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Abstract: Let a, b be two commutative generalized Drazin invertible elements in a Banach algebra; the expressions

for the generalized Drazin inverse of the product ab and the sum a + b were studied in some current literature on

this subject. In this paper, we generalize these results under the weaker conditions a2b = aba and b2a = bab . As an

application of our results, we obtain some new representations for the generalized Drazin inverse of a block matrix with

the generalized Schur complement being generalized Drazin invertible in a Banach algebra, extending some recent works.
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1. Introduction

The generalized Drazin inverse in a Banach algebra was introduced in [10]. The expressions for the generalized

Drazin inverse of the product and the sum were studied by many authors. For instance, in [10], for two

commutative generalized Drazin invertible elements a, b in a Banach algebra, Koliha gave the expression of

(ab)d . Meanwhile, the representation of (a + b)d was obtained under the conditions ab = ba = 0 in a Banach

algebra. Later, Djordjević and Wei [8] gave the expression of (a+b)d under the assumption ab = 0 in the context

of the Banach algebra of all bounded linear operators on an arbitrary complex Banach space. In [1], Castro-

González and Koliha obtained a formula for (a+ b)d under the conditions aπb = b, abπ = a, bπabaπ = 0, which

are weaker than ab = 0 in Banach algebras. In [6], Deng and Wei derived necessary and sufficient conditions for

the existence of (P +Q)d under the condition PQ = QP , where P,Q are bounded linear operators. Moreover,

the expression of (P +Q)d was given. In [3], Cvetković-Ilić et al. extended the result of [6] to Banach algebras.

More results on generalized Drazin inverse can be found in [2, 4, 7, 8, 12, 14].

In [13], Liu et al. deduced the explicit expressions for the Drazin inverses of the product ab and the

sum a + b under the conditions a2b = aba and b2a = bab , where a and b are complex matrices. In [18], the

corresponding results of [13] were studied for the pseudo Drazin inverse (which is a special case of generalized

Drazin inverse [17]) in a Banach algebra. In this paper, we will further consider the results of [13] and [18] for

the generalized Drazin inverse, which extend [10, Theorem 5.5] and [3, Theorem 2.1].

Another relevant topic is to establish a representation for the generalized Drazin inverse of a block matrix

M = [ A B
C D ] in terms of its blocks under certain conditions. The generalized Schur complement S = D−CAdB
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plays an important role in the representation for Md . Here we list partially some conditions as follows:

(1) S is invertible, AπBC = 0, CAπB = 0, and AAπB = AπBD (see [5]);

(2) S is invertible, BCAπ = 0, CAπB = 0, and CAAπ = DCAπ (see [5]);

(3) S is generalized Drazin invertible, BCAπ = 0, DCAπ = 0, SπCA = 0, and ABSπ = 0 (see [16]);

(4) S is generalized Drazin invertible, AπB = 0, and SπCA = 0 (see [15]).

In this paper, we will extend the above results under weaker conditions as applications of our additive result.

2. Preliminaries

Throughout this paper, A denotes a complex Banach algebra with unity 1. For a ∈ A , denote the spectrum

and the spectral radius of a by σ(a) and r(a), respectively. A −1 and A qnil stand for the sets of all invertible

and quasinilpotent elements (σ(a) ={0}) in A , respectively. The commutant of an element a ∈ A is defined

by comm(a)={b ∈ A : ab = ba} . In addition, denote by Ck
n the binomial coefficient n!

k!(n−k)! (0 ≤ k ≤ n).

For the readers’ convenience, we first recall the definitions of some generalized inverses. The generalized

Drazin inverse [10] of a ∈ A (or Koliha–Drazin inverse of a) is the element x ∈ A that satisfies

xax = x, ax = xa and a− a2x ∈ A qnil.

Such x , if it exists, is unique and will be denoted by ad . It is well known that a ∈ A has a generalized Drazin

inverse if and only if 0 is not an accumulation point of σ(a). Let A d denote the set of all generalized Drazin

invertible elements in A . If a ∈ A d , the spectral idempotent aπ of a corresponding to the set {0} is given by

aπ = 1− aad . In this case, the resolvent R(λ, a) = (λ1− a)−1 has a Laurent series

R(λ, a) =
∞∑

n=1

λ−nan−1aπ −
∞∑

n=0

λn(ad)n+1,

on some punctured disc {λ : 0 < |λ| < r}, r > 0 (see [10, Theorem 5.1]).

The group inverse of a ∈ A is the element x ∈ A that satisfies

axa = a, xax = x and ax = xa.

If the group inverse of a exists, it is unique and denoted by a# .

Let p ∈ A be an idempotent (p2 = p). Then we can represent element a ∈ A as

a =

[
a1 a3
a4 a2

]
p

,

where a1 = pap, a2 = (1− p)a(1− p), a3 = pa(1− p), and a4 = (1− p)ap .

It is well known that if a ∈ A d , then we have the following matrix representations:

a =

[
a1 0
0 a2

]
p

and ad =

[
a−1
1 0
0 0

]
p

,

where p = aad , a1 ∈ (pA p)−1 , and a2 ∈ ((1− p)A (1− p))qnil .

