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doi:10.3906/mat-1508-23

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

f -Biminimal immersions
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Abstract: In the present paper, we define f -biminimal immersions. We consider f -biminimal curves in a Riemannian

manifold and f -biminimal submanifolds of codimension 1 in a Riemannian manifold, and we give examples of f -

biminimal surfaces. Finally, we consider f -biminimal Legendre curves in Sasakian space forms and give an example.
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1. Introduction and preliminaries

Let (M, g ) and (N,h) be two Riemannian manifolds. A map φ : (M, g) → (N,h) is called a harmonic map if

it is a critical point of the energy functional

E(φ) =
1

2

∫
Ω

∥dφ∥2 dνg,

where Ω is a compact domain of M . The Euler–Lagrange equation gives the harmonic map equation

τ(φ) = tr(∇dφ) = 0,

where τ(φ) = tr(∇dφ) is called the tension field of the map φ [6] . The map φ is said to be biharmonic if it

is a critical point of the bienergy functional

E2(φ) =
1

2

∫
Ω

∥τ(φ)∥2 dνg,

where Ω is a compact domain of M [10]. In [10], Jiang obtained the Euler–Lagrange equation of E2(φ). This

gives us the biharmonic map equation

τ2(φ) = tr(∇φ∇φ −∇φ
∇)τ(φ)− tr(RN (dφ, τ(φ))dφ) = 0, (1.1)

which is the bitension field of φ , and RN is the curvature tensor of N , defined by

RN (X,Y )Z = ∇N
X∇N

Y Z −∇N
Y ∇N

XZ −∇N
[X,Y ]Z.

An f -harmonic map with a positive function f : M
C∞

→ R is a critical point of f -energy
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Ef (φ) =
1

2

∫
Ω

f ∥dφ∥2 dνg,

where Ω is a compact domain of M . Using the Euler–Lagrange equation for the f -harmonic map, in [5] and

[16] the f -harmonic map equation is obtained by

τf (φ) = fτ(φ) + dφ(gradf) = 0, (1.2)

where τf (φ) is called the f -tension field of the map φ . The map φ is said to be f -biharmonic [13] if it is a

critical point of the f -bienergy functional

E2,f (φ) =
1

2

∫
Ω

f ∥τ(φ)∥2 dνg,

where Ω is a compact domain of M . The Euler–Lagrange equation for the f -biharmonic map is given by

τ2,f (φ) = fτ2(φ) + ∆fτ(φ) + 2∇φ
gradfτ(φ) = 0, (1.3)

where τ2,f (φ) is the f -bitension field of the map φ [13]. If f is a constant, an f -biharmonic map turns into

a biharmonic map.

In [12], Loubeau and Montaldo defined and considered biminimal immersions. They studied biminimal

curves in a Riemannian manifold, curves in a space form, and isometric immersions of codimension 1 in a

Riemannian manifold.

An immersion φ is called biminimal [12] if it is a critical point of the bienergy functional E2(φ) for

variations normal to the image φ(M) ⊂ N , with fixed energy. Equivalently, there exists a constant λ ∈ R such

that φ is a critical point of the λ -bienergy

E2,λ(φ) = E2(φ) + λE(φ) (1.4)

for any smooth variation of the map φt :] − ϵ,+ϵ[, φ0 = φ, such that V = dφt

dt |t=0= 0 is normal to φ(M).

The Euler–Lagrange equation for a λ -biminimal immersion is

[τ2,λ(φ)]
⊥ = [τ2(φ)]

⊥ − λ[τ(φ)]⊥ = 0 (1.5)

for some value of λ ∈ R , where [·]⊥ denotes the normal component of [·]. An immersion is called free biminimal

if it is biminimal for λ = 0 [12].

