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Abstract: We give an elementary proof of a relation, first discovered in its full generality by Korkmaz, in the mapping

class group of a closed orientable surface. Our proof uses only the well-known relations between Dehn twists.
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1. Introduction

Our aim here is to give an alternative proof of Theorem 3.4 of [3], given below. This theorem is a generalization

of the Matsumoto relation in the mapping class group of a closed orientable surface of genus 2 obtained in [4],

to the higher genus case. We will refer to this relation as the generalized Matsumoto relation. It gives a relation

involving 2g + 4 (respectively 2g + 10) Dehn twists when the genus of the surface is even (respectively odd).

Throughout the paper we denote the isotopy class of the right-handed Dehn twist about a simple closed

curve c by the same letter c . We use functional notation, that is, for any two mapping classes f and g , the

multiplication fg means that g is applied first. Let Σg denote a closed connected orientable surface of genus
g .

Theorem(Korkmaz). In the mapping class group of Σg , the following relations between right Dehn twists

hold (see Figures 1 and 2):

(i) (B0B1B2 · · ·Bgσ)
2 = 1 if g is even,

(ii) (B0B1B2 · · ·Bga
2b2)2 = 1 if g is odd.

The above theorem is used to show that there are infinitely many pairwise nonhomeomorphic 4-manifolds

that admit genus-g Lefschetz fibrations over S2 but do not carry any complex structure with either orientation

(see [3, 5]).

Recall that the hyperelliptic mapping class group of Σg is a quotient of the braid group B2g+2 on 2g+2

strings. The quotient of the hyperelliptic mapping class group with the cyclic subgroup of order 2 generated

by the hyperelliptic involution is isomorphic to the mapping class group of a sphere with 2g + 2 punctures.

The hyperelliptic mapping class group is equal to the mapping class group when g = 2. Using these facts, to
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Figure 1. The curves Bi , when g is even. Figure 2. The curves Bi , when g is odd.

obtain the above-mentioned relations in the mapping class group, Korkmaz lifts Matsumoto’s relation to the

braid group B6 and generalizes it to a relation in the braid group B2g+2 . He then projects it to the surface Σg

to get these relations in the mapping class group of Σg .

In our main theorem, we obtain different set of curves. We then find a self-homeomorphism R of Σg ,

which takes Bi ’s to Ag−i ’s, i.e. R(Bi) = Ag−i for 0 ≤ i ≤ g . Here is our main theorem:

Main Theorem. In the mapping class group of Σg , the following relations hold:

(i) (AgAg−1 · · ·A0σ)
2 = 1 if g is even,

(ii) (AgAg−1 · · ·A0a
2b2)2 = 1 if g is odd.

In Figures 3 and 4, the curves A0, A1, . . . , Ag are given for g = 6 and g = 7, respectively.
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Figure 3. Curves Ai when g is even. Figure 4. Curves Ai when g is odd.

In the proof, we only use the following well-known relations among Dehn twists. For completeness of the

text we recall them here.

Commutativity Relation: If the geometric intersection number of the curves a and b is zero, then

the Dehn twists about these curves commute, i.e. ab = ba .

Braid Relation: If the geometric intersection number of the curves a and b is 1, then we have aba = bab .

Chain Relation: If a and b (σ ) are the boundary curves of a regular neighborhood of the chain of

simple closed curves c1, c2, . . . ck for k odd (for k even), then (see Figures 5 and 6)

(i) when k is odd (ckck−1 · · · c2c1)k+1
= ab ,

(ii) when k is even (ckck−1 · · · c2c1)2k+2
= σ .

To make the text easier to follow, we underline the curves before and after we apply the above relations.

We refer the reader to [1] for more details on the basic concepts of mapping class groups.
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Figure 5. Chain relation for k odd.
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Figure 6. Chain relation for k even.

2. Proofs

In the following proof we generalize the techniques used in the proof of [2, Lemma 2.3] to arbitrary genera.

Throughout this section let ci denote the right-handed Dehn twist about the simple closed curve in Figure 7

for i = 1, 2, . . . , 2g + 1.
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Figure 7. Genus g surface, Σg .