Now we present two useful lemmas, which play an important role in the sequel.
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Lemma 2.1 [1, Theorem 2.3] Let p2 = p , x, y ∈ A and let x and y have the representations

x =

[
a c
0 b

]
p

, y =

[
b 0
c a

]
1−p

. (1)

(i) If a ∈ (pA p)d and b ∈ ((1− p)A (1− p))d , then x, y ∈ A d and

xd =

[
ad u
0 bd

]
p

, yd =

[
bd 0
u ad

]
1−p

, (2)

where

u =
∞∑

n=0

(ad)n+2cbnbπ +
∞∑

n=0

aπanc(bd)n+2 − adcbd. (3)

(ii) If x ∈ A d [resp. y ∈ A d ] and a ∈ (pA p)d , then b ∈ ((1− p)A (1− p))d , and xd [resp. yd ] is given

by (2) and (3).

Lemma 2.2 [10, Theorem 5.5] Let a, b ∈ A d be such that ab=ba. Then ab ∈ A d and (ab)d = adbd .

Next, the commuting property for the generalized Drazin inverse is investigated in a Banach algebra.

Theorem 2.3 Let a, b ∈ A d and c ∈ A . If ca = bc , then cad = bdc .

Proof Suppose that a, b ∈ A d and ca = bc , for any n ∈ N , we have the following equations:

bbdc− bbdcaad = bbdc(1− aad) = (bbd)nc(1− aad)
= (bd)n(bnc)(1− aad) = (bd)n(can)(1− aad),

which imply

∥bbdc− bbdcaad∥ 1
n = ∥(bd)ncan(1− aad)∥ 1

n ≤ ∥bd∥∥c∥ 1
n ∥an(1− aad)∥ 1

n
n→∞−−−−→ 0.

Thus, bbdc = bbdcaad , i.e. bdc = bdcaad .

On the other hand, we have that

cada− bdcaada = cada− bdbcada = (1− bbd)cada = (1− bbd)c(ada)n

= (1− bbd)(can)(ad)n = (1− bbd)(bnc)(ad)n.

Then we obtain

∥caad − bdcaada∥ 1
n = ∥(1− bbd)bnc(ad)n∥ 1

n ≤ ∥bn(1− bbd)∥ 1
n ∥c∥ 1

n ∥ad∥ n→∞−−−−→ 0.

Thus, caad = bdcaada , i.e. cad = bdcaad . Therefore, we deduce that cad = bdc . 2

Corollary 2.4 [10, Theorem 4.4] Let a ∈ A d and c ∈ A . If ca = ac , then cad = adc .

The following lemmas will also be useful.
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Lemma 2.5 Let a, b ∈ A d be such that a2b = aba and b2a = bab . Then

(i) {ab, adb, abd, adbd} ⊆ comm(a) ∩ comm(ad) .

(ii) {ba, bda, bad, bdad} ⊆ comm(b) ∩ comm(bd).

Proof (i) By Corollary 2.4, it suffices to prove {ab, adb, abd, adbd} ⊆ comm(a).

Since a2b = aba , then (adb)a = (ad)2aba = (ad)2a2b = a(adb).

Note that babd = bdba , and we get a(abd) = a2b(bd)2 = aba(bd)2 = a(bd)2ba = (abd)a, which implies

a(adbd) = (ad)2a(abd) = (ad)2(abd)a = (adbd)a .

(ii) It is analogous to the proof of (i). 2

Remark 2.6 In Lemma 2.5, the conditions a2b = aba and b2a = bab are weaker than ab = ba . Indeed, it

is clear that ab = ba can imply a2b = aba and b2a = bab . However, in general, the converse is false. The

following example can illustrate this fact.

Example 2.7 Let A be the Banach algebra of all complex 3× 3 matrices, and take

a =

 0 1 0
1 0 0
0 0 0

 and b =

 0 1 0
1 0 0
0 1 0

 .

Clearly, a2b = aba and b2a = bab . However, ab ̸= ba .

Remark 2.8 We have seen that if a ∈ A d , b ∈ A , and ab = ba , then adb = bad . However, under the

conditions of Lemma 2.5, adb = bad may not be true, which can also be illustrated by the previous Example 2.7.

Note that a3 = a and b3 = b ; then ad = a and bd = b . However, adb ̸= bad .

The next result was proved for complex matrices (see [13, Lemma 2.3]). Indeed, it is true in a Banach

algebra.

Lemma 2.9 Let a, b ∈ A be such that a2b = aba and b2a = bab . Then

(a+ b)n =

n−1∑
i=0

Ci
n−1(a

n−ibi + bn−iai), where n ∈ N.

Next, we establish two crucial auxiliary results.

Lemma 2.10 Let a, b ∈ A be such that a2b = aba and b2a = bab . Then

(i) r(a+ b) ⩽ r(a) + r(b) .

(ii) If both a and b are quasinilpotent, then a+ b is quasinilpotent.