In [12], Loubeau and Montaldo studied biminimal immersions. In [9], Inoguchi and Lee completely

classified biminimal curves in 2-dimensional space forms. In [8], Inoguchi studied biminimal curves and surfaces

in contact 3-manifolds. In [13], Lu defined f -biharmonic maps between Riemannian manifolds. In [15], Ou

considered f -biharmonic maps and f -biharmonic submanifolds. In [7], Güvenç and the second author studied

f -biharmonic Legendre curves in Sasakian space forms. Motivated by the studies [12] and [13], in this paper, we

define f -biminimal immersions. We consider f -biminimal curves in a Riemannian manifold. We also consider

f -biminimal submanifolds of codimension 1 in a Riemannian manifold and give some examples of f -biminimal

surfaces. Furthermore, we give an example for an f -biminimal Legendre curve in a Sasakian space form.

Now we give the following definition:
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GÜRLER and ÖZGÜR/Turk J Math

Definition 1.1 An immersion φ is called f -biminimal if it is a critical point of the f -bienergy functional

E2,f (φ) for variations normal to the image φ(M) ⊂ N, with fixed energy. Equivalently, there exists a constant

λ ∈ R such that φ is a critical point of the λ-f -bienergy

E2,λ,f (φ) = E2,f (φ) + λEf (φ)

for any smooth variation of the map φt defined above. Using the Euler–Lagrange equations for f -harmonic and

f -biharmonic maps, an immersion is f -biminimal if

[τ2,λ,f (φ)]
⊥ = [τ2,f (φ)]

⊥ − λ[τf (φ)]
⊥ = 0 (1.6)

for some value of λ ∈ R . We call an immersion free f -biminimal if it is f -biminimal for λ = 0. If f is a

constant, then the immersion is biminimal.

Remark 1.1 The notions of f -biharmonic submanifolds, biminimal submanifolds, and f -biminimal submani-

folds are distinct. We will see details in the examples given in Section 4 and Section 5.

2. f -Biminimal curves

Let γ : I ⊂ R −→ (Mm, g) be a curve parametrized by arc length in a Riemannian manifold (Mm, g). We

recall the definition of Frenet frames:

Definition 2.1 [11] The Frenet frame {Ei}i=1,2,...m associated with a curve γ : I ⊂ R −→ (Mm, g) is the

orthonormalization of the (m+ 1)− tuple

{
∇(k)

∂
∂t

dγ(
∂

∂t
)

}
k=0,1,...,m

described by

E1 = dγ(
∂

∂t
),

∇γ
∂
∂t

E1 = k1E2,

∇γ
∂
∂t

Ei = −ki−1Ei−1 + kiEi+1, 2 ≤ i ≤ m− 1,

∇γ
∂
∂t

Em = −km−1Em−1,

where the functions {k1 = k, k2 = τ, k3, ..., km−1} are called the curvatures of γ. In addition E1 = T = γ
′
is

the unit tangent vector field to the curve.

First, we have the following proposition for an f -biminimal curve in a Riemannian manifold:

Proposition 2.1 Let Mm be a Riemannian manifold and γ : I ⊂ R −→ (Mm, g) be an isometric curve. Then

γ is f -biminimal if and only if there exists a real number λ such that

f
{(

k′′1 − k31 − k1k
2
2

)
− k1g(R(E1, E2)E1, E2)

}
+ (f ′′ − λf) k1 + 2f ′k′ = 0, (2.1)

566
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f {(k′1k2 + (k1k2)
′)− k1g(R(E1, E2)E1, E3)}+ 2f ′k1k2 = 0, (2.2)

f {k1k2k3 − k1g(R(E1, E2)E1, E4)} = 0, (2.3)

fk1g(R(E1, E2)E1, Ej) = 0, 5 ≤ j ≤ m, (2.4)

where R is the curvature tensor of (Mm, g) and {Ei}i=1,2,...m is the Frenet frame of γ.

