Turk J Math
(2017) 41: $564-575$
(c) TÜBİTAK

Research Article
doi:10.3906/mat-1508-23

f-Biminimal immersions

Fatma GÜRLER, Cihan ÖZGÜR*
Balıkesir University, Department of Mathematics, Çağıs, Balıkesir, Turkey
Received: 06.08.2015 • Accepted/Published Online: 24.06.2016 \quad - Final Version: 22.05.2017

Abstract

In the present paper, we define f-biminimal immersions. We consider f-biminimal curves in a Riemannian manifold and f-biminimal submanifolds of codimension 1 in a Riemannian manifold, and we give examples of f biminimal surfaces. Finally, we consider f-biminimal Legendre curves in Sasakian space forms and give an example.

Key words: f-Biminimal immersion, f-biminimal curve, f-biminimal surface, Legendre curve

1. Introduction and preliminaries

Let (M, g) and (N, h) be two Riemannian manifolds. A map $\varphi:(M, g) \rightarrow(N, h)$ is called a harmonic map if it is a critical point of the energy functional

$$
E(\varphi)=\frac{1}{2} \int_{\Omega}\|d \varphi\|^{2} d \nu_{g}
$$

where Ω is a compact domain of M. The Euler-Lagrange equation gives the harmonic map equation

$$
\tau(\varphi)=\operatorname{tr}(\nabla d \varphi)=0
$$

where $\tau(\varphi)=\operatorname{tr}(\nabla d \varphi)$ is called the tension field of the map φ [6]. The map φ is said to be biharmonic if it is a critical point of the bienergy functional

$$
E_{2}(\varphi)=\frac{1}{2} \int_{\Omega}\|\tau(\varphi)\|^{2} d \nu_{g}
$$

where Ω is a compact domain of M [10]. In [10], Jiang obtained the Euler-Lagrange equation of $E_{2}(\varphi)$. This gives us the biharmonic map equation

$$
\begin{equation*}
\tau_{2}(\varphi)=\operatorname{tr}\left(\nabla^{\varphi} \nabla^{\varphi}-\nabla_{\nabla}^{\varphi}\right) \tau(\varphi)-\operatorname{tr}\left(R^{N}(d \varphi, \tau(\varphi)) d \varphi\right)=0 \tag{1.1}
\end{equation*}
$$

which is the bitension field of φ, and R^{N} is the curvature tensor of N, defined by

$$
R^{N}(X, Y) Z=\nabla_{X}^{N} \nabla_{Y}^{N} Z-\nabla_{Y}^{N} \nabla_{X}^{N} Z-\nabla_{[X, Y]}^{N} Z
$$

An f-harmonic map with a positive function $f: M \xrightarrow{C^{\infty}} \mathbb{R}$ is a critical point of f-energy

[^0]
GÜRLER and ÖZGÜR/Turk J Math

$$
E_{f}(\varphi)=\frac{1}{2} \int_{\Omega} f\|d \varphi\|^{2} d \nu_{g}
$$

where Ω is a compact domain of M. Using the Euler-Lagrange equation for the f-harmonic map, in [5] and [16] the f-harmonic map equation is obtained by

$$
\begin{equation*}
\tau_{f}(\varphi)=f \tau(\varphi)+d \varphi(\operatorname{grad} f)=0 \tag{1.2}
\end{equation*}
$$

where $\tau_{f}(\varphi)$ is called the f-tension field of the map φ. The map φ is said to be f-biharmonic [13] if it is a critical point of the f-bienergy functional

$$
E_{2, f}(\varphi)=\frac{1}{2} \int_{\Omega} f\|\tau(\varphi)\|^{2} d \nu_{g}
$$

where Ω is a compact domain of M. The Euler-Lagrange equation for the f-biharmonic map is given by

$$
\begin{equation*}
\tau_{2, f}(\varphi)=f \tau_{2}(\varphi)+\Delta f \tau(\varphi)+2 \nabla_{g r a d f}^{\varphi} \tau(\varphi)=0 \tag{1.3}
\end{equation*}
$$

where $\tau_{2, f}(\varphi)$ is the f-bitension field of the $\operatorname{map} \varphi$ [13]. If f is a constant, an f-biharmonic map turns into a biharmonic map.

In [12], Loubeau and Montaldo defined and considered biminimal immersions. They studied biminimal curves in a Riemannian manifold, curves in a space form, and isometric immersions of codimension 1 in a Riemannian manifold.

An immersion φ is called biminimal [12] if it is a critical point of the bienergy functional $E_{2}(\varphi)$ for variations normal to the image $\varphi(M) \subset N$, with fixed energy. Equivalently, there exists a constant $\lambda \in \mathbb{R}$ such that φ is a critical point of the λ-bienergy

$$
\begin{equation*}
E_{2, \lambda}(\varphi)=E_{2}(\varphi)+\lambda E(\varphi) \tag{1.4}
\end{equation*}
$$

for any smooth variation of the map $\left.\varphi_{t}:\right]-\epsilon,+\epsilon\left[, \varphi_{0}=\varphi\right.$, such that $V=\left.\frac{d \varphi_{t}}{d t}\right|_{t=0}=0$ is normal to $\varphi(M)$. The Euler-Lagrange equation for a λ-biminimal immersion is

$$
\begin{equation*}
\left[\tau_{2, \lambda}(\varphi)\right]^{\perp}=\left[\tau_{2}(\varphi)\right]^{\perp}-\lambda[\tau(\varphi)]^{\perp}=0 \tag{1.5}
\end{equation*}
$$

for some value of $\lambda \in \mathbb{R}$, where $[\cdot]^{\perp}$ denotes the normal component of [•]. An immersion is called free biminimal if it is biminimal for $\lambda=0$ [12].

