ri − rj) = −
∑
k ̸=i,j

mk[Rik(ri − rk)−Rjk(rj − rk)]− [mjRij −miRij ](ri − rj). (7)

Taking the wedge product by ri − rj in both sides of (7) we have

0 = −
∑
k ̸=i,j

mk[Rik(ri − rk) ∧ (ri − rj)−Rjk(rj − rk) ∧ (ri − rj)]

= −
∑
k ̸=i,j

mk[Rik∆ikj +Rjk∆jki]

= −
∑
k ̸=i,j

mk[−Rik∆ijk +Rjk∆ijk]

=
∑
k ̸=i,j

mk(Rik −Rjk)∆ijk

= fij .

Therefore, fij = 0 for all 1 ≤ i < j ≤ n .

Now assume that fij = 0 for all 1 ≤ i < j ≤ n . Then∑
k ̸=i,j

mk(Rik −Rjk)(ri − rj) ∧ (ri − rk) = 0.

This equation can be written as∑
k ̸=i,j

mkRik(ri − rj) ∧ (ri − rk) =
∑
k ̸=i,j

mkRjk(ri − rj) ∧ (ri − rk).

Inserting the index j in the sum on the left-hand side and the index i in the sum on the right-hand side we do

not change the last equation, and so∑
k≠i

mkRik(ri − rj) ∧ (ri − rk) =
∑
k ̸=j

mkRjk(ri − rj) ∧ (ri − rk),

which is equivalent to

(ri − rj) ∧
∑
k ̸=i

mkRik(ri − rk) =
∑
k ̸=j

mkRjk[ri ∧ (rj − rk) + (rj ∧ rk)].

From the expression of Fi

(ri − rj) ∧
Fi

mi
=

∑
k ̸=j

mkRjk[ri ∧ (rj − rk) + (rj ∧ rk)]

and adding −rj in the last term we do not change this equation, and so

(ri − rj) ∧
Fi

mi
=

∑
k ̸=j

mkRjk[ri ∧ (rj − rk) + rj ∧ (−rj + rk)].
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Then

(ri − rj) ∧
Fi

mi
=

∑
k ̸=j

mkRjk[ri ∧ (rj − rk)− rj ∧ (rj − rk)]

=
∑
k ̸=j

mkRjk[(ri − rj) ∧ (rj − rk)]

= (ri − rj) ∧
Fj

mj
,

which implies that

(ri − rj) ∧
Fi

mi
= (ri − rj) ∧

Fj

mj
,

or equivalently

(ri − rj) ∧ (mjFi −miFj) = 0. (8)

Developing the expression we have

ri ∧mjFi − ri ∧miFj − rj ∧mjFi + rj ∧miFj = 0,

that is
mjri ∧ Fi −miri ∧ Fj −mjrj ∧ Fi +mirj ∧ Fj = 0.

Taking the summation in j from 1 to n we get

Mri ∧ Fi −miri ∧
n∑

j=1

Fj −

 n∑
j=1

mjrj

 ∧ Fi +mi

n∑
j=1

rj ∧ Fj = 0, (9)

where M is the total mass. Note that with the above definitions equation (9) is

Mri ∧ Fi −miri ∧ FT −Mc ∧ Fi +miT = 0.

Thus, M(ri−c)∧Fi = 0, which implies that (ri−c) and Fi are parallel, that is, Fi = λi(ri−c), or equivalently

r̈i = (λi/mi)(ri − c). From (8) we have (
Fi

mi
− Fj

mj

)
∧ (ri − rj) = 0,

so (
λi

mi
(ri − c)− λj

mj
(rj − c)

)
∧ (ri − rj) = 0

or equivalently

− λi

mi
(ri − c) ∧ (rj − c)− λj

mj
(rj − c) ∧ (ri − c) = 0,

which implies that (
λi

mi
− λj

mj

)
(rj − c) ∧ (ri − c) = 0, ∀ i, j.
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Since the configuration is noncollinear, we have

λi

mi
=

λj

mj
= λ,

for all i, j . Therefore,

λ(ri − c) =
∑
j ̸=i

mjRij (ri − rj),

for all i = 1, 2, . . . , n and thus the equation of central configuration is satisfied.

3. Proof of Theorem 2

In this section we prove Theorem 2 using Theorem 1. Without loss of generality, consider the following

coordinates (see Figure 1)

r1 = (1, 0), r2 = (0, 1), r3 = (−1, 0), r4 = (0,−1), r5 = (cos(θ), sin(θ)),

r6 =

(
cos

(
θ +

2π

3

)
, sin

(
θ +

2π

3

))
, r7 =

(
cos

(
θ +

4π

3

)
, sin

(
θ +

4π

3

))
.