Proof Using equation (1.2), Definition 2.1, and τ(γ) = k1E2 (see [12]), the f -tension field of γ is

τf (γ) = fk1E2 + f ′E1. (2.5)

From Definition 2.1, we have

∇T∇TT = −k21E1 + k′1E2 + k1k2E3, (2.6)

∇T∇T∇TT = −3k1k
′

1E1 +
(
k′′1 − k31 − k1k

2
2

)
E2

+(k′1k2 + (k1k2)
′)E3 + (k1k2k3)E4 (2.7)

and

∇gradfτ(γ) = f
′ {

−k21E1 + k′1E2 + k1k2E3

}
. (2.8)

Using equations (2.6), (2.7), and (2.8) in equation (1.3), its f -bitension field is

τ2,f (γ) = f
{
(−3k1k

′
1)E1 +

(
k′′1 − k31 − k1k

2
2

)
E2 + (k′1k2 + (k1k2)

′)E3

+(k1k2k3)E4 − k1R(E1, E2)E1}

+f ′′k1E2 + 2f ′ {−k21E1 + k′1E2 + k1k2E3

}
. (2.9)

By the use of equations (2.5) and (2.9) in equation (1.6), we find

f
{(

k′′1 − k31 − k1k
2
2

)
E2 + (k′1k2 + (k1k2)

′)E3

+(k1k2k3)E4 − k1 [R(E1, E2)E1]
⊥
}

+f ′′k1E2 + 2f ′ {k′1E2 + k1k2E3} − λ {fk1E2} = 0. (2.10)

Then taking the scalar product of equation (2.10) with E2, E3, E4 , and Ej , 5 ≤ j ≤ m , respectively, we obtain

the desired results. 2

Now we investigate f -biminimality conditions for a surface or a three-dimensional Riemannian manifold

with a constant sectional curvature. We have the following corollary:
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GÜRLER and ÖZGÜR/Turk J Math

Corollary 2.1 1) A curve γ on a surface of Gaussian curvature G is f -biminimal if and only if its signed

curvature k satisfies the equation

f
(
k′′ − k3 + kG

)
+ (f ′′ − λf) k + 2f ′k′ = 0 (2.11)

for some λ ∈ R.
2) A curve γ on Riemannian 3-manifold M of constant sectional curvature c is f -biminimal if and

only if its curvature k and torsion τ satisfy the system

f
(
k′′ − k3 − kτ2 + kc

)
+ (f ′′ − λf) k + 2f ′k′ = 0

f (k′τ + (kτ)′) + 2f ′kτ = 0 (2.12)

for some λ ∈ R.

Proof 1) Since γ is a curve on a surface, if γ is f -biminimal then by the use of equation (2.1), we obtain

f
{
k′′ − k3 − kg(R(T,N)T,N)

}
+ (f ′′ − λf) k + 2f ′k′ = 0. (2.13)

Then we have
g(R(T,N)T,N) = −G. (2.14)

Finally, substituting equation (2.14) into equation (2.13), we obtain

f
{
k′′ − k3 + kG

}
+ (f ′′ − λf) k + 2f ′k′ = 0.

2) Since γ is a curve on a Riemannian 3-manifold, the Frenet frame of γ is {T, N = B2, B = B3} ,
and then equations (2.1) and (2.2) turn into

f
{
k′′ − k3 − kτ2 − kg(R(T,N)T,N)

}
+ (f ′′ − λf) k + 2f ′k′ = 0 (2.15)

and

f {k′τ + (kτ)′ − kg(R(T,N)T,B)}+ 2f ′kτ = 0. (2.16)

Since M has constant sectional curvature we have

g(R(T,N)T,N) = −c (2.17)

and
g(R(T,N)T,B) = 0. (2.18)

Finally, substituting equations (2.17) and (2.18) into equations (2.15) and (2.16), respectively, we get

f
{
k′′ − k3 − kτ2 + kc

}
+ (f ′′ − λf) k + 2f ′k′ = 0

and

f {k′τ + (kτ)′}+ 2f ′kτ = 0.

This completes the proof. 2
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Remark 2.1 In Proposition 2.1 and Corollary 2.1, if we take f as a constant, we obtain Proposition 2.2 and

Corollary 2.4 in [12].