Proof (i) Take any α > r(a) and β > r(b). Let a1 = 1
αa and b1 = 1

β b . Then r(a1) < 1 and r(b1) < 1. From
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Lemma 2.9, we have that

∥(a+ b)n+1∥ = ∥
n∑

i=0

Ci
n(a

n+1−ibi + bn+1−iai)∥

= ∥a
n∑

i=0

Ci
na

n−ibi + b
n∑

i=0

Ci
nb

n−iai∥

≤ ∥a∥
n∑

i=0

Ci
n∥an−i∥∥bi∥+ ∥b∥

n∑
i=0

Ci
n∥bn−i∥∥ai∥

= (∥a∥+ ∥b∥)
n∑

i=0

Ci
n∥ai∥∥bn−i∥

= (∥a∥+ ∥b∥)
n∑

i=0

Ci
nα

iβn−i∥ai1∥∥bn−i
1 ∥.

For each n , choose n′, n′′ ∈ N such that n′ + n′′ = n and ∥an′

1 ∥∥bn′′

1 ∥ = max
0≤i≤n

∥ai1∥∥bn−i
1 ∥ , then we have

∥(a+ b)n+1∥ ≤ (∥a∥+ ∥b∥)(α+ β)n∥an
′

1 ∥∥bn
′′

1 ∥,

which implies

r(a+ b) = lim
n→∞

(∥(a+ b)n+1∥
1

n+1 )
n+1
n = lim

n→∞
∥(a+ b)n+1∥ 1

n

≤ (α+ β) lim
n→∞

(∥a∥+ ∥b∥) 1
n lim inf

n→∞
∥an′

1 ∥ 1
n ∥bn′′

1 ∥ 1
n

= (α+ β) lim inf
n→∞

∥an′

1 ∥ 1
n ∥bn′′

1 ∥ 1
n .

According to the proof of [9, Lemma 1.2.13], we obtain r(a+ b) ≤ α+ β , which yields r(a+ b) ≤ r(a) + r(b).

(ii) This can be obtained by (i). 2

Lemma 2.11 Let a, b ∈ A be such that a2b = aba or b2a = bab . Then

(i) r(ab) ⩽ r(a)r(b) .

(ii) If either a or b is quasinilpotent, then ab is quasinilpotent.

Proof (i) Note the symmetry of a2b = aba and b2a = bab , it suffices to prove the case a2b = aba .

Assume a2b = aba ; then (ab)n = anbn for n ∈ N by induction. Therefore,

∥(ab)n∥ 1
n = ∥anbn∥ 1

n ≤ ∥an∥ 1
n ∥bn∥ 1

n .

Let n → ∞ ; then we obtain that r(ab) ⩽ r(a)r(b).

(ii) This follows from (i) directly. 2

3. Main results

In this section, for a, b ∈ A d , we will investigate the representations of (ab)d and (a + b)d under the new

conditions a2b = aba and b2a = bab .

We start with a theorem that is an extension of [10, Theorem 5.5].

Theorem 3.1 Let a, b ∈ A d be such that a2b = aba and b2a = bab . Then ab ∈ A d and (ab)d = adbd .
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Proof We consider the matrix representations of a and b relative to the idempotent p = aad :

a =

[
a1 0
0 a2

]
p

and b =

[
b1 b3
b4 b2

]
p

,

where a1 ∈ (pA p)−1 and a2 ∈ ((1− p)A (1− p))qnil .

The condition a2b = aba expressed in matrix form yields[
a21b1 a21b3
a22b4 a22b2

]
p

= a2b = aba =

[
a1b1a1 a1b3a2
a2b4a1 a2b2a2

]
p

.

Thus, we have a21b3 = a1b3a2 , i.e. b3 = a−1
1 b3a2 , which implies b3 = a−n

1 b3a
n
2 for any n ∈ N . Since

a2 ∈ ((1− p)A (1− p))qnil , then

∥b3∥
1
n = ∥a−n

1 b3a
n
2∥

1
n ⩽ ∥a−1

1 ∥∥b3∥
1
n ∥an2∥

1
n

n→∞−−−−→ 0.

Hence, b3 = 0. Similarly, from a2b4 = a22b4a
−1
1 , it follows that a2b4 = 0. In addition, we can get a1b1 = b1a1

and a22b2 = a2b2a2 . Then we have

b =

[
b1 0
b4 b2

]
p

and ab =

[
a1b1 0
0 a2b2

]
p

.

Next, we prove that b1 ∈ (pA p)d and bd1 = aadbdaad by the definition of generalized Drazin inverse. Note

that b1 = aadbaad = aadb and aadbdaad = aadbd by Lemma 2.5(i). Therefore, we need to prove bd1 = aadbd .

Let v = aadbd . Then we have

(1) b1v = aadbaadbd = aadbbd = aadbdaadb = vb1 .

(2) vb1v = aadbdaadbaadbd = aadbdbaadbd = aadbabdadbd = aadbadabdbd = aadbd = v .