In [12], Loubeau and Montaldo studied biminimal immersions. In [9], Inoguchi and Lee completely classified biminimal curves in 2-dimensional space forms. In [8], Inoguchi studied biminimal curves and surfaces in contact 3 -manifolds. In [13], Lu defined f-biharmonic maps between Riemannian manifolds. In [15], Ou considered f-biharmonic maps and f-biharmonic submanifolds. In [7], Güvenç and the second author studied f-biharmonic Legendre curves in Sasakian space forms. Motivated by the studies [12] and [13], in this paper, we define f-biminimal immersions. We consider f-biminimal curves in a Riemannian manifold. We also consider f-biminimal submanifolds of codimension 1 in a Riemannian manifold and give some examples of f-biminimal surfaces. Furthermore, we give an example for an f-biminimal Legendre curve in a Sasakian space form.

Now we give the following definition:

GÜRLER and ÖZGÜR/Turk J Math

Definition 1.1 An immersion φ is called f-biminimal if it is a critical point of the f-bienergy functional $E_{2, f}(\varphi)$ for variations normal to the image $\varphi(M) \subset N$, with fixed energy. Equivalently, there exists a constant $\lambda \in \mathbb{R}$ such that φ is a critical point of the λ - f-bienergy

$$
E_{2, \lambda, f}(\varphi)=E_{2, f}(\varphi)+\lambda E_{f}(\varphi)
$$

for any smooth variation of the map φ_{t} defined above. Using the Euler-Lagrange equations for f-harmonic and f-biharmonic maps, an immersion is f-biminimal if

$$
\begin{equation*}
\left[\tau_{2, \lambda, f}(\varphi)\right]^{\perp}=\left[\tau_{2, f}(\varphi)\right]^{\perp}-\lambda\left[\tau_{f}(\varphi)\right]^{\perp}=0 \tag{1.6}
\end{equation*}
$$

for some value of $\lambda \in \mathbb{R}$. We call an immersion free f-biminimal if it is f-biminimal for $\lambda=0$. If f is a constant, then the immersion is biminimal.

Remark 1.1 The notions of f-biharmonic submanifolds, biminimal submanifolds, and f-biminimal submanifolds are distinct. We will see details in the examples given in Section 4 and Section 5.

2. f-Biminimal curves

Let $\gamma: I \subset \mathbb{R} \longrightarrow\left(M^{m}, g\right)$ be a curve parametrized by arc length in a Riemannian manifold $\left(M^{m}, g\right)$. We recall the definition of Frenet frames:

Definition 2.1 [11] The Frenet frame $\left\{E_{i}\right\}_{i=1,2, \ldots m}$ associated with a curve $\gamma: I \subset \mathbb{R} \longrightarrow\left(M^{m}, g\right)$ is the orthonormalization of the $(m+1)$-tuple

$$
\left\{\nabla_{\frac{\partial}{\partial t}}^{(k)} d \gamma\left(\frac{\partial}{\partial t}\right)\right\}_{k=0,1, \ldots, m}
$$

described by

$$
\begin{gathered}
E_{1}=d \gamma\left(\frac{\partial}{\partial t}\right) \\
\nabla_{\frac{\partial}{\partial t}}^{\gamma} E_{1}=k_{1} E_{2} \\
\nabla_{\frac{\partial}{\partial t}}^{\gamma} E_{i}=-k_{i-1} E_{i-1}+k_{i} E_{i+1}, \quad 2 \leq i \leq m-1 \\
\nabla_{\frac{\partial}{\partial t}}^{\gamma} E_{m}=-k_{m-1} E_{m-1}
\end{gathered}
$$

where the functions $\left\{k_{1}=k, k_{2}=\tau, k_{3}, \ldots, k_{m-1}\right\}$ are called the curvatures of γ. In addition $E_{1}=T=\gamma^{\prime}$ is the unit tangent vector field to the curve.

First, we have the following proposition for an f-biminimal curve in a Riemannian manifold:

Proposition 2.1 Let M^{m} be a Riemannian manifold and $\gamma: I \subset \mathbb{R} \longrightarrow\left(M^{m}, g\right)$ be an isometric curve. Then γ is f-biminimal if and only if there exists a real number λ such that

$$
\begin{equation*}
f\left\{\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right)-k_{1} g\left(R\left(E_{1}, E_{2}\right) E_{1}, E_{2}\right)\right\}+\left(f^{\prime \prime}-\lambda f\right) k_{1}+2 f^{\prime} k^{\prime}=0 \tag{2.1}
\end{equation*}
$$

GÜRLER and ÖZGÜR/Turk J Math

$$
\begin{gather*}
f\left\{\left(k_{1}^{\prime} k_{2}+\left(k_{1} k_{2}\right)^{\prime}\right)-k_{1} g\left(R\left(E_{1}, E_{2}\right) E_{1}, E_{3}\right)\right\}+2 f^{\prime} k_{1} k_{2}=0 \tag{2.2}\\
f\left\{k_{1} k_{2} k_{3}-k_{1} g\left(R\left(E_{1}, E_{2}\right) E_{1}, E_{4}\right)\right\}=0 \tag{2.3}\\
f k_{1} g\left(R\left(E_{1}, E_{2}\right) E_{1}, E_{j}\right)=0, \quad 5 \leq j \leq m \tag{2.4}
\end{gather*}
$$

where R is the curvature tensor of $\left(M^{m}, g\right)$ and $\left\{E_{i}\right\}_{i=1,2, \ldots m}$ is the Frenet frame of γ.
Proof Using equation (1.2), Definition 2.1, and $\tau(\gamma)=k_{1} E_{2}$ (see [12]), the f-tension field of γ is

$$
\begin{equation*}
\tau_{f}(\gamma)=f k_{1} E_{2}+f^{\prime} E_{1} \tag{2.5}
\end{equation*}
$$