Lemma 2.1. The product (c2g+1c2gc2g−1 · · · c2c1)n can be expressed as 1∏
i=−n+2

c2g+i

1∏
i=−n+2

c2g+i−1 · · ·
1∏

i=−n+2

cg+i+1

1∏
i=−n+2

cg+i

 (cgcg−1 · · · c2c1)n ,

for 1 ≤ n ≤ g + 1 .

Proof We proceed by induction on n . For n = 1, the statement is clear, that is we have

(c2g+1c2gc2g−1 · · · c2c1) = (c2g+1c2g · · · cg+1) (cgcg−1 · · · c2c1) .

For n = 2, note first that the set of curves {cg−1, cg−2, . . . , c2, c1} are disjoint from the set of curves

{c2g+1, c2g, . . . , cg+2, cg+1} ; hence Dehn twists about these curves commute. We have

(c2g+1c2gc2g−1 · · · c2c1)2

=(c2g+1c2g · · · cgcg−1 · · · c2c1)(c2g+1c2g · · · cg+1cgcg−1 · · · c2c1)

=(c2g+1c2gc2g−1 · · · cg+1cg)(c2g+1c2g · · · cg+1cg−1 · · · c2c1cgcg−1 · · · c2c1).

Applying the commutativity relation again to cg, cg+1, . . . c2g−1 with this order,

(c2g+1c2gc2g−1 · · · cg+1 cg)(c2g+1c2g · · · cg+1cg−1 · · · c2c1cgcg−1 · · · c2c1)

=(c2g+1c2g)(c2g+1c2g−1c2g · · · cg+1cg+2cgcg+1cg−1 · · · c2c1cgcg−1 · · · c2c1).

We can regroup these terms in the following way:

(c2g+1c2gc2g+1c2g−1c2g · · · cg+1cg+2cgcg+1cg−1 · · · c2c1) (cgcg−1 · · · c2c1) .
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Applying the braid relation successively to the underlined terms

=
(
c2gc2g+1c2gc2g−1c2gc2g−2 · · · cg+2cgcg+1cg−1 · · · c2c1

)
(cgcg−1 · · · c2c1)

=
(
c2gc2g+1c2g−1c2gc2g−1c2g−2 · · · cg+2cgcg+1cg−1 · · · c2c1

)
(cgcg−1 · · · c2c1)

...
...

...

=
(
c2gc2g+1c2g−1c2g · · · cg+1cg+2cg+1cgcg+1cg−1 · · · c2c1

)
(cgcg−1 · · · c2c1)

=
(
c2gc2g+1c2g−1c2gc2g−2c2g−1 · · · cgcg+1cgcg−1 · · · c2c1

)
(cgcg−1 · · · c2c1) .

The terms on the last line can be rewritten in the following way:

(c2gc2g+1c2g−1c2gc2g−2c2g−1 · · · cgcg+1) (cgcg−1 · · · c2c1) (cgcg−1 · · · c2c1)

= ((c2gc2g+1)(c2g−1c2g)(c2g−2c2g−1) · · · (cgcg+1)) (cgcg−1 · · · c2c1)2

=

(
1∏

i=0

c2g+i

1∏
i=0

c2g+i−1

1∏
i=0

c2g+i−2 · · ·
1∏

i=0

c2g+i−g

)
(cgcg−1 · · · c2c1)2 .

Thus we are done for n = 2.

Now assuming that the statement is true for k , we show that it is also true for k + 1, i.e. we want to

show

(c2g+1c2g · · · c1)k+1
=

(
1∏

i=−k+1

c2g+i · · ·
1∏

i=−k+1

cg+i+1

1∏
i=−k+1

cg+i

)
(cgcg−1 · · · c1)k+1

. (1)

Before we proceed, to simplify the notation and make the proofs easier to follow let us introduce P i
k for

the index decreasing product

P i
k := ckck−1 · · · ci+1ci and P i

k
:= ckck−1 · · · ci+1ci for i ≤ k,

and Ql
k for the index increasing product

Ql
k := ckck+1 · · · cl−1cl and Ql

k
:= ckck+1 · · · cl−1cl for k ≤ l,

where ck denotes the left-handed Dehn twist about the curve ck . Using these notations, we can rephrase the

equation (1) that we want to prove as(
P 1
2g+1

)k+1
=
(
Q2g+1

2g−k+1 · · ·Q
g+2
g−k+2Q

g+1
g−k+1

) (
P 1
g

)k+1
.