(3) Note that b1 − b21v = aadb(1− bbd). By induction and Lemma 2.5, we have that (aadb(1− bbd))n =

aadbn(1− bbd) for any n ∈ N . Since b(1− bbd) ∈ A qnil , then

∥(b1 − b21v)
n∥ 1

n = ∥aadbn(1− bbd)∥ 1
n ≤ ∥aad∥ 1

n ∥bn(1− bbd)∥ 1
n

n→∞−−−−→ 0.

Thus b1 − b21v ∈ (pA p)qnil . Hence, bd1 = v . Similarly, we have that bd2 = bd(1− aad).

According to the equation a1b1 = b1a1 and Lemma 2.2, we have that a1b1 ∈ (pA p)d and (a1b1)
d =

a−1
1 bd1 . Observe that a22b2 = a2b2a2 and a2 ∈ ((1 − p)A (1 − p))qnil ; applying Lemma 2.11(ii) to the elements

a2, b2 , we get a2b2 ∈ ((1− p)A (1− p))qnil , i.e. (a2b2)
d = 0.

Finally, applying Lemma 2.1(i), we have ab ∈ A d and

(ab)d =

[
(a1b1)

d 0
0 (a2b2)

d

]
p

=

[
a−1
1 bd1 0
0 0

]
p

= adbd.

2
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Remark 3.2 (1) From Lemma 2.2 and Corollary 2.4, we can see that (ab)d = adbd = bdad for commutative

generalized Drazin invertible elements a, b ∈ A . However, in general, (ab)d ̸= bdad under the conditions of

Theorem 3.1. For example, let a, b be the same as the elements in Example 2.7. Clearly,

ab =

 1 0 0
0 1 0
0 0 0

 = (ab)d.

However, (ab)d ̸= bdad .

(2) In Theorem 3.1, if we replace b2a = bab with ba2 = aba , then we can conclude that (ab)d = adbd =

bdad . The proof of the previous result is similar to the proof of Theorem 3.1 and so we omit the proof. The

following example shows that the conditions a2b = aba and ba2 = aba are weaker than ab = ba . Let A = M2(C)
and take

a =

[
0 1
0 0

]
and b =

[
0 1
0 2

]
.

Then we can get that a2b = aba and ba2 = aba . However, ab ̸= ba .

Next, we present our main result, which recovers [3, Theorem 2.1].

Theorem 3.3 Let a, b ∈ A d be such that a2b = aba and b2a = bab . Then the following conditions are

equivalent:

(i) a+ b ∈ A d .

(ii) 1 + adb ∈ A d .

(iii) c = aad(a+ b)bbd ∈ A d .

In this case,

(a+ b)d = ad(1 + adb)d + aπb(ad)2((1 + adb)d)2 +
∞∑

n=0

(bd)n+1(−a)naπ

+

∞∑
n=0

(n+ 1)bπa(bd)n+2(−a)naπ,

(4)

(a+ b)d = cd +
∞∑

n=0

(ad)n+1(−b)nbπ + aπb(cd)2 +
∞∑

n=0

aπbcd(ad)n+1(−b)nbπ

+
∞∑

n=0

aπb(ad)n+1(−b)nbπcd +
∞∑

n=0

(n+ 1)aπb(ad)n+2(−b)nbπ

+
∞∑

n=0

(bd)n+1(−a)naπ +
∞∑

n=0

(n+ 1)bπa(bd)n+2(−a)naπ,

(5)

(1 + adb)d = aπ + a2ad(a+ b)d and (aad(a+ b)bbd)d = aad(a+ b)dbbd. (6)
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Proof As in the proof of Theorem 3.1, we have that

a =

[
a1 0
0 a2

]
p

and b =

[
b1 0
b4 b2

]
p

,

where p = aad , a1 ∈ (pA p)−1 , and a2 ∈ ((1 − p)A (1 − p))qnil . Moreover, we have a1b1 = b1a1 , a2b4 = 0,

a22b2 = a2b2a2 , b
d
1 = aadbd , and bd2 = bd(1− aad). From the condition b2a = bab , it follows that b22a2 = b2a2b2

and b2b4 = 0.

Let p1 = b1b
d
1 and p2 = b2b

d
2 . Then p1p = pp1 = p1 and p2(1− p) = (1− p)p2 = p2 by Lemma 2.5. We

now consider the matrix representations of b1 and b2 relative to idempotents p1 and p2 , respectively. We have

that

b1 =

[
b′1 0
0 b′2

]
p1

and b2 =

[
b′′1 0
0 b′′2

]
p2

,

where b′1 ∈ (p1A p1)
−1 , b′′1 ∈ (p2A p2)

−1 , b′2 ∈ ((p−p1)A (p−p1))
qnil , and b′′2 ∈ ((1−p−p2)A (1−p−p2))

qnil .

Note that p1a1(p − p1) = b1b
d
1a1(p − b1b

d
1) = b1a1b

d
1(p − b1b

d
1) = b1a1(b

d
1 − bd1b1b

d
1) = 0. Similarly,

(p− p1)a1p1 = 0 and p2a2(1− p− p2) = 0. Thus, we get the following matrix representations:

a1 =

[
a′1 0
0 a′2

]
p1

and a2 =

[
a′′1 0
a′′4 a′′2

]
p2

.