From Definition 2.1, we have

$$
\begin{gather*}
\nabla_{T} \nabla_{T} T=-k_{1}^{2} E_{1}+k_{1}^{\prime} E_{2}+k_{1} k_{2} E_{3} \tag{2.6}\\
\nabla_{T} \nabla_{T} \nabla_{T} T=-3 k_{1} k_{1}^{\prime} E_{1}+\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right) E_{2} \\
+\left(k_{1}^{\prime} k_{2}+\left(k_{1} k_{2}\right)^{\prime}\right) E_{3}+\left(k_{1} k_{2} k_{3}\right) E_{4} \tag{2.7}
\end{gather*}
$$

and

$$
\begin{equation*}
\nabla_{g r a d f} \tau(\gamma)=f^{\prime}\left\{-k_{1}^{2} E_{1}+k_{1}^{\prime} E_{2}+k_{1} k_{2} E_{3}\right\} \tag{2.8}
\end{equation*}
$$

Using equations (2.6), (2.7), and (2.8) in equation (1.3), its f-bitension field is

$$
\begin{gather*}
\tau_{2, f}(\gamma)=f\left\{\left(-3 k_{1} k_{1}^{\prime}\right) E_{1}+\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right) E_{2}+\left(k_{1}^{\prime} k_{2}+\left(k_{1} k_{2}\right)^{\prime}\right) E_{3}\right. \\
\left.+\left(k_{1} k_{2} k_{3}\right) E_{4}-k_{1} R\left(E_{1}, E_{2}\right) E_{1}\right\} \\
+f^{\prime \prime} k_{1} E_{2}+2 f^{\prime}\left\{-k_{1}^{2} E_{1}+k_{1}^{\prime} E_{2}+k_{1} k_{2} E_{3}\right\} \tag{2.9}
\end{gather*}
$$

By the use of equations (2.5) and (2.9) in equation (1.6), we find

$$
\begin{gather*}
f\left\{\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right) E_{2}+\left(k_{1}^{\prime} k_{2}+\left(k_{1} k_{2}\right)^{\prime}\right) E_{3}\right. \\
\left.\quad+\left(k_{1} k_{2} k_{3}\right) E_{4}-k_{1}\left[R\left(E_{1}, E_{2}\right) E_{1}\right]^{\perp}\right\} \\
+f^{\prime \prime} k_{1} E_{2}+2 f^{\prime}\left\{k_{1}^{\prime} E_{2}+k_{1} k_{2} E_{3}\right\}-\lambda\left\{f k_{1} E_{2}\right\}=0 \tag{2.10}
\end{gather*}
$$

Then taking the scalar product of equation (2.10) with E_{2}, E_{3}, E_{4}, and $E_{j}, 5 \leq j \leq m$, respectively, we obtain the desired results.

Now we investigate f-biminimality conditions for a surface or a three-dimensional Riemannian manifold with a constant sectional curvature. We have the following corollary:

GÜRLER and ÖZGÜR/Turk J Math

Corollary 2.1 1) A curve γ on a surface of Gaussian curvature G is f-biminimal if and only if its signed curvature k satisfies the equation

$$
\begin{equation*}
f\left(k^{\prime \prime}-k^{3}+k G\right)+\left(f^{\prime \prime}-\lambda f\right) k+2 f^{\prime} k^{\prime}=0 \tag{2.11}
\end{equation*}
$$

for some $\lambda \in \mathbb{R}$.
2) A curve γ on Riemannian 3 -manifold M of constant sectional curvature c is f-biminimal if and only if its curvature k and torsion τ satisfy the system

$$
\begin{gather*}
f\left(k^{\prime \prime}-k^{3}-k \tau^{2}+k c\right)+\left(f^{\prime \prime}-\lambda f\right) k+2 f^{\prime} k^{\prime}=0 \\
f\left(k^{\prime} \tau+(k \tau)^{\prime}\right)+2 f^{\prime} k \tau=0 \tag{2.12}
\end{gather*}
$$

for some $\lambda \in \mathbb{R}$.
Proof 1) Since γ is a curve on a surface, if γ is f-biminimal then by the use of equation (2.1), we obtain

$$
\begin{equation*}
f\left\{k^{\prime \prime}-k^{3}-k g(R(T, N) T, N)\right\}+\left(f^{\prime \prime}-\lambda f\right) k+2 f^{\prime} k^{\prime}=0 \tag{2.13}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
g(R(T, N) T, N)=-G \tag{2.14}
\end{equation*}
$$

Finally, substituting equation (2.14) into equation (2.13), we obtain

$$
f\left\{k^{\prime \prime}-k^{3}+k G\right\}+\left(f^{\prime \prime}-\lambda f\right) k+2 f^{\prime} k^{\prime}=0
$$

2) Since γ is a curve on a Riemannian 3-manifold, the Frenet frame of γ is $\left\{T, N=B_{2}, B=B_{3}\right\}$, and then equations (2.1) and (2.2) turn into

$$
\begin{equation*}
f\left\{k^{\prime \prime}-k^{3}-k \tau^{2}-k g(R(T, N) T, N)\right\}+\left(f^{\prime \prime}-\lambda f\right) k+2 f^{\prime} k^{\prime}=0 \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left\{k^{\prime} \tau+(k \tau)^{\prime}-k g(R(T, N) T, B)\right\}+2 f^{\prime} k \tau=0 \tag{2.16}
\end{equation*}
$$

Since M has constant sectional curvature we have

$$
\begin{equation*}
g(R(T, N) T, N)=-c \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
g(R(T, N) T, B)=0 \tag{2.18}
\end{equation*}
$$

Finally, substituting equations (2.17) and (2.18) into equations (2.15) and (2.16), respectively, we get

$$
f\left\{k^{\prime \prime}-k^{3}-k \tau^{2}+k c\right\}+\left(f^{\prime \prime}-\lambda f\right) k+2 f^{\prime} k^{\prime}=0
$$

and

$$
f\left\{k^{\prime} \tau+(k \tau)^{\prime}\right\}+2 f^{\prime} k \tau=0
$$

This completes the proof.