Now assume that M2 ⊂ R3 is a surface of revolution obtained by rotating the arc length parametrized

curve α(u) = (h(u), 0, g(u)) in the xz -plane around the z -axis. Then it can be easily seen that the Gaussian

curvature G of the surface of revolution is

G = −h′′(u)

h(u)
. (2.19)

The Gaussian curvature G depends only on u ; that is, G is constant along any parallel. This implies that if the

Gaussian curvature is constant along a curve, then either the curve is a parallel or the curve lies in a part of the

surface with constant Gaussian curvature [4]. From equation (2.19) and equation (2.11), it is easy to see that

if a parallel of M is f -biminimal then f is a constant, which means that the parallel is biminimal. Biminimal

curves in a surface of revolution was studied by Aykut in [1]. Hence, we can state the following result:

Proposition 2.2 An f -biminimal parallel in a surface of revolution is biminimal.

3. Codimension-1 f -biminimal submanifolds

Let φ : Mm −→ Nm+1 be an isometric immersion of codimension 1. We shall denote by B , η , A, ∆, and

H1 = Hη the second fundamental form, the unit normal vector field, the shape operator, the Laplacian, and

the mean curvature vector field of φ (H the mean curvature function), respectively.

Then we have the following proposition:

Proposition 3.1 Let φ : Mm −→ Nm+1 be an isometric immersion of codimension 1 and H1 = Hη its mean

curvature vector. Then φ is f -biminimal if and only if

∆H −H ∥B∥2 +HRicci(η, η) +

(
∆f

f
− λ

)
H + 2grad ln f (H) = 0 (3.1)

for some value of λ in R .

Proof Assume that φ is f -biminimal. Let {ei} , 1 ≤ i ≤ m be a local geodesic orthonormal frame at p ∈ M.

Then using equation (1.2), the f -tension field of φ is

τf (φ) = fmHη + dφ(gradf) (3.2)

and using equation (1.3) and the definitions of τ(φ) and τ2(φ) in [12], its f -bitension field is

τ2,f (φ) = f

{
m(∆H)η + 2m

m∑
i=1

ei(H)∇φ
eiη −mH∆φη

−mH

m∑
i=1

RN (dφ(ei), η)dφ(ei)

}
+∆f(mHη) + 2m∇φ

gradfHη. (3.3)

Then taking the scalar product of equations (3.2) and (3.3) with η , respectively, we find

g(τf (φ), η) = fmH (3.4)
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and

g(τ2,f (φ), η) = f

{
m(∆H) + 2m

m∑
i=1

ei(H)g(∇φ
eiη, η)−mHg(∆φη, η)

−mHg(
m∑
i=1

RN (dφ(ei), η)dφ(ei), η)

}
+∆f(mH) + 2mg(∇φ

gradfHη, η). (3.5)

By use of the Weingarten formula, we have

∇φ
gradfHη = (gradf(H))η +H∇φ

gradfη

= (gradf(H))η +H(−Aηgradf +∇⊥
gradfη)

= (gradf(H))η −HAηgradf.

Hence, taking the scalar product of the above equation with η , we obtain

g(∇φ
gradfHη, η) = gradf(H). (3.6)

Moreover, we have

g(∇φ
eiη, η) =

1

2
eig(η, η) = 0 (3.7)

and

g(
m∑
i=1

RN (dφ(ei), η)dφ(ei), η) = −Ricci(η, η). (3.8)

Using the definition of the Laplacian, we get

g(∆φη, η) =

m∑
i=1

g(−∇φ
ei∇

φ
eiη +∇φ

∇ei
ei
η, η)

=
m∑
i=1

g(∇φ
eiη,∇

φ
eiη) = ∥B∥2 . (3.9)

By use of equations (3.6), (3.7), (3.8), and (3.9) in equation (3.5), we have

g(τ2,f (φ), η) = f
{
m(∆H)−mH ∥B∥2 +mRicci(η, η)

}
+∆f(mH) + 2mgradf(H). (3.10)

Finally, substituting equations (3.4) and (3.10) in equation (1.6), we obtain (3.1).