By the induction assumption on k , we have(
P 1
2g+1

)k
=
(
Q2g+1

2g−k+2 · · ·Q
g+2
g−k+3Q

g+1
g−k+2

) (
P 1
g

)k
.

527



DALYAN et al./Turk J Math

Since we have
(
P 1
2g+1

)k+1
= P 1

2g+1

(
P 1
2g+1

)k
, we get(

P 1
2g+1

)k+1
=
(
P 1
2g+1

) (
Q2g+1

2g−k+2 · · ·Q
g+2
g−k+3Q

g+1
g−k+2

) (
P 1
g

)k
=
(
P 2g−k+2
2g+1 P g−k+1

2g−k+1P
1
g−k

)(
Q2g+1

2g−k+2 · · ·Q
g+2
g−k+3Q

g+1
g−k+2

) (
P 1
g

)k
.

Since the curves in the product P 1
g−k = cg−k · · · c2c1 are disjoint from all the curves cg−k+2, cg−k+3, . . . , c2g,

c2g+1 in the product Q2g+1
2g−k+2 · · ·Q

g+2
g−k+3Q

g+1
g−k+2 , by commutativity of the Dehn twists about these curves,(

P 2g−k+2
2g+1 P g−k+1

2g−k+1P
1
g−k

)(
Q2g+1

2g−k+2 · · ·Q
g+2
g−k+3Q

g+1
g−k+2

) (
P 1
g

)k
=
(
P 2g−k+2
2g+1 P g−k+1

2g−k+1

)(
Q2g+1

2g−k+2Q
2g
2g−k+1 · · ·Q

g+2
g−k+3Q

g+1
g−k+2

)
P 1
g−k

(
P 1
g

)k
.

Similarly again by commutativity, we can write the Dehn twist about the product of the curves P g−k+1
2g−k+1 =

c2g−k+1 · · · cg−k+2cg−k+1 as follows:(
P 2g−k+2
2g+1 P g−k+1

2g−k+1

)(
Q2g+1

2g−k+2Q
2g
2g−k+1 · · ·Q

g+2
g−k+3Q

g+1
g−k+2

)
P 1
g−k

(
P 1
g

)k
=
(
P 2g−k+2
2g+1

)(
c2g−k+1Q

2g+1
2g−k+2c2g−kQ

2g
2g−k+1 · · · cg−k+2Q

g+2
g−k+3cg−k+1Q

g+1
g−k+2

)
P 1
g−k

(
P 1
g

)k
.

Applying the braid relation, c2g−k+2c2g−k+1c2g−k+2 = c2g−k+1c2g−k+2c2g−k+1 ,(
P 2g−k+3
2g+1

)
c2g−k+2

(
c2g−k+1c2g−k+2Q

2g+1
2g−k+3 · · · cg−k+2Q

g+2
g−k+3cg−k+1Q

g+1
g−k+2

)
P 1
g−k

(
P 1
g

)k
=
(
P 2g−k+3
2g+1

)(
c2g−k+1c2g−k+2c2g−k+1Q

2g+1
2g−k+3 · · · cg−k+2Q

g+2
g−k+3cg−k+1Q

g+1
g−k+2

)
P 1
g−k

(
P 1
g

)k
.

Since the curve c2g−k+1 is disjoint from all the curves in Q2g+1
2g−k+3 , by commutativity we have(

P 2g−k+3
2g+1

)(
c2g−k+1c2g−k+2c2g−k+1Q

2g+1
2g−k+3 · · · cg−k+2Q

g+2
g−k+3cg−k+1Q

g+1
g−k+2

)
P 1
g−k

(
P 1
g

)k
=
(
P 2g−k+3
2g+1

)(
c2g−k+1c2g−k+2Q

2g+1
2g−k+3c2g−k+1 · · · cg−k+2Q

g+2
g−k+3cg−k+1Q

g+1
g−k+2

)
P 1
g−k

(
P 1
g

)k
,

which can also be written as(
P 2g−k+3
2g+1

)(
Q2g+1

2g−k+1c2g−k+1c2g−kQ
2g
2g−k+1 · · · cg−k+2Q

g+2
g−k+3cg−k+1Q

g+1
g−k+2

)
P 1
g−k

(
P 1
g

)k
.