Note that a22b2 = a2b2a2 and b22a2 = b2a2b2 ; as in the proof of Theorem 3.1, we have that b′′1a
′′
1 = a′′1b

′′
1 ,

(b′′2)
2a′′2 = b′′2a

′′
2b

′′
2 and (a′′2)

2b′′2 = a′′2b
′′
2a

′′
2 . Moreover, (a′′1)

d = p2a
d
2 = 0 and (a′′2)

d = ad2(1− p − p2) = 0, which

imply a′′1 and a′′2 are quasinilpotent. Besides these, b′′2a
′′
4 = a′′2a

′′
4 = 0.

Next, we will prove that a2 + b2 ∈ ((1− p)A (1− p))d . Observe that

a2 + b2 =

[
a′′1 + b′′1 0

a′′4 a′′2 + b′′2

]
p2

.

Since a′′1 + b′′1 = b′′1(p2 + (b′′1)
−1a′′1) and a′′1 is quasinilpotent, we have that a′′1 + b′′1 is invertible in subalgebra

p2A p2 and

(a′′1 + b′′1)
−1 = (b′′1)

−1(p2 + (b′′1)
−1a′′1)

−1 = (b′′1)
−1(p2 +

∞∑
n=1

(b′′1)
−n(−a′′1)

n).

Note that (b′′1)
−1 = bd2 = bd(1−aad). By induction, we can obtain that (b′′1)

−n = (bd)n(1−aad) for any n ∈ N .

In addition, we verify that

a′′1 = p2a2p2 = b2b
d
2a2b2b

d
2 = b2b

d
2a2 = (baπ)(bdaπ)(aπa) = bbdaπa,

which implies (−a′′1)
n = bbd(−a)naπ for any n ∈ N by induction. Note that aπbbdaπ = bbdaπ and p2 = b2b

d
2 =
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baπbdaπ = bbdaπ ; then we get

(a′′1 + b′′1)
−1 = bdaπ(bbdaπ +

∞∑
n=1

(bd)naπ(bbd(−a)naπ)

= bdaπ(bbdaπ +
∞∑

n=1
(bd)nbbd(−a)naπ)

= bdaπbbdaπ + bdaπ
∞∑

n=1
(bd)n(−a)naπ

= bdaπ +
∞∑

n=1
(bd)n+1(−a)naπ

=
∞∑

n=0
(bd)n+1(−a)naπ.

Applying Lemma 2.10(ii) to the element a′′2 , b′′2 , we have that a′′2 + b′′2 is quasinilpotent, i.e. (a′′2 + b′′2)
d = 0.

Lemma 2.1(i) ensures that a2 + b2 ∈ ((1− p)A (1− p))d and

(a2 + b2)
d =

[
(a′′1 + b′′1)

−1 0
x 0

]
p2

,

where x = a′′4(a
′′
1 + b′′1)

−2 . Note that

a′′4 = (1− p− p2)a2p2 = (bπaπ)(aπa)(bbdaπ) = bπaaπbbdaπ = bπabbdaπ.

Because aπ(bd)naπ = (bd)naπ for any n ∈ N , then

x = bπabbdaπ(
∞∑

n=0
(bd)n+1(−a)naπ)2

= bπabbdaπ(
∞∑

n=0
(n+ 1)(bd)n+2(−a)naπ)

= bπa
∞∑

n=0
(n+ 1)(bd)n+2(−a)naπ.

Therefore, we can obtain

(a2 + b2)
d =

∞∑
n=0

(bd)n+1(−a)naπ + bπa
∞∑

n=0

(n+ 1)(bd)n+2(−a)naπ.

Since

a+ b =

[
a1 + b1 0

b4 a2 + b2

]
p

,

by Lemma 2.1, we have that a+ b ∈ A d if and only if a1 + b1 ∈ (pA p)d . In this case, we have

(a+ b)d =

[
(a1 + b1)

d 0
y (a2 + b2)

d

]
p

,

where y = b4((a1 + b1)
d)2 .

(i) ⇔ (ii) From

1 + adb =

[
p+ a−1

1 b1 0
0 1− p

]
p

,
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it follows that 1 + adb ∈ A d if and only if p + a−1
1 b1 ∈ (pA p)d . By Lemma 2.2, we have that a1 + b1 =

a1(p+ a−1
1 b1) ∈ (pA p)d if and only if p+ a−1

1 b1 ∈ (pA p)d . Hence, a+ b ∈ A d if and only if 1 + adb ∈ A d . In

this case, we have

(1 + adb)d =

[
(p+ a−1

1 b1)
d 0

0 1− p

]
p

.

Moreover, we deduce that

(a1 + b1)
d = a−1

1 (p+ a−1
1 b1)

d = ad((1 + adb)d − (1− p)) = ad(1 + adb)d.

By a straightforward computation, we obtain that the equation (4) holds.