Conversely, assume that (3.1) holds on Mm . If we take the product of equation (3.1) with mf we have

mf∆H −mfH ∥B∥2 +mfHRicci(η, η)

+ (m∆f −mfλ)H + 2mgradf (H) = 0. (3.11)
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It is easy to see that

(τ2,f (φ))
⊥
= f

{
m(∆H)−mH ∥B∥2 −mHRicci(η, η)

}
+∆f(mH) + 2mgradf (H) (3.12)

and

(τf (φ))
⊥
= fmH. (3.13)

In view of equations (3.12) and (3.13), equation (3.11) turns into

(τ2,f (φ))
⊥ − λ (τf (φ))

⊥
= 0,

which means that Mm is f -biminimal. This proves the proposition. 2

Corollary 3.1 Let φ : Mm −→ Nm+1(c) be an isometric immersion of a Riemannian manifold Nm+1(c) of

constant curvature c. Then φ is f -biminimal if and only if there exists a real number λ such that

∆H −
(
m2H2 − s+m(m− 2)c− ∆f

f
+ λ

)
H − 2grad ln f (H) = 0, (3.14)

where H is the mean curvature function and s the scalar curvature of Mm. In addition, let φ : M2 −→ N3(c)

be an isometric immersion from a surface to a three-dimensional space form. Then φ is f -biminimal if and

only if

∆H − 2

(
2H2 −G− 1

2

∆f

f
+

1

2
λ

)
H − grad ln f (H) = 0 (3.15)

for some λ ∈ R.

Proof Let {ei} , 1 ≤ i ≤ m be a local geodesic orthonormal frame of Mm , {k1, k2, ..., km} its principal

curvatures, and B its second fundamental form. Then using the proof of Corollary 3.2. in [12], we have

∥B∥2 = m2H2 − s+m(m− 1)c

and

Ricci(η, η) = mc.

By use of Proposition 3.1, we obtain

∆H −
(
m2H2 − s+m(m− 2)c− ∆f

f
+ λ

)
H − 2grad ln f (H) = 0. (3.16)

For φ : M2 −→ N3(c), substituting m = 2 into equation (3.16), we get the result. 2

Remark 3.1 In Proposition 3.1 and Corollary 3.1, if we take f as a constant, we obtain Proposition 3.1 and

Corollary 3.2 in [12].
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4. Examples of f -biminimal surfaces

In the present section, we give some examples of f -biminimal surfaces. To obtain examples of free f -biminimal

surfaces, similar to Theorem 2.3 in [15], we state the following theorem:

Theorem 4.1 φ :
(
M2, g

)
−→ (Nn, h) is a free f -biminimal map if and only if φ :

(
M2, f−1g

)
−→ (Nn, h)

is a free biminimal map.

Proof Using equation (1.6), φ :
(
M2, g

)
−→ (Nn, h) is a free f -biminimal map if and only if

[τ2,f (φ, g)]
⊥
= f [τ2(φ, g)]

⊥
+∆f [τ(φ, g)]

⊥
+ 2

[
∇φ

gradfτ(φ, g)
]⊥

= 0,

which is equivalent to

[τ2(φ, g)]
⊥
+
(
∆ln f+ ∥ grad ln f ∥2

)
[τ(φ)]

⊥
+ 2

[
∇φ

grad ln fτ(φ)
]⊥

= 0.

Furthermore, by Corollary 1 in [14], the relationship between the bitension field [τ2(φ, g)]
⊥

and that of map

φ :
(
M2, g = F−2g

)
−→ (Nn, h) is given by

[τ2(φ, g)]
⊥
= F 4 [τ2(φ, g)]

⊥
+
(
∆lnF 2+ ∥ grad lnF 2 ∥2

)
[τ(φ)]

⊥
+ 2

[
∇φ

grad lnF 2τ(φ)
]⊥

= 0.

Then map φ :
(
M2, g = F−2g

)
−→ (Nn, h) is free biminimal if and only if

[τ2(φ, g)]
⊥
+

(
∆lnF 2+ ∥ grad lnF 2 ∥2

)
[τ(φ)]

⊥
+ 2

[
∇φ

grad lnF 2τ(φ)
]⊥

= 0. (4.1)

Substituting F 2 = f into equation (4.1), we obtain the result. 2

Examples

1. Let us consider the cone on a free biminimal curve on S2 with

φ :
(
S2, dθ2

)
−→

(
R3\ {0} = R+ ×t2 S2, dt2 + t2dθ2

)
.