Applying braid relations

c2g−k+1c2g−kc2g−k+1 = c2g−kc2g−k+1c2g−k

...
...

cg−k+3cg−k+2cg−k+3 = cg−k+2cg−k+3cg−k+2
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and commutativity succesively, and by using our increasing product notation we get(
P 2g−k+3
2g+1

)(
Q2g+1

2g−k+1c2g−k+1c2g−kQ
2g
2g−k+1 · · · cg−k+2Q

g+2
g−k+3cg−k+1Q

g+1
g−k+2

)
P 1
g−k

(
P 1
g

)k
=
(
P 2g−k+3
2g+1

)(
Q2g+1

2g−k+1c2g−kQ
2g
2g−k+1 · · · cg−k+2Q

g+2
g−k+3cg−k+2cg−k+1Q

g+1
g−k+2

)
P 1
g−k

(
P 1
g

)k
,

which can also be written as(
P 2g−k+3
2g+1

)(
Q2g+1

2g−k+1Q
2g
2g−k · · ·Q

g+2
g−k+2cg−k+2cg−k+1Q

g+1
g−k+2

)
P 1
g−k

(
P 1
g

)k
.

Let us write the final braid and commutativity relation explicitly. Applying the braid relation cg−k+2cg−k+1cg−k+2

= cg−k+1cg−k+2cg−k+1 , we obtain

=
(
P 2g−k+3
2g+1

)(
Q2g+1

2g−k+1 · · ·Q
g+2
g−k+2cg−k+2cg−k+1cg−k+2Q

g+1
g−k+3

)
P 1
g−k

(
P 1
g

)k
=
(
P 2g−k+3
2g+1

)(
Q2g+1

2g−k+1 · · ·Q
g+2
g−k+2cg−k+1cg−k+2cg−k+1Q

g+1
g−k+3

)
P 1
g−k

(
P 1
g

)k
,

and now applying the commutativity relation:

=
(
P 2g−k+3
2g+1

)(
Q2g+1

2g−k+1 · · ·Q
g+2
g−k+2cg−k+1cg−k+2cg−k+1Q

g+1
g−k+3

)
P 1
g−k

(
P 1
g

)k
=
(
P 2g−k+3
2g+1

)(
Q2g+1

2g−k+1 · · ·Q
g+2
g−k+2cg−k+1cg−k+2Q

g+1
g−k+3cg−k+1

)
P 1
g−k

(
P 1
g

)k
.

After this procedure the Dehn twist c2g−k+2 becomes cg−k+1 and hence we obtain P 1
g−k+1on the

immediate left-hand side of
(
P 1
g

)k
.

=
(
P 2g−k+3
2g+1

)(
Q2g+1

2g−k+1 · · ·Q
g+2
g−k+2cg−k+1cg−k+2Q

g+1
g−k+3

)
P 1
g−k+1

(
P 1
g

)k
.

Therefore, by using our increasing index product notation, we can write the above expression as

=
(
P 2g−k+3
2g+1

)(
Q2g+1

2g−k+1 · · ·Q
g+2
g−k+2Q

g+1
g−k+1

)
P 1
g−k+1

(
P 1
g

)k
.

Applying the same procedure to the Dehn twists c2g−k+3, . . . , c2g, c2g+1 in
(
P 2g−k+3
2g+1

)
, they become cg−k+2,

. . . , cg−1, cg respectively and as a result we obtain P 1
g .

=
(
Q2g+1

2g−k+1 · · ·Q
g+2
g−k+2Q

g+1
g−k+1

)
cgcg−1 · · · cg−k+2P

1
g−k+1

(
P 1
g

)k
.