Take Andoyer equations (4) according to Theorem 1. For the 7-body problem there are 21 equations in

(4). In particular, equation f56 = 0 must be satisfied, that is

f56 = m1 (R51 −R61)∆561 +m2 (R52 −R62)∆562 +m3 (R53 −R63)∆563 +m4 (R54 −R64)∆564 +m7 (R57 −R67)∆567 = 0.

From our assumptions m1 = m2 = m3 = m4 = m and R57 = R67 the last equation can be written as

f56 = m
[
(R51 −R61)∆561 + (R52 −R62)∆562 (R53 −R63)∆563 + (R54 −R64)∆564

]
= 0.

Define
g(θ) = (R51 −R61)∆561 + (R52 −R62)∆562 (R53 −R63)∆563 + (R54 −R64)∆564.

Thus a necessary condition to get a central configuration is to take θ as a root of g , that is

g(θ) =

√
3
2 + sin(x)− cos

(
x+ π

6

)
(−2 cos(x) + 2)

−3/2
−

√
3
2 + sin(x)− cos

(
x+ π

6

)(
2− 2 sin(x+ π

6 )
)−3/2

+

√
3
2 − cos(x)− sin

(
x+ π

6

)
(−2 sin(x) + 2)

−3/2
+

√
3
2 − cos(x)− sin

(
x+ π

6

)(
−2 cos(x+ π

6 ) + 2
)−3/2

+

√
3
2 − sin(x) + cos

(
x+ π

6

)
(2 cos(x) + 2)

−3/2
−

√
3
2 − sin(x) + cos

(
x+ π

6

)(
2 + 2 sin(x+ π

6 )
)−3/2

+

√
3
2 + cos(x) + sin

(
x+ π

6

)
(2 sin(x) + 2)

−3/2
−

√
3
2 + cos(x) + sin

(
x+ π

6

)(
2 + 2 cos(x+ π

6 )
)−3/2

.

Note that, under the assumptions, we just need consider θ ∈ (0, π/6). Thus, in order to prove the theorem we

need to show that g has no root in such interval.
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It is clear that g is a differentiable function in the interval (0, π/6). Taking the limits for g in this

interval we get

lim
θ→0+

g(θ) = +∞, lim
θ→π

6
−
g(θ) = 0.

Taking the derivative of g with respect to θ we get g′(θ) < −1 for all values of θ ∈ (0, π/6). Therefore,

the function g has no root in the interval (0, π/6). In short, Theorem 2 is proved.

4. Proof of Theorem 3

In this section we prove Theorem 3. For the 4-body problem there are 6 equations in (4), which can be written

as: f12 = 0 is trivially satisfied,

f13 = m(R12 −R23)∆132 = 0, f14 = m(R12 −R24)∆142 = 0,

f23 = m(R12 −R13)∆123 = 0, f24 = m(R12 −R14)∆124 = 0,

f34 = m [(R13 −R14)∆134 + (R23 −R24)∆234] = 0.

For noncollinear central configurations we have the following cases:

Case i) Either ∆132 = 0 and ∆124 ̸= 0 or ∆132 ̸= 0 and ∆124 = 0.

Case ii) ∆132 ̸= 0 and ∆124 ̸= 0.

Case i) Without loss of generality, consider ∆132 = 0 and ∆124 ̸= 0. The study of the other possibility is

analogous. As ∆132 = 0 it means that r3 is on the straight line through r1 and r2 . From f14 = 0, f24 = 0

and the assumption in this case we have r12 = r24 and r12 = r14 . Therefore, r1 , r2 , and r4 are at the vertices

of an equilateral triangle. To study the position vector r3 we take, without loss of generality, the following

coordinates

r1 = (−1, 0), r2 = (1, 0), r3 = (x3, 0), x3 ≥ 0, r4 = (0,
√
3).

Thus, f34 = 0 has the form

1

(x3 + 1)2
+

x3 − 1√
(x3 − 1)2

− x3

4
= 0,

whose solutions satisfying x3 ≥ 0 are: x3 = 0 and x3 = 2.39681 with five decimals. See Figures 2a and 2b.

Hence we have proved item 1 of Theorem 3.

Case ii) ∆132 ̸= 0 and ∆124 ̸= 0. From equations f13 = 0, f14 = 0, f23 = 0, and f24 = 0 we have r12 = r23 ,

r12 = r24 , r12 = r13 , and r12 = r14 , respectively. From these equalities equation f34 = 0 is satisfied. Therefore,

the position vectors r1 , r2 , r3 , and r4 are at the vertices of a rhombus. See Figure 2c. We have proved item

2 of Theorem 3.
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