(i) ⇔ (iii) From a1 ∈ (pA p)−1 , we have a′1 ∈ (p1A p1)
−1 and a′2 ∈ ((p − p1)A (p − p1))

−1 . Note

that a′2b
′
2 = b′2a

′
2 and b′2 is quasinilpotent; then a′2 + b′2 = a′2((p − p1) + (a′2)

−1b′2) is invertible in subalgebra

(p − p1)A (p − p1) and (a′2 + b′2)
−1 =

∞∑
n=0

(ad)n+1(−b)nbπ , which is similar to the proof of the expression for

(a′′1 + b′′1)
−1 . Since

a1 + b1 =

[
a′1 + b′1 0

0 a′2 + b′2

]
p1

,

we have a1 + b1 ∈ (pA p)d if and only if a′1 + b′1 ∈ (p1A p1)
d . In this case,

(a1 + b1)
d = (a′1 + b′1)

d + (a′2 + b′2)
−1.

The following matrix representations

c = aad(a+ b)bbd =

[
(a1 + b1)b1b

d
1 0

0 0

]
p

and (a1 + b1)b1b
d
1 =

[
a′1 + b′1 0

0 0

]
p1

yield the equality c = a′1 + b′1 . Therefore, we conclude that a+ b ∈ A d if and only if c ∈ A d . In this case, we

have

y = aπb((cd)2 +
∞∑

n=0

cd(ad)n+1(−b)nbπ +
∞∑

n=0

(ad)n+1(−b)nbπcd +
∞∑

n=0

(n+ 1)(ad)n+2(−b)nbπ),

and the equation (5) holds. Finally, the equation (6) can be obtained by an elemental computation. 2

Next, we consider some specializations of our main result.

Corollary 3.4 [3, Theorem 2.1] Let a, b ∈ A d be such that ab = ba Then a + b ∈ A d if and only if

1 + adb ∈ A d . In this case,

(a+ b)d = ad(1 + adb)dbbd +
∞∑

n=0

bπ(−b)n(ad)n+1 +
∞∑

n=0

(bd)n+1(−a)naπ. (7)

Proof Only the expression for (a + b)d needs a proof. It follows directly from (6) that (aad(a + b)bbd)d =

ad(1 + adb)dbbd . Note that aπad = 0 and bπbd = 0; then the equation (7) holds by (5). 2
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Corollary 3.5 Let a, b ∈ A d be such that a2b = aba and b2a = bab .

(i) If 1 /∈ σ(−adb) (or σ(adb) = {0} ) , then a+ b ∈ A d ,

(a+ b)d = ad(1 + adb)−1 + aπb(ad)2(1 + adb)−2 +
∞∑

n=0

(bd)n+1(−a)naπ +
∞∑

n=0

(n+ 1)bπa(bd)n+2(−a)naπ,

and

(1 + adb)−1 = aπ + a2ad(a+ b)d.

(ii) If σ(b) = {0} , then a+ b ∈ A d and

(a+ b)d = ad(1 + adb)−1 + aπb(ad)2(1 + adb)−2 =
∞∑

n=0

(ad)n+1(−b)n +
∞∑

n=0

(n+ 1)aπb(ad)n+2(−b)n.

Proof (i) This follows from Theorem 3.3 directly.

(ii) Since σ(b) = {0} , then b ∈ A qnil , i.e. bd = 0, which implies aad(a+ b)bbd = 0. Thus, we have that

a+ b ∈ A d by Theorem 3.3. To show that 1+ adb ∈ A −1 , it suffices to prove that adb ∈ A qnil . From Lemma

2.5(i), it follows that (ad)2b = adbad , which yields adb ∈ A qnil by Lemma 2.11(ii). The expressions of (a+ b)d

can be obtained by the equations (4) and (5). 2

4. Applications to block matrices

Let

x =

[
a b
c d

]
p

∈ A (8)

relative to idempotent p ∈ A , a ∈ (pA p)d , and let s = d− cadb ∈ ((1− p)A (1− p))d be the generalized Schur

complement of a in x .

In this section, we get some representations for the generalized Drazin inverse of a block matrix x with

applications of our previous result.

For future reference we state two known results.

Lemma 4.1 [1, Example 4.5] Let a, b ∈ A d . If ab = 0 , then a+ b ∈ A d and

(a+ b)d =

∞∑
n=0

(bd)n+1anaπ +

∞∑
n=0

bπbn(ad)n+1.

Lemma 4.2 [11, Lemma 2.1] Let x be defined as in (8) . Then the following statements are equivalent:

(i) x ∈ A d and xd = r , where

r =

[
ad + adbsdcad −adbsd

−sdcad sd

]
; (9)

(ii) aπbsd = adbsπ , sπcad = sdcaπ , and y =

[
aaπ aπb
sπcaπ ssπ

]
∈ A qnil .
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Note that, in Lemma 4.2, if y = 0, then we can check that xrx = x , and so that we have the following

corollary.

Corollary 4.3 Let x be defined as in (8) . If aπbsd = adbsπ , sπcad = sdcaπ , and y =

[
aaπ aπb
sπcaπ ssπ

]
=

0 , then x ∈ A # and

x# =

[
a# + a#bs#ca# −a#bs#

−s#ca# s#

]
.

Remark 4.4 For item (ii) of Lemma 4.2, we can see that aπbsd = adbsπ is equivalent to aπbsd = adbsπ = 0 .