Therefore we have the desired result(
P 1
2g+1

)k+1
=
(
Q2g+1

2g−k+1Q
2g
2g−k · · ·Q

g+2
g−k+2Q

g+1
g−k+1

) (
P 1
g

)k+1
.
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Lemma 2.2. In the mapping class group of Σg , we have

(c1c2 · · · cg)g+1
= (cgcg−1 · · · c2c1)g+1

Proof When g is odd, by the chain relation (see Figure 5) we have

(c1c2 · · · cg)g+1
= ab = (cgcg−1 · · · c1)g+1

.

Thus we are done when g is odd.

When g is even, i.e. g = 2k , by using the commutativity and braid relations

(c1c2 · · · c2k)2k+1
=

2k−many︷ ︸︸ ︷(
c1c2 · · · c2k

)
(c1c2 · · · c2k) · · · (c1c2 · · · c2k) (c1c2 · · · c2k)

= (c1c2 · · · c2k−1)

(2k−1)−many︷ ︸︸ ︷(
c1c2 · · · c2k

)
· · · (c1c2 · · · c2k) c1 (c1c2 · · · c2k)

= (c1c2 · · · c2k−1) (c1c2 · · · c2k−1) · · · (c1c2 · · · c2k) c2c1 (c1c2 · · · c2k)

...

=

2k−many︷ ︸︸ ︷
(c1c2 · · · c2k−1) · · · (c1c2 · · · c2k−1) c2kc2k−1 · · · c2c1 (c1c2 · · · c2k)

= (c1c2 · · · c2k−1)
2k

c2kc2k−1 · · · c2c1c1c2 · · · c2k−1c2k.

By the previous case, the above product is equal to

= (c2k−1 · · · c2c1)2k c2kc2k−1 · · · c2c1c1c2 · · · c2k−1c2k.

Rephrasing, we have

=

2k−many︷ ︸︸ ︷(
P 1
2k−1P

1
2k−1 · · ·P 1

2k−1

)
c2kc2k−1 · · · c2c1Q2k

1

By commutativity we can move c1 in P 1
2k−1 and write the right-hand side as in the following:

=
(
P 1
2k−1P

1
2k−1 · · ·P 2

2k−1c1
)
c2kc2k−1 · · · c2c1Q2k

1

=
(
P 1
2k−1P

1
2k−1 · · ·P 2

2k−1

)
c2kc2k−1 · · · c1c2c1Q2k

1 .

By applying braid relation c1c2c1 = c2c1c2 we can write the right-hand side as follows:

=
(
P 1
2k−1P

1
2k−1 · · ·P 2

2k−1

)
c2kc2k−1 · · · c1c2c1Q2k

1

=
(
P 1
2k−1P

1
2k−1 · · ·P 2

2k−1

)
c2kc2k−1 · · · c2c1c2Q2k

1 .

Similarly we can move the curve c2 in the product P 2
2k−1 as in the following:

=
(
P 1
2k−1P

1
2k−1 · · ·P 3

2k−1c2
)
c2kc2k−1 · · · c2c1c2Q2k

1

=
(
P 1
2k−1P

1
2k−1 · · ·P 3

2k−1

)
c2kc2k−1 · · · c2c3c2c1c2Q2k

1 ,
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and after braid relation c2c3c2 = c3c2c3 we get

=
(
P 1
2k−1P

1
2k−1 · · ·P 3

2k−1

)
c2kc2k−1 · · · c2c3c2c1c2Q2k

1

=
(
P 1
2k−1P

1
2k−1 · · ·P 3

2k−1

)
c2kc2k−1 · · · c3c2c3c1c2Q2k

1 .

Since the Dehn twists c3 and c1 commute, we have

=
(
P 1
2k−1P

1
2k−1 · · ·P 3

2k−1

)
c2kc2k−1 · · · c3c2c3c1c2Q2k

1 .

=
(
P 1
2k−1P

1
2k−1 · · ·P 3

2k−1

)
c2kc2k−1 · · · c3c2c1c3c2Q2k

1 .

Moreover, applying commutativity and braid relations to the Dehn twists in the product P 3
2k−1 repeatedly we

get

=

(2k−1)−many︷ ︸︸ ︷(
P 1
2k−1P

1
2k−1 · · ·P 1

2k−1

)
P 1
2kP

2
2kQ

2k
1 .