GÜRLER and ÖZGÜR/Turk J Math

Remark 2.1 In Proposition 2.1 and Corollary 2.1, if we take f as a constant, we obtain Proposition 2.2 and Corollary 2.4 in [12].

Now assume that $M^{2} \subset \mathbb{R}^{3}$ is a surface of revolution obtained by rotating the arc length parametrized curve $\alpha(u)=(h(u), 0, g(u))$ in the $x z$-plane around the z-axis. Then it can be easily seen that the Gaussian curvature G of the surface of revolution is

$$
\begin{equation*}
G=-\frac{h^{\prime \prime}(u)}{h(u)} \tag{2.19}
\end{equation*}
$$

The Gaussian curvature G depends only on u; that is, G is constant along any parallel. This implies that if the Gaussian curvature is constant along a curve, then either the curve is a parallel or the curve lies in a part of the surface with constant Gaussian curvature [4]. From equation (2.19) and equation (2.11), it is easy to see that if a parallel of M is f-biminimal then f is a constant, which means that the parallel is biminimal. Biminimal curves in a surface of revolution was studied by Aykut in [1]. Hence, we can state the following result:

Proposition 2.2 An f-biminimal parallel in a surface of revolution is biminimal.

3. Codimension-1 f-biminimal submanifolds

Let $\varphi: M^{m} \longrightarrow N^{m+1}$ be an isometric immersion of codimension 1 . We shall denote by B, η, A, Δ, and $H_{1}=H \eta$ the second fundamental form, the unit normal vector field, the shape operator, the Laplacian, and the mean curvature vector field of φ (H the mean curvature function), respectively.

Then we have the following proposition:
Proposition 3.1 Let $\varphi: M^{m} \longrightarrow N^{m+1}$ be an isometric immersion of codimension 1 and $H_{1}=H \eta$ its mean curvature vector. Then φ is f-biminimal if and only if

$$
\begin{equation*}
\Delta H-H\|B\|^{2}+H \operatorname{Ricci}(\eta, \eta)+\left(\frac{\Delta f}{f}-\lambda\right) H+2 \operatorname{grad} \ln f(H)=0 \tag{3.1}
\end{equation*}
$$

for some value of λ in \mathbb{R}.
Proof Assume that φ is f-biminimal. Let $\left\{e_{i}\right\}, 1 \leq i \leq m$ be a local geodesic orthonormal frame at $p \in M$. Then using equation (1.2), the f-tension field of φ is

$$
\begin{equation*}
\tau_{f}(\varphi)=f m H \eta+d \varphi(\operatorname{gradf}) \tag{3.2}
\end{equation*}
$$

and using equation (1.3) and the definitions of $\tau(\varphi)$ and $\tau_{2}(\varphi)$ in [12], its f-bitension field is

$$
\begin{gather*}
\tau_{2, f}(\varphi)=f\left\{m(\Delta H) \eta+2 m \sum_{i=1}^{m} e_{i}(H) \nabla_{e_{i}}^{\varphi} \eta-m H \Delta^{\varphi} \eta\right. \\
\left.-m H \sum_{i=1}^{m} R^{N}\left(d \varphi\left(e_{i}\right), \eta\right) d \varphi\left(e_{i}\right)\right\}+\Delta f(m H \eta)+2 m \nabla_{g r a d f}^{\varphi} H \eta . \tag{3.3}
\end{gather*}
$$

Then taking the scalar product of equations (3.2) and (3.3) with η, respectively, we find

$$
\begin{equation*}
g\left(\tau_{f}(\varphi), \eta\right)=f m H \tag{3.4}
\end{equation*}
$$

and

$$
\begin{align*}
& g\left(\tau_{2, f}(\varphi), \eta\right)=f\left\{m(\Delta H)+2 m \sum_{i=1}^{m} e_{i}(H) g\left(\nabla_{e_{i}}^{\varphi} \eta, \eta\right)-m H g\left(\Delta^{\varphi} \eta, \eta\right)\right. \\
& \left.-m H g\left(\sum_{i=1}^{m} R^{N}\left(d \varphi\left(e_{i}\right), \eta\right) d \varphi\left(e_{i}\right), \eta\right)\right\}+\Delta f(m H)+2 m g\left(\nabla_{g r a d f}^{\varphi} H \eta, \eta\right) . \tag{3.5}
\end{align*}
$$

By use of the Weingarten formula, we have

$$
\begin{gathered}
\nabla_{g r a d f}^{\varphi} H \eta=(\operatorname{grad} f(H)) \eta+H \nabla_{g r a d f}^{\varphi} \eta \\
=(\operatorname{gradf}(H)) \eta+H\left(-A_{\eta} g r a d f+\nabla_{g r a d f}^{\perp} \eta\right) \\
=(\operatorname{gradf}(H)) \eta-H A_{\eta} g r a d f .
\end{gathered}
$$