Then it is a free biminimal surface [12], where ×t2 denotes the warped product. Hence, from Theorem 4.1,

φ :
(
S2, fdθ2

)
−→

(
R3\ {0} = R+ ×t2 S2, dt2 + t2dθ2

)
is a free f -biminimal surface.

2. Let β : I −→ R2 be the logarithmic spiral whose curvature k = 1√
2s

and α : I −→ R3 be a helix of

the cylinder on the plane curve β with its Frenet frame {T,N,B} . Then the envelope S of α parametrized by

X :
(
R2, g

)
−→

(
R3, g̃

)
, X(u, s) = α(s) + u(B + T ) is a free biminimal surface [12]. Hence, from Theorem 4.1,

X :
(
R2, fg

)
−→

(
R3, g̃

)
is a free f -biminimal surface.

3. The circular cylinder φ : D = {(u, v) ∈ (0, 2π)× R} −→ R3 with φ(u, v) = (r cosu, r sinu, v) is an

f -biminimal surface for f(u) = C1e
√
−1−λr2u +C2e

−
√
−1−λr2u, where C1 and C2 are real constants. It is easy

to see that this surface with f(u) = C1e
√
−1−λr2u+C2e

−
√
−1−λr2u is not an f -biharmonic surface because if φ

is f -biharmonic, then using Theorem 3.2 of [15] we get λ = 0. Then the function f is indefinite, so this surface

can not be f -biharmonic and free f -biminimal. Moreover, using Proposition 3.1 of [12], we obtain that φ

cannot be biminimal unless λ = − 1
r2 . This shows that the f -biharmonicity, biminimality, and f -biminimality

of φ are different.
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5. f -Biminimal Legendre curves in Sasakian space forms

Let
(
M2m+1, φ, ξ, η, g

)
be a contact metric manifold. If the Nijenhuis tensor of φ equals −2dη ⊗ ξ, then(

M2m+1, φ, ξ, η, g
)
is called a Sasakian manifold [2]. If a Sasakian manifold has constant φ -sectional curvature

c, then it is called a Sasakian space form. The curvature tensor of a Sasakian space form is given by

R(X,Y )Z =
c+ 3

4
{g(Y, Z)X − g(X,Z)Y }+ c− 1

4
{g(X,φZ)φY − g(Y, φZ)φX

+2g(X,φY )φZ + η(X)η(Z)Y − η(Y )η(Z)X

+g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ} (5.1)

for all X,Y, Z ∈ TM [3] .

A submanifold of a Sasakian manifold is called an integral submanifold if η(X) = 0 for every tangent

vector X . A 1-dimensional integral submanifold of a Sasakian manifold is called a Legendre curve of M . Hence,

a curve γ : I −→ M =
(
M2m+1, φ, ξ, η, g

)
is called a Legendre curve if η(T ) = 0, where T is the tangent vector

field of γ [3].

We can state the following theorem:

Theorem 5.1 Let γ : (a, b) −→ M be a nongeodesic Legendre Frenet curve of osculating order r in a Sasakian

space form M =
(
M2m+1, φ, ξ, η, g

)
. Then γ is f -biminimal if and only if the following three equations hold:

k′′1 − k31 − k1k
2
2 +

(c+ 3)

4
k1 + 2k′1

f ′

f
+ k1

f ′′

f
− λk1 +

3(c− 1)

4

[
k1g(φT,E2)

2
]⊥

= 0,

k′1k2 + (k1k2)
′ + 2k1k2

f ′

f
+

3(c− 1)

4
[k1g(φT,E2)g(φT,E3)]

⊥
= 0,

and

k1k2k3 +
3(c− 1)

4
[k1g(φT,E2)g(φT,E4)]

⊥
= 0.