Moreover, sπcad = sdcaπ is equivalent to sπcad = sdcaπ = 0 . Now, we drop any one of the four equations

aπbsd = 0 , adbsπ = 0 , sπcad = 0 , sdcaπ = 0 and replace the quasinilpotency by the generalized Drazin

invertibility of y . Here, we only give the one of the four cases. Similarly, we can prove the others.

Theorem 4.5 Let x be defined as in (8) . If aπbsd = 0 , sπcad = 0 , sdcaπ = 0 , and y =

[
aaπ aπb
sπcaπ ssπ

]
∈

A d , then x ∈ A d and

xd =

[
aπ −adbsπ

0 sπ

]
yd +

∞∑
n=0

rn+1

[
p adbsπ

0 1− p

]
ynyπ, (10)

where r is defined as in (9).

Proof From the condition sπcad = 0, we have sπcaπ + ssdc = c and sπs+ ssdd = d . Then we can write

x =

[
aaπ aπb
sπcaπ sπs

]
+

[
a2ad aadb
ssdc ssdd

]
:= y + z.

The equations aπad = 0 and aπbsd = 0 imply yz = 0.

To show that z ∈ A d , we consider the following decomposition:

z =

[
0 aadbsπ

0 ssddsπ

]
+

[
a2ad aadbssd

ssdc ssddssd

]
:= z1 + z2.

Clearly, z1z2 = 0 and z21 = 0.

Next, we will prove that z2 ∈ A d . Let z2 =

[
a2 b2
c2 d2

]
, where a2 = a2ad , b2 = aadbssd ,

c2 = ssdc , and d2 = ssddssd . It is clear that a2 is group invertible, a#2 = ad , and aπ2 = aπ . Note

that s2 := d2 − c2a
#
2 b2 = ssddssd − ssdcadbssd = s2sd , which gives s2 is group invertible, s#2 = sd , and

sπ2 = sπ . Furthermore, we can deduce that aπ2 b2s
#
2 = 0, a#2 b2s

π
2 = 0, sπ2 c2a

#
2 = 0, s#2 c2a

π
2 = sdcaπ = 0, and

y2 :=

[
a2a

π
2 aπ2 b2

sπ2 c2a
π
2 s2s

π
2

]
= 0. By Corollary 4.3, we obtain that z2 is group invertible and z#2 = r , where

r is defined as in (9).
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It follows directly from Lemma 4.1 that z ∈ A d and zd = r + r2z1 . By a direct computation, we have

zπ =

[
aπ −adbsπ

0 sπ

]
and zzπ = 0. Thus, z is group invertible.

Finally, we deduce that x ∈ A d by Lemma 4.1 again. In addition, the equation (10) holds. 2

In the following result, we give a new representation for the generalized Drazin inverse of block matrix x

in (8) in terms of ad and sd .

Theorem 4.6 Let x be defined as in (8) . If aaπbc = 0, caπbc = 0 , aπbcaπb = 0 , sπca = 0 , a2aπb+ bcaπb =

aaπbd , and caaπb+ dcaπb = caπbd , then x ∈ A d and

xd =w +
∞∑

n=1

wn+1

[
anaπ 0

can−1aπ 0

]
− 2

∞∑
n=1

wn+2

[
0 anaπb
0 can−1aπb

]

+

[
0 aπb
0 0

](
w2 +

∞∑
n=1

wn+2

[
anaπ 0

can−1aπ 0

])
,

(11)

where

wk = rk
[

p adbsπ

0 1− p

]
+

∞∑
n=1

rn+k

[
0 adbsnsπ

0 snsπ

]
, k ∈ N, (12)

and r is defined as in (9).

Proof Since aadb+ aπb = b , then

x =

[
a aadb
c d

]
+

[
0 aπb
0 0

]
:= x1 + x2.

By a computation, the hypotheses imply x2
1x2 = x1x2x1 and x2

2x1 = x2x1x2 .

We must show that x1 ∈ A d . Let

x1 =

[
aaπ 0
caπ 0

]
+

[
a2ad aadb
caad d

]
:= x′

1 + x′′
1 ;

then x′
1x

′′
1 = 0.

In order to prove that x′′
1 ∈ A d , we can write x′′

1 :=

[
a1 b1
c1 d1

]
, where a1 = a2ad, b1 = aadb, c1 =

caad and d1 = d . Obviously, a1 is group invertible, a#1 = ad , and aπ1 = aπ . Besides these, we can obtain that

s1 := d1 − c1a
#
1 b1 = d − cadb = s ∈ A d . Moreover, we clearly have that aπ1 b1s

d
1 = aπaadbsd = 0, sπ1 c1a

#
1 =

sπcad = 0, and sd1c1a
π
1 = sdcaadaπ = 0. Let y1 :=

[
a1a

π
1 aπ1 b1

sπ1 c1a
π
1 s1s

π
1

]
, then y1 =

[
0 0
0 ssπ

]
∈ A qnil .