Hence, taking the scalar product of the above equation with η, we obtain

$$
\begin{equation*}
g\left(\nabla_{g r a d f}^{\varphi} H \eta, \eta\right)=\operatorname{grad} f(H) \tag{3.6}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
g\left(\nabla_{e_{i}}^{\varphi} \eta, \eta\right)=\frac{1}{2} e_{i} g(\eta, \eta)=0 \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(\sum_{i=1}^{m} R^{N}\left(d \varphi\left(e_{i}\right), \eta\right) d \varphi\left(e_{i}\right), \eta\right)=-\operatorname{Ricci}(\eta, \eta) \tag{3.8}
\end{equation*}
$$

Using the definition of the Laplacian, we get

$$
\begin{gather*}
g\left(\Delta^{\varphi} \eta, \eta\right)=\sum_{i=1}^{m} g\left(-\nabla_{e_{i}}^{\varphi} \nabla_{e_{i}}^{\varphi} \eta+\nabla_{\nabla_{e_{i}} e_{i}}^{\varphi} \eta, \eta\right) \\
=\sum_{i=1}^{m} g\left(\nabla_{e_{i}}^{\varphi} \eta, \nabla_{e_{i}}^{\varphi} \eta\right)=\|B\|^{2} \tag{3.9}
\end{gather*}
$$

By use of equations (3.6), (3.7), (3.8), and (3.9) in equation (3.5), we have

$$
\begin{align*}
g\left(\tau_{2, f}(\varphi), \eta\right)= & f\left\{m(\Delta H)-m H\|B\|^{2}+m \operatorname{Ricci}(\eta, \eta)\right\} \\
& +\Delta f(m H)+2 \operatorname{mgrad} f(H) \tag{3.10}
\end{align*}
$$

Finally, substituting equations (3.4) and (3.10) in equation (1.6), we obtain (3.1).
Conversely, assume that (3.1) holds on M^{m}. If we take the product of equation (3.1) with $m f$ we have

$$
\begin{align*}
& m f \Delta H-m f H\|B\|^{2}+m f H \operatorname{Ricci}(\eta, \eta) \\
& +(m \Delta f-m f \lambda) H+2 m g r a d f(H)=0 \tag{3.11}
\end{align*}
$$

GÜRLER and ÖZGÜR/Turk J Math

It is easy to see that

$$
\begin{align*}
\left(\tau_{2, f}(\varphi)\right)^{\perp}= & f\left\{m(\Delta H)-m H\|B\|^{2}-m H \operatorname{Ricci}(\eta, \eta)\right\} \\
& +\Delta f(m H)+2 \operatorname{mgrad} f(H) \tag{3.12}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\tau_{f}(\varphi)\right)^{\perp}=f m H \tag{3.13}
\end{equation*}
$$

In view of equations (3.12) and (3.13), equation (3.11) turns into

$$
\left(\tau_{2, f}(\varphi)\right)^{\perp}-\lambda\left(\tau_{f}(\varphi)\right)^{\perp}=0
$$

which means that M^{m} is f-biminimal. This proves the proposition.

Corollary 3.1 Let $\varphi: M^{m} \longrightarrow N^{m+1}(c)$ be an isometric immersion of a Riemannian manifold $N^{m+1}(c)$ of constant curvature c. Then φ is f-biminimal if and only if there exists a real number λ such that

$$
\begin{equation*}
\Delta H-\left(m^{2} H^{2}-s+m(m-2) c-\frac{\Delta f}{f}+\lambda\right) H-2 g r a d \ln f(H)=0 \tag{3.14}
\end{equation*}
$$

where H is the mean curvature function and s the scalar curvature of M^{m}. In addition, let $\varphi: M^{2} \longrightarrow N^{3}(c)$ be an isometric immersion from a surface to a three-dimensional space form. Then φ is f-biminimal if and only if

$$
\begin{equation*}
\Delta H-2\left(2 H^{2}-G-\frac{1}{2} \frac{\Delta f}{f}+\frac{1}{2} \lambda\right) H-\operatorname{grad} \ln f(H)=0 \tag{3.15}
\end{equation*}
$$

for some $\lambda \in \mathbb{R}$.
Proof Let $\left\{e_{i}\right\}, 1 \leq i \leq m$ be a local geodesic orthonormal frame of $M^{m},\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}$ its principal curvatures, and B its second fundamental form. Then using the proof of Corollary 3.2. in [12], we have

$$
\|B\|^{2}=m^{2} H^{2}-s+m(m-1) c
$$

and

$$
\operatorname{Ricci}(\eta, \eta)=m c
$$

By use of Proposition 3.1, we obtain

$$
\begin{equation*}
\Delta H-\left(m^{2} H^{2}-s+m(m-2) c-\frac{\Delta f}{f}+\lambda\right) H-2 \operatorname{grad} \ln f(H)=0 \tag{3.16}
\end{equation*}
$$

For $\varphi: M^{2} \longrightarrow N^{3}(c)$, substituting $m=2$ into equation (3.16), we get the result.

Remark 3.1 In Proposition 3.1 and Corollary 3.1, if we take f as a constant, we obtain Proposition 3.1 and Corollary 3.2 in [12].