Proof Let M =
(
M2m+1, φ, ξ, η, g

)
be a Sasakian space form and γ : (a, b) −→ M a Legendre Frenet curve

of osculating order r . Differentiating

η(T ) = 0

and using Definition 2.1, we obtain

η(E2) = 0. (5.2)

Then using equations (5.1) and (5.2), we have

R(T,∇TT )T = −k1
(c+ 3)

4
E2 − 3k1

(c− 1)

4
g(φT,E2)φT. (5.3)

By use of equations (2.5), (2.9), and (5.3) in equation (1.6), we find(
k′′1 − k31 − k1k

2
2 +

(c+ 3)

4
k1 + 2k′1

f ′

f
+ k1

f ′′

f
− λk1

)
E2 +

(
k′1k2 + (k1k2)

′ + 2k1k2
f ′

f

)
E3
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+(k1k2k3)E4 +
3(c− 1)

4
[k1g(φT,E2)φT ]

⊥
= 0. (5.4)

Then taking the scalar product of equation (5.4) with E2, E3, and E4 , respectively, we obtain the desired

results. 2

Let us recall some notions about the Sasakian space form R2m+1(−3) [3]:

Let us take M = R2m+1 with the standard coordinate functions (x1, ..., xm, y1, ..., ym, z) , the contact

structure η = 1
2 (dz −

∑m
i=1 yidxi), the characteristic vector field ξ = 2 ∂

∂z , and the tensor field φ given by

φ =

 0 δij 0
−δij 0 0
0 yj 0

 .

The Riemannian metric is g = η ⊗ η + 1
4

m∑
i=1

(
(dxi)

2 + (dyi)
2
)
. Then

(
M2m+1, φ, ξ, η, g

)
is a Sasakian space

form with constant φ-sectional curvature c = −3 and it is denoted by R2m+1(−3). The vector fields

Xi = 2
∂

∂yi
, Xi+m = φXi = 2(

∂

∂xi
+ yi

∂

∂z
), 1 ≤ i ≤ m, ξ = 2

∂

∂z
, (5.5)

form a g -orthonormal basis and the Levi-Civita connection is calculated as

∇XiXj = ∇Xi+mXj+m = 0, ∇XiXj+m = δijξ, ∇Xi+mXj = −δijξ,

∇Xiξ = ∇ξXi = −Xm+i, ∇Xi+mξ = ∇ξXi+m = Xi

(see [2]).

Now let us produce an example of f -biminimal Legendre curves in R5(−3) :

Example Let γ = (γ1, ..., γ5) be a unit speed Legendre curve in R5(−3). The tangent vector field of γ is

T =
1

2
{γ′

3X1 + γ′
4X2 + γ′

1X3 + γ′
2X4 + (γ′

5 − γ′
1γ3 − γ′

2γ4) ξ} .

Using the above equation, since γ is a unit speed Legendre curve, we have η(T ) = 0 and g(T, T ) = 1; that is,

γ′
5 = γ′

1γ3 + γ′
2γ4

and

(γ′
1)

2 + ...+ (γ′
5)

2 = 4.

For a Legendre curve, we can use the Levi-Civita connection and equation (5.5) to write

∇TT =
1

2
(γ′′

3X1 + γ′′
4X2 + γ′′

1X3 + γ′′
2X4) , (5.6)

φT =
1

2
(−γ′

1X1 − γ′
2X2 + γ′

3X3 + γ′
4X4) . (5.7)
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Equations (5.6) and (5.7) and φT ⊥ E2 hold if and only if

γ′
1γ

′′
3 + γ′

2γ
′′
4 = γ′

3γ
′′
1 + γ′

4γ
′′
2 .

Finally, we can give the following explicit example:

Let us take γ(t) = (sin 2t,− cos 2t, 0, 0, 1) in R5(−3). Using the above equations and Theorem 5.1, γ is

an f -biminimal Legendre curve with osculating order r = 2, k1 = 2, f = et, φT ⊥ E2 . We can easily check

that the conditions of Theorem 5.1 are verified. Using Theorem 3.1 of [7], the curve γ is not f -biharmonic.

For λ ̸= −4, it is easy to see that γ is not biminimal. Hence, the biminimality and f -biminimality of γ are

different unless λ = −4.
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