Similarly when we apply the same operations to the 2k − 1 Dehn twists in the remaining 2k − 1 products

P 1
2k−1 , we obtain

= P 1
2k

(
P 2
2k

)2k
Q2k

1 .

Now, applying commutativity and braid relations,

(c2kc2k−1 · · · c1)2k =

2k−many︷ ︸︸ ︷(
c2kc2k−1 · · · c1

)
(c2kc2k−1 · · · c1) · · · (c2kc2k−1 · · · c1) (c2kc2k−1 · · · c1)

= (c2kc2k−1 · · · c2)

(2k−1)−many︷ ︸︸ ︷(
c2kc2k−1 · · · c1

)
· · · (c2kc2k−1 · · · c1) (c2kc2k−1 · · · c1) c2k

= (c2kc2k−1 · · · c2) (c2kc2k−1 · · · c2) · · · (c2kc2k−1 · · · c1) (c2kc2k−1 · · · c1) c2k−1c2k

...

=

2k−many︷ ︸︸ ︷
(c2kc2k−1 · · · c2) · · · (c2kc2k−1 · · · c2) (c2kc2k−1 · · · c2) c1c2 · · · c2k

= (c2kc2k−1 · · · c2)2k c1c2 · · · c2k.

Therefore we get
(
P 2
2k

)2k
Q2k

1 =
(
P 1
2k

)2k
.

Let us summarize quickly what we have done:

(c1c2 · · · c2k)2k+1

=(c1c2 · · · c2k−1)
2k

c2kc2k−1 · · · c2c1c1c2 · · · c2k−1c2k

=P 1
2k

(
P 2
2k

)2k
Q2k

1

=P 1
2k

(
P 1
2k

)2k
=
(
P 1
2k

)2k+1
= (c2k · · · c2c1)2k+1

.
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Lemma 2.3. In the mapping class group of Σg , we have the following relations (see Figure 8∗ )

(i) (c2g+1c2g · · · c2c1)g+1
=
(
Q2g+1

g+1 P g+1

2g
Q2g

g P g

2g−1
· · ·Qg+1

1 P 1
g−1

)
a2b2, if g is odd.

(ii) (c2g+1c2g · · · c2c1)g+1
=
(
Q2g+1

g+1 P g+1

2g
Q2g

g P g

2g−1
· · ·Qg+1

1 P 1
g−1

)
σ, if g is even.

a

b

1

2

c
c cc

3

4 c
c

c2g
2g+12g-1

2g-2

cc

g

1

2

c

c c c

σ

g+1
g+2 c

2g+1c

2g

cg+1

Figure 8.

Proof By Lemma 2.1, for n = g + 1 we have

(c2g+1c2g · · · c2c1)g+1

=(cg+1 · · · c2gc2g+1) (cg · · · c2g−1c2g) · · · (c1 · · · cgcg+1) (cg · · · c2c1)g+1
.

This can be written also as (
P 1
2g+1

)g+1
=
(
Q2g+1

g+1 Q2g
g · · ·Qg+2

2 Qg+1
1

) (
P 1
g

)g+1
.

Let us denote
(
P 1
g

)g+1
by I , and multiply the right-hand side of the relation by I and I as in the

following: (
P 1
2g+1

)g+1
=
(
Q2g+1

g+1 Q2g
g · · ·Qg+2

2 Qg+1
1

)
II
(
P 1
g

)g+1

By Lemma 2.2, we have I = (cgcg−1 · · · c1)g+1
=
(
P 1
g

)g+1

, and so we can write the right-hand side of

the above equation as follows:(
Q2g+1

g+1 Q2g
g · · ·Qg+2

2 Qg+1
1

)(
P 1
g

)g+1 (
P 1
g

)g+1 (
P 1
g

)g+1

=
(
Q2g+1

g+1 Q2g
g · · ·Qg+2

2 Qg+1
1

)(
P 1
g

)g+1 (
P 1
g

)2g+2

Let us rewrite the terms in the product Qg+1
1 as in the following:

=
(
Q2g+1

g+1 Q2g
g · · ·Qg+2

2 Qg−1
1 cgcg+1

)(
cgP

1
g−1

(P 1
g )

g
) (

P 1
g

)2g+2

By applying braid relation cgcg+1cg = cg+1cgcg+1 we can write the right-hand side as follows:

=
(
Q2g+1

g+1 Q2g
g · · ·Qg+2

2 Qg−1
1

)
cgcg+1cg

(
P 1
g−1

(P 1
g )

g
) (

P 1
g

)2g+2

=
(
Q2g+1

g+1 Q2g
g · · ·Qg+2

2 Qg−1
1

)
cg+1cgcg+1

(
P 1
g−1

(P 1
g )

g
) (

P 1
g

)2g+2

∗We thank the referee for providing us with this figure.
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By commutativity of Dehn twist, we can move the curve cg+1 to the left as follows:

=
(
Q2g+1

g+1 Q2g
g · · ·Qg+2

2 Qg−1
1

)
cg+1cgcg+1

(
P 1
g−1

(P 1
g )

g
) (

P 1
g

)2g+2

=
(
Q2g+1

g+1 Q2g
g · · ·Qg+2

2 cg+1Q
g−1
1

)
cgcg+1

(
P 1
g−1

(P 1
g )

g
) (

P 1
g

)2g+2
,

which can also be written as(
Q2g+1

g+1 Q2g
g · · ·Qg+2

2 cg+1Q
g+1
1

)(
P 1
g−1

(P 1
g )

g
) (

P 1
g

)2g+2
.

We can write some of the terms in the product Qg+2
2 explicitly as in the following:

=
(
Q2g+1

g+1 Q2g
g · · ·Qg

2cg+1cg+2cg+1Q
g+1
1

)(
P 1
g−1

(P 1
g )

g
) (

P 1
g

)2g+2

Now again we can apply braid relation cg+1cg+2cg+1 = cg+2cg+1cg+2 and obtain the following:

=
(
Q2g+1

g+1 Q2g
g · · ·Qg

2cg+1cg+2cg+1Q
g+1
1

)(
P 1
g−1

(P 1
g )

g
) (

P 1
g

)2g+2

=
(
Q2g+1

g+1 Q2g
g · · ·Qg

2cg+2cg+1cg+2Q
g+1
1

)(
P 1
g−1

(P 1
g )

g
) (

P 1
g

)2g+2

By applying commutativity and braid relation g − 1 more times we get

=
(
Q2g+1

g+1 c2gQ
2g
g · · ·Qg+2

2 Qg+1
1

)(
P 1
g−1

(P 1
g )

g
) (

P 1
g

)2g+2

We have started with cg , applied braid relation and commutativity repeatedly, and obtained c2g . Simi-

larly we apply the same operations to the Dehn twists cg−1, cg−2, . . . , c2, c1 in P 1
g−1

and obtain

c2g−1, c2g−2, . . . , cg+2, cg+1 .

Then we can write the above equation as in the following:(
Q2g+1

g+1 c2gc2g−1 · · · cg+1Q
2g
g · · ·Qg+2

2 Qg+1
1

)(
P 1
g

)g (
P 1
g

)2g+2

=
(
Q2g+1

g+1 P g+1

2g
Q2g

g · · ·Qg+2
2 Qg+1

1

)(
P 1
g

)g (
P 1
g

)2g+2

We can apply braid relation and commutativity in the same way to the Dehn twists in
(
P 1
g

)g
and obtain

the following: (
Q2g+1

g+1 P g+1

2g
Q2g

g P g

2g−1
· · ·Qg+2

2 P 2
g+1

Qg+1
1 P 1

g

) (
P 1
g

)2g+2
.