GÜRLER and ÖZGÜR/Turk J Math

4. Examples of f-biminimal surfaces

In the present section, we give some examples of f-biminimal surfaces. To obtain examples of free f-biminimal surfaces, similar to Theorem 2.3 in [15], we state the following theorem:

Theorem $4.1 \varphi:\left(M^{2}, g\right) \longrightarrow\left(N^{n}, h\right)$ is a free f-biminimal map if and only if $\varphi:\left(M^{2}, f^{-1} g\right) \longrightarrow\left(N^{n}, h\right)$ is a free biminimal map.
Proof Using equation (1.6), $\varphi:\left(M^{2}, g\right) \longrightarrow\left(N^{n}, h\right)$ is a free f-biminimal map if and only if

$$
\left[\tau_{2, f}(\varphi, g)\right]^{\perp}=f\left[\tau_{2}(\varphi, g)\right]^{\perp}+\Delta f[\tau(\varphi, g)]^{\perp}+2\left[\nabla_{g r a d f}^{\varphi} \tau(\varphi, g)\right]^{\perp}=0
$$

which is equivalent to

$$
\left[\tau_{2}(\varphi, g)\right]^{\perp}+\left(\Delta \ln f+\|\operatorname{grad} \ln f\|^{2}\right)[\tau(\varphi)]^{\perp}+2\left[\nabla_{\operatorname{grad} \ln f}^{\varphi} \tau(\varphi)\right]^{\perp}=0
$$

Furthermore, by Corollary 1 in [14], the relationship between the bitension field $\left[\tau_{2}(\varphi, g)\right]^{\perp}$ and that of map $\varphi:\left(M^{2}, \bar{g}=F^{-2} g\right) \longrightarrow\left(N^{n}, h\right)$ is given by

$$
\left[\tau_{2}(\varphi, \bar{g})\right]^{\perp}=F^{4}\left[\tau_{2}(\varphi, g)\right]^{\perp}+\left(\Delta \ln F^{2}+\left\|\operatorname{grad} \ln F^{2}\right\|^{2}\right)[\tau(\varphi)]^{\perp}+2\left[\nabla_{g r a d \ln F^{2}}^{\varphi} \tau(\varphi)\right]^{\perp}=0
$$

Then map $\varphi:\left(M^{2}, \bar{g}=F^{-2} g\right) \longrightarrow\left(N^{n}, h\right)$ is free biminimal if and only if

$$
\begin{equation*}
\left[\tau_{2}(\varphi, g)\right]^{\perp}+\left(\Delta \ln F^{2}+\left\|\operatorname{grad} \ln F^{2}\right\|^{2}\right)[\tau(\varphi)]^{\perp}+2\left[\nabla_{\operatorname{grad} \ln F^{2}}^{\varphi} \tau(\varphi)\right]^{\perp}=0 \tag{4.1}
\end{equation*}
$$

Substituting $F^{2}=f$ into equation (4.1), we obtain the result.

Examples

1. Let us consider the cone on a free biminimal curve on \mathbb{S}^{2} with

$$
\varphi:\left(\mathbb{S}^{2}, d \theta^{2}\right) \longrightarrow\left(\mathbb{R}^{3} \backslash\{0\}=\mathbb{R}^{+} \times_{t^{2}} \mathbb{S}^{2}, d t^{2}+t^{2} d \theta^{2}\right)
$$

Then it is a free biminimal surface [12], where $\times_{t^{2}}$ denotes the warped product. Hence, from Theorem 4.1, $\varphi:\left(\mathbb{S}^{2}, f d \theta^{2}\right) \longrightarrow\left(\mathbb{R}^{3} \backslash\{0\}=\mathbb{R}^{+} \times{ }_{t^{2}} \mathbb{S}^{2}, d t^{2}+t^{2} d \theta^{2}\right)$ is a free f-biminimal surface.
2. Let $\beta: I \longrightarrow \mathbb{R}^{2}$ be the logarithmic spiral whose curvature $k=\frac{1}{\sqrt{2} s}$ and $\alpha: I \longrightarrow \mathbb{R}^{3}$ be a helix of the cylinder on the plane curve β with its Frenet frame $\{T, N, B\}$. Then the envelope S of α parametrized by $X:\left(\mathbb{R}^{2}, g\right) \longrightarrow\left(\mathbb{R}^{3}, \widetilde{g}\right), X(u, s)=\alpha(s)+u(B+T)$ is a free biminimal surface [12]. Hence, from Theorem 4.1, $X:\left(\mathbb{R}^{2}, f g\right) \longrightarrow\left(\mathbb{R}^{3}, \widetilde{g}\right)$ is a free f-biminimal surface.
3. The circular cylinder $\varphi: D=\{(u, v) \in(0,2 \pi) \times \mathbb{R}\} \longrightarrow \mathbb{R}^{3}$ with $\varphi(u, v)=(r \cos u, r \sin u, v)$ is an f-biminimal surface for $f(u)=C_{1} e^{\sqrt{-1-\lambda r^{2}} u}+C_{2} e^{-\sqrt{-1-\lambda r^{2}} u}$, where C_{1} and C_{2} are real constants. It is easy to see that this surface with $f(u)=C_{1} e^{\sqrt{-1-\lambda r^{2}} u}+C_{2} e^{-\sqrt{-1-\lambda r^{2}} u}$ is not an f-biharmonic surface because if φ is f-biharmonic, then using Theorem 3.2 of [15] we get $\lambda=0$. Then the function f is indefinite, so this surface can not be f-biharmonic and free f-biminimal. Moreover, using Proposition 3.1 of [12], we obtain that φ cannot be biminimal unless $\lambda=-\frac{1}{r^{2}}$. This shows that the f-biharmonicity, biminimality, and f-biminimality of φ are different.

5. f-Biminimal Legendre curves in Sasakian space forms

Let $\left(M^{2 m+1}, \varphi, \xi, \eta, g\right)$ be a contact metric manifold. If the Nijenhuis tensor of φ equals $-2 d \eta \otimes \xi$, then $\left(M^{2 m+1}, \varphi, \xi, \eta, g\right)$ is called a Sasakian manifold [2]. If a Sasakian manifold has constant φ-sectional curvature c, then it is called a Sasakian space form. The curvature tensor of a Sasakian space form is given by

$$
\begin{gather*}
R(X, Y) Z=\frac{c+3}{4}\{g(Y, Z) X-g(X, Z) Y\}+\frac{c-1}{4}\{g(X, \varphi Z) \varphi Y-g(Y, \varphi Z) \varphi X \\
+2 g(X, \varphi Y) \varphi Z+\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \\
+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\} \tag{5.1}
\end{gather*}
$$

for all $X, Y, Z \in T M[3]$.
A submanifold of a Sasakian manifold is called an integral submanifold if $\eta(X)=0$ for every tangent vector X. A 1-dimensional integral submanifold of a Sasakian manifold is called a Legendre curve of M. Hence, a curve $\gamma: I \longrightarrow M=\left(M^{2 m+1}, \varphi, \xi, \eta, g\right)$ is called a Legendre curve if $\eta(T)=0$, where T is the tangent vector field of $\gamma[3]$.