Therefore, according to Theorem 4.5, we have that x′′
1 ∈ A d and (x′′

1)
d = w , where

w = r

[
p adbsπ

0 1− p

]
+

∞∑
n=1

rn+1

[
0 adbsnsπ

0 snsπ

]
.
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Observe that σ(x′
1) ⊆ σ(aaπ)∪{0} and aaπ ∈ A qnil ; then x′

1 ∈ A qnil , i.e. (x′
1)

d = 0. Applying Lemma

4.1, we deduce that x1 ∈ A d and

xd
1 = w +

∞∑
n=1

wn+1

[
anaπ 0

can−1aπ 0

]
.

From the equality x2
2 = 0, it follows that xd

2 = 0, which yields x1x
d
1(x1 + x2)x2x

d
2 = 0 ∈ A d . Applying

Theorem 3.3, we obtain that x ∈ A d and

xd = xd
1 − (xd

1)
2x2 + xπ

1x2(x
d
1)

2 − 2xπ
1x2(x

d
1)

3x2.

Note that x2(x
d
1)

3x2 = x2
2(x

d
1)

3 = 0 by Lemma 2.5. Then

xd = xd
1 − (xd

1)
2x2 + xπ

1x2(x
d
1)

2 = xd
1 − 2(xd

1)
2x2 + x2(x

d
1)

2. (13)

Next, we prove the expression of xd . Note that, for n ∈ N ,

[
0 adbsnsπ

0 snsπ

]
r = 0 and

[
p adbsπ

0 1− p

]
r = r;

then the equation (12) holds. By substituting the expression of xd
1 into the equation (13) and using the following

equalities [
anaπ 0

can−1aπ 0

]
r = 0 and w

[
0 aπb
0 0

]
= 0,

we can get the equation (11). 2

From Theorem 4.6, we can obtain the following corollary, which recovers [5, Theorem 8] for a 2 × 2

operator matrix.

Corollary 4.7 Let x be defined as in (8) . If aπbc = 0 , caπb = 0 , aaπb = aπbd , and s = d−cadb is invertible,

then x ∈ A d and

xd =

(
r −

[
0 aπb
0 0

]
r2
)(

1 +

∞∑
n=0

rn+1

[
0 0

caπan 0

])
, (14)

where r is defined as in (9) with sd = s−1 .

Proof As in the proof of Theorem 4.6. Note that x1x2 = x2x1 ; then xd
1x2 = x2x

d
1 . Thus xd = xd

1 − (xd
1)

2x2 .

By a computation, we can get the equation (14). 2

Remark 4.8 Theorem 4.6 generalizes [15, Theorem 2.3], where an expression for xd is given under the

conditions aπb = 0 and sπca = 0 . Indeed, aπb = 0 and sπca = 0 can imply the conditions of Theorem

4.6. However, in general, the converse is false. The following example can illustrate this fact.
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Example 4.9 Let A be the Banach algebra of all complex 3× 3 matrices, and take

x =

 0 0 0
1 1 1
1 0 0

 and p =

 0 0 0
0 1 0
0 0 1

 .

Then

a =

 0 0 0
0 1 1
0 0 0

 , b =

 0 0 0
1 0 0
1 0 0

 and c = d = 0.

Obviously,

ad =

 0 0 0
0 1 1
0 0 0

 and aπ =

 1 0 0
0 0 −1
0 0 1

 .

We can see that the conditions of Theorem 4.6 hold. However, aπb ̸= 0 .

Following the same strategy as in the proof of Theorem 4.6, we derive another formula for xd . Here we omit

the proof.

Theorem 4.10 Let x be defined as in (8) . If bcaπb = 0, dcaπb = 0 , caπbcaπ = 0 , sπca = 0 , d2caπ + cbcaπ =

dcaaπ , and abcaπ + bdcaπ = bcaaπ , then x ∈ A d and

xd =w +
∞∑

n=1

[
anaπ an−1aπb
0 0

]
wn+1 +

∞∑
n=1

[
0 0

canaπ can−1aπb

]
wn+2

− 2

(
w2 +

∞∑
n=1

[
anaπ an−1aπb
0 0

]
wn+2

)[
0 0

caπ 0

]
,

(15)

where wk is defined as in (12) for k ∈ N , and r is defined as in (9).

Now, we state a special case of Theorem 4.10, which also generalizes [5, Theorem 9] for a 2× 2 operator

matrix.

Corollary 4.11 Let x be defined as in (8) . If bcaπ = 0 , caπb = 0 , caaπ = dcaπ , and s = d − cadb is

invertible, then x ∈ A d and

xd = r +
∞∑

n=0

[
0 anaπb
0 0

]
rn+2 −

∞∑
n=0

[
0 0
0 canaπb

]
rn+3,

where r is defined as in (9) with sd = s−1 .

Remark 4.12 Theorem 4.10 extends [16, Theorem 3.2], where the generalized Drazin inverse of x is considered

in the case that bcaπ = 0 , dcaπ = 0 , sπca = 0 , and absπ = 0 . In fact, Example 4.9 can also illustrate that the

conditions of Theorem 4.10 are weaker than those of [16, Theorem 3.2].
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