Using k−chain relation for k = g , we get the following:

When g is odd (
P 1
2g+1

)g+1

=
(
Q2g+1

g+1 P g+1

2g
Q2g

g P g

2g−1
· · ·Qg+2

2 P 2
g+1

Qg+1
1 P 1

g

) (
P 1
g

)2g+2

=
(
Q2g+1

g+1 P g+1

2g
Q2g

g P g

2g−1
· · ·Qg+2

2 P 2
g+1

Qg+1
1 P 1

g

)
a2b2
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When g is even (
P 1
2g+1

)g+1

=
(
Q2g+1

g+1 P g+1

2g
Q2g

g P g

2g−1
· · ·Qg+2

2 P 2
g+1

Qg+1
1 P 1

g

) (
P 1
g

)2g+2

=
(
Q2g+1

g+1 P g+1

2g
Q2g

g P g−1

2g
· · ·Qg+2

2 P 2
g+1

Qg+1
1 P 1

g

)
σ

Thus we are done.

Let us denote the product of Dehn twists of the previous lemma as in the following:

Qg+1
1 P 1

g = (c1c2 · · · cg+1cgcg−1 · · · c1) := A0,

Qg+2
2 P 2

g+1
= (c2c3 · · · cg+2cg+1cg · · · c2) := A1,

...

Q2g+1
g+1 P g+1

2g
= (cg+1cg+2 · · · c2g+1c2gc2g−1 · · · cg+1) := Ag.

Note that the mapping class group element Ai is the Dehn twist around the image of the curve ci+g+1

under the product ci+1ci+2 · · · ci+g (see Fact 3.7 in [1]), which is the curve Ai in Figures 3 and 4.

Main Theorem. In the mapping class group of Σg , the following relations hold (see Figures 3 and 4):

(i) (AgAg−1 · · ·A0σ)
2 = 1 if g is even,

(ii) (AgAg−1 · · ·A0a
2b2)2 = 1 if g is odd.

Proof By Lemma 2.3 for g is even we have

(c2g+1c2g · · · c2c1)g+1 =
(
Q2g+1

g+1 P g+1

2g
Q2g

g P g

2g−1
· · ·Qg+1

1 P 1
g−1

)
σ

=(AgAg−1 . . . A0)σ

and for g is odd we have

(c2g+1c2g · · · c2c1)g+1
=
(
Q2g+1

g+1 P g+1

2g
Q2g

g P g

2g−1
· · ·Qg+1

1 P 1
g−1

)
a2b2

=(AgAg−1 . . . A0) a
2b2

Now, to finish the proof it is enough to take the squares of both sides of the above relations and use the chain

relation.

To see that the above proof is actually an alternative proof of Theorem 3.4 of [3], first recall that in

Figures 1 and 2, the curves in the Matsumoto relation were given. Then one can observe that the curves Bi in

the Matsumoto relation and the curves Ag−i are related in the following way. Let

R = (c1c2 · · · cg)(c1c2 · · · cg−1)(c1c2 · · · cg−2) · · · (c1c2)c1.
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'B0

'

'

'
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3

'

''

A32

c

1
c

c

2

c3

B0
'''
=

Figure 9. R(B0) = A3 in genus 3 surface.
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1

1
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1
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1
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1
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Figure 10. R(B1) = A2 in genus 3 surface
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1
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2
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2

2

2
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c
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Figure 11. R(B2) = A1 in genus 3 surface.
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3

3
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3
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3
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3
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3
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Figure 12. R(B3) = A0 in genus 3 surface.
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Then one can show that R(Bi) = Ag−i for all 0 ≤ i ≤ g , see Figures 9, 10, 11, and 12 for R(B0) = A3 ,

R(B1) = A2 , R(B2) = A1 and R(B3) = A0 when g = 3.

By the above observation we can say that the Dehn twists about the curves Ag−i are conjugate with

the Dehn twists about the curves Bi , i.e. Ag−i = RBiR , where Ag−i and Bi represent Dehn twists about

the corresponding curves. Note also that R(σ) = σ , and R(a) = a , R(b) = b . Now it is easy to see that the

relations of our Main Theorem derives the relations given in Theorem 3.4 of [3].

(AgAg−1 . . . A0σ)
2 = (RB0B1 . . . BgσR)2 = R(B0B1 . . . Bgσ)

2R = 1 for g is even,

(AgAg−1 . . . A0a
2b2)2 = (RB0B1 . . . Bga

2b2R)2 = R(B0B1 . . . Bga
2b2)2R = 1 for g is odd.
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