We can state the following theorem:

Theorem 5.1 Let $\gamma:(a, b) \longrightarrow M$ be a nongeodesic Legendre Frenet curve of osculating order r in a Sasakian space form $M=\left(M^{2 m+1}, \varphi, \xi, \eta, g\right)$. Then γ is f-biminimal if and only if the following three equations hold:

$$
\begin{gathered}
k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}+\frac{(c+3)}{4} k_{1}+2 k_{1}^{\prime} \frac{f^{\prime}}{f}+k_{1} \frac{f^{\prime \prime}}{f}-\lambda k_{1}+\frac{3(c-1)}{4}\left[k_{1} g\left(\varphi T, E_{2}\right)^{2}\right]^{\perp}=0, \\
k_{1}^{\prime} k_{2}+\left(k_{1} k_{2}\right)^{\prime}+2 k_{1} k_{2} \frac{f^{\prime}}{f}+\frac{3(c-1)}{4}\left[k_{1} g\left(\varphi T, E_{2}\right) g\left(\varphi T, E_{3}\right)\right]^{\perp}=0,
\end{gathered}
$$

and

$$
k_{1} k_{2} k_{3}+\frac{3(c-1)}{4}\left[k_{1} g\left(\varphi T, E_{2}\right) g\left(\varphi T, E_{4}\right)\right]^{\perp}=0
$$

Proof Let $M=\left(M^{2 m+1}, \varphi, \xi, \eta, g\right)$ be a Sasakian space form and $\gamma:(a, b) \longrightarrow M$ a Legendre Frenet curve of osculating order r. Differentiating

$$
\eta(T)=0
$$

and using Definition 2.1, we obtain

$$
\begin{equation*}
\eta\left(E_{2}\right)=0 \tag{5.2}
\end{equation*}
$$

Then using equations (5.1) and (5.2), we have

$$
\begin{equation*}
R\left(T, \nabla_{T} T\right) T=-k_{1} \frac{(c+3)}{4} E_{2}-3 k_{1} \frac{(c-1)}{4} g\left(\varphi T, E_{2}\right) \varphi T \tag{5.3}
\end{equation*}
$$

By use of equations (2.5), (2.9), and (5.3) in equation (1.6), we find

$$
\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}+\frac{(c+3)}{4} k_{1}+2 k_{1}^{\prime} \frac{f^{\prime}}{f}+k_{1} \frac{f^{\prime \prime}}{f}-\lambda k_{1}\right) E_{2}+\left(k_{1}^{\prime} k_{2}+\left(k_{1} k_{2}\right)^{\prime}+2 k_{1} k_{2} \frac{f^{\prime}}{f}\right) E_{3}
$$

GÜRLER and ÖZGÜR/Turk J Math

$$
\begin{equation*}
+\left(k_{1} k_{2} k_{3}\right) E_{4}+\frac{3(c-1)}{4}\left[k_{1} g\left(\varphi T, E_{2}\right) \varphi T\right]^{\perp}=0 \tag{5.4}
\end{equation*}
$$

Then taking the scalar product of equation (5.4) with E_{2}, E_{3}, and E_{4}, respectively, we obtain the desired results.

Let us recall some notions about the Sasakian space form $\mathbb{R}^{2 m+1}(-3)[3]$:
Let us take $M=\mathbb{R}^{2 m+1}$ with the standard coordinate functions $\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}, z\right)$, the contact structure $\eta=\frac{1}{2}\left(d z-\sum_{i=1}^{m} y_{i} d x_{i}\right)$, the characteristic vector field $\xi=2 \frac{\partial}{\partial z}$, and the tensor field φ given by

$$
\varphi=\left[\begin{array}{ccc}
0 & \delta_{i j} & 0 \\
-\delta_{i j} & 0 & 0 \\
0 & y_{j} & 0
\end{array}\right]
$$

The Riemannian metric is $g=\eta \otimes \eta+\frac{1}{4} \sum_{i=1}^{m}\left(\left(d x_{i}\right)^{2}+\left(d y_{i}\right)^{2}\right)$. Then $\left(M^{2 m+1}, \varphi, \xi, \eta, g\right)$ is a Sasakian space form with constant φ-sectional curvature $c=-3$ and it is denoted by $\mathbb{R}^{2 m+1}(-3)$. The vector fields

$$
\begin{equation*}
X_{i}=2 \frac{\partial}{\partial y_{i}}, X_{i+m}=\varphi X_{i}=2\left(\frac{\partial}{\partial x_{i}}+y_{i} \frac{\partial}{\partial z}\right), 1 \leq i \leq m, \xi=2 \frac{\partial}{\partial z} \tag{5.5}
\end{equation*}
$$

form a g-orthonormal basis and the Levi-Civita connection is calculated as

$$
\begin{gathered}
\nabla_{X_{i}} X_{j}=\nabla_{X_{i+m}} X_{j+m}=0, \nabla_{X_{i}} X_{j+m}=\delta_{i j} \xi, \nabla_{X_{i+m}} X_{j}=-\delta_{i j} \xi \\
\nabla_{X_{i}} \xi=\nabla_{\xi} X_{i}=-X_{m+i}, \nabla_{X_{i+m}} \xi=\nabla_{\xi} X_{i+m}=X_{i}
\end{gathered}
$$

(see [2]).
Now let us produce an example of f-biminimal Legendre curves in $\mathbb{R}^{5}(-3)$:

Example Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{5}\right)$ be a unit speed Legendre curve in $\mathbb{R}^{5}(-3)$. The tangent vector field of γ is

$$
T=\frac{1}{2}\left\{\gamma_{3}^{\prime} X_{1}+\gamma_{4}^{\prime} X_{2}+\gamma_{1}^{\prime} X_{3}+\gamma_{2}^{\prime} X_{4}+\left(\gamma_{5}^{\prime}-\gamma_{1}^{\prime} \gamma_{3}-\gamma_{2}^{\prime} \gamma_{4}\right) \xi\right\}
$$

Using the above equation, since γ is a unit speed Legendre curve, we have $\eta(T)=0$ and $g(T, T)=1$; that is,

$$
\gamma_{5}^{\prime}=\gamma_{1}^{\prime} \gamma_{3}+\gamma_{2}^{\prime} \gamma_{4}
$$

and

$$
\left(\gamma_{1}^{\prime}\right)^{2}+\ldots+\left(\gamma_{5}^{\prime}\right)^{2}=4
$$

For a Legendre curve, we can use the Levi-Civita connection and equation (5.5) to write

$$
\begin{align*}
\nabla_{T} T & =\frac{1}{2}\left(\gamma_{3}^{\prime \prime} X_{1}+\gamma_{4}^{\prime \prime} X_{2}+\gamma_{1}^{\prime \prime} X_{3}+\gamma_{2}^{\prime \prime} X_{4}\right) \tag{5.6}\\
\varphi T & =\frac{1}{2}\left(-\gamma_{1}^{\prime} X_{1}-\gamma_{2}^{\prime} X_{2}+\gamma_{3}^{\prime} X_{3}+\gamma_{4}^{\prime} X_{4}\right) \tag{5.7}
\end{align*}
$$

GÜRLER and ÖZGÜR/Turk J Math

Equations (5.6) and (5.7) and $\varphi T \perp E_{2}$ hold if and only if

$$
\gamma_{1}^{\prime} \gamma_{3}^{\prime \prime}+\gamma_{2}^{\prime} \gamma_{4}^{\prime \prime}=\gamma_{3}^{\prime} \gamma_{1}^{\prime \prime}+\gamma_{4}^{\prime} \gamma_{2}^{\prime \prime}
$$

Finally, we can give the following explicit example:
Let us take $\gamma(t)=(\sin 2 t,-\cos 2 t, 0,0,1)$ in $\mathbb{R}^{5}(-3)$. Using the above equations and Theorem 5.1, γ is an f-biminimal Legendre curve with osculating order $r=2, k_{1}=2, f=e^{t}, \varphi T \perp E_{2}$. We can easily check that the conditions of Theorem 5.1 are verified. Using Theorem 3.1 of [7], the curve γ is not f-biharmonic. For $\lambda \neq-4$, it is easy to see that γ is not biminimal. Hence, the biminimality and f-biminimality of γ are different unless $\lambda=-4$.

Acknowledgment

The authors would like to thank the referees for their valuable comments, which helped to improve the manuscript.

References

[1] Aykut DB. Some special curves on surfaces. MSc, Balıkesir University, Balıkesir, Turkey, 2015.
[2] Blair DE. Geometry of manifolds with structural group $U(n) \times O(s)$. J Differ Geom 1970; 4: 155-167.
[3] Blair DE. Riemannian Geometry of Contact and Symplectic Manifolds. Boston, MA, USA: Birkhauser, 2002.
[4] Caddeo R, Montaldo S, Piu P. Biharmonic curves on a surface. Rend Mat Appl 2001; 21: 143-157.
[5] Course N. f-harmonic maps. PhD, University of Warwick, Coventry, UK, 2004.
[6] Eells J Jr, Sampson JH. Harmonic mappings of Riemannian manifolds. Am J Math 1964; 86: 109-160.
[7] Güvenç Ş, Özgür C. On the characterizations of f-biharmonic Legendre curves in Sasakian space forms. Filomat 2017; 31: 639-648.
[8] Inoguchi J. Biminimal submanifolds in contact 3-manifolds. Balkan J Geom Appl 2007; 12: 56-67.
[9] Inoguchi J, Lee JE. Biminimal curves in 2-dimensional space forms. Commun Korean Math Soc 2012; 27: 771-780.
[10] Jiang GY. 2-Harmonic maps and their first and second variational formulas. Chinese Ann Math Ser A 1986; 7: 389-402.
[11] Laugwitz D. Differential and Riemannian Geometry. New York, NY, USA: Academic Press, 1965.
[12] Loubeau L, Montaldo S. Biminimal immersions. P Edinburgh Math Soc 2008; 51: 421-437.
[13] Lu WJ. On f-biharmonic maps between Riemannian manifolds. arXiv:1305.5478, 2013.
[14] Ou YL. On conformal biharmonic immersions. Ann Global Anal Geom 2009; 36: 133-142.
[15] Ou YL. On f-biharmonic maps and f-biharmonic submanifolds. Pacific J Math 2014; 271: 461-477.
[16] Ouakkas S, Nasri R, Djaa M. On the f-harmonic and f-biharmonic maps. JP J Geom Top 2010; 10: 11-27.

[^0]: *Correspondence: cozgur@balikesir.edu.tr
 2010 AMS Mathematics Subject Classification: 53C40, 53C25, 53C42.

