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Abstract: This paper presents a goal programming model for solving linear programming problems involving random

interval coefficients. In this model, a random interval with known characters is considered as the aspiration level (target)

of the objective function. The original problem involving random interval parameters is transformed into a biobjective

equivalent problem using the proposed model. Defining an auxiliary variable, an approach for solving the biobjective

problem is presented. Two numerical examples are carried out to show the efficiency of the proposed model.
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1. Introduction

The theory of probability is an important tool for describing the complexity of uncertain parameters. It

has been applied in such different fields as economics [8], stochastic geometry [16], or dealing with imprecise

information [3]. Moreover, some basic works about uncertain random variables were conducted by Wang et

al. [19] and Zheng et al. [20]. The concept of a satisfactory solution for stochastic problems is based on

transforming the stochastic objectives by using some statistical features such as variance, expected value, or

quantiles. The obtained function, which can be replaced by the original stochastic objective, is called the

deterministic equivalent function.

There are many approaches in the literature that can be used for solving stochastic programming problems

[10, 18]. One of the most popular approaches for solving multiobjective stochastic programming problems is

the goal programming (GP) model presented by Contini [2]. In his study, he first specified random variables

with an arbitrary known distribution as the targets of stochastic objectives, then, minimizing the deviation of

the objectives from their targets, he obtained a satisfactory solution. Of course a significant weakness is that

the solution of a GP model is not necessarily a Pareto optimal solution. However, the GP approach gives a

solution to a multiobjective problem with a given level of satisfaction.

Sometimes random data cannot be measured exactly and each value of a random variable is expressed as

an interval. In other words, there are many probability events that can only be measured approximately. This

kind of variable that simultaneously involves properties of random variables and intervals is called a random

interval variable. However, there are many random interval phenomena for which we have no information about

the probability of different values within intervals. In such cases, we face a set of interval data generated by
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a random process. These data can be treated as samples from the interval-valued random variable. Some

studies about random intervals in statistics, engineering, and optimization problems exist in the literature; see

[1, 3, 4, 14]. Moreover, some basic studies about the main characters of random intervals such as the range of the

expected value, variance, covariance, and correlation coefficient have been done in the literature [5–7, 11, 12].

In this study, we propose a GP model for solving random interval linear programming (RILP) problems.

In the presented model, we consider a random interval with known characters as the target of the objective

function. The aim of this model is to get a solution that minimizes the deviation of the objective function from

the target as much as possible. Considering the concept of the mean value, this deviation will be obtained as an

interval. However, the problem of minimizing the interval function is not well defined, because the inequality

relation between intervals is not a total order. Thus, the meaning of minimizing the interval objective should

be defined. In this paper, we adopt a definition based on its end points. Applying this method, the original

problem will be transformed into a biobjective problem. Solving the final problem by the minimax method, a

satisfactory optimal solution is obtained.

The rest of this paper is organized as follows. In Section 2, some definitions and basic theorems about

intervals are recalled. In Section 3, the random interval programming problem is introduced. Moreover, we

present a GP model for solving RILP problems. Finally, two numerical examples are proposed to show that our

method works successfully. In the final section, we present some concluding comments and future works.

2. Preliminaries

In this section, we recall some basic concepts of interval arithmetic that are used for dealing with problems

involving interval parameters.

2.1. Interval variables

Definition 2.1 An interval is defined by an ordered pair of brackets as

a = [aL, aR] = {a : aL ≤ a ≤ aR, a ∈ R},

where aL and aR are the left and right limits of a , respectively.

The center (midpoint) and the radius of an interval a are defined respectively as

aC :=
1

2
(aR + aL), aW :=

1

2
(aR − aL).

Definition 2.2 Another representation of interval a is defined by its center point aC and half-width length (or

radius) aW as follows:

a =< aC , aW >= {a : aC − aW ≤ a ≤ aC + aW , a ∈ R}.

Definition 2.3 Let ∗ ∈ {+,−, .,÷} be a binary operation on R . If a and b are arbitrary closed intervals,

then

a ∗ b = {a ∗ b : a ∈ a, b ∈ b}.

In the case of division, it is supposed that 0 /∈ b .
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Let a and b be two intervals and K ∈ R be a constant. From Definitions (2.1) and (2.2) it can be explicitly

shown that:

a+ b = [aL, aR] + [bL, bR] = [aL + bL, aR + bR], (2.1)

{
Ka = K[aL, aR] = [KaL,KaR] if K ≥ 0,

Ka = K[aL, aR] = [KaR,KaL] if K < 0,
(2.2)

a− b = [aL, aR]− [bL, bR] = [aL − bR, aR − bL], (2.3)

Ka = K < aC , aW >=< KaC , | K | aW > . (2.4)

The possibly extended maximum of a and b is derived as

a ∨ b = [aL ∨ bL, aR ∨ bR]. (2.5)

The absolute value of a is defined as

| a |=


[aL, aR], aL ≥ 0,

[0, (−aL) ∨ aR], aL < 0 < aR,

[−aR,−aL], aR ≤ 0,

(2.6)

where a ∨ b = max(a, b).

3. Random interval linear programming

In what follows, we first recall the concepts of random interval variables and random interval data, and then

we present our GP model for solving RILP problems.

Generally, a random interval variable is a measurable function from a probability space to a collection

of closed intervals. In other words, a random interval variable is a random variable taking interval values. The

following definition can be used for describing random interval variables.

Definition 3.1 ([17]). Given a probability space (Ω, A, P ),a(ω) = [aL(ω), aR(ω)] is a random interval defined

in Ω if aL(ω), aR(ω) are random variables and for any ω ∈ Ω, aL(ω) ≤ aR(ω) . In other words, if (Ω, A, P ) is

a probability space where Ω = {ω1, ω2, ..., ωm} , then the function

ξ(ω) =



µ1, if ω = ω1

µ2, if ω = ω2

...

µm, if ω = ωm

,

where µ1, µ2, ..., µm are intervals, is a random interval variable.
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Example 3.2 Suppose that X(ω) is a random variable defined on Ω and a is a positive number; then

I(ω) =
[
X(ω)−a,X(ω)+a

]
is a random interval with random center X(ω) and (deterministic) width 2a . More

generally, if Y (ω) ≥ 0 is a random variable, then the random interval I(ω) =
[
X(ω)−Y (ω), X(ω)+Y (ω)

]
has

random center X(ω) and random width 2Y (ω) .

In real-world problems, statistical data are often expressed as a set of interval data generated by a

random process. An important difference between a set of random interval data and a random interval variable

is that each element of a set of random interval data has probability one, while for random interval variables,

a probability distribution function is defined whose amount for each element is a real number expressed as

0 ≤ p ≤ 1. In fact, the set of random interval data can be treated as samples from the interval-valued random

variable. In such cases, instead of the exact value of sample statistics such as mean, variance, or covariance, we

can only have an interval of them.

An important character for estimating the mean value of random interval data is defined as follows:

Definition 3.3 Let X̃ = {x1,x2, ...,xn} be a set of interval data such that its values are generated by a random

process. The mean of X̃ is an interval that can be obtained by using straightforward interval arithmetic:

M =
x1 + x2 + ...+ xn

n
.

Indeed, M =
[
ML,MR

]
where ML =

1

n

(
xL
1 + xL

2 + ...+ xL
n

)
and MR =

1

n

(
xR
1 + xR

2 + ...+ xR
n

)
.

3.1. A GP model for solving RILP problems

In this part, we present a GP approach for solving RILP problems. In this model, we assume coefficients and

the target to be random intervals with known characters.

The basic approach of goal programming is to specify an aspiration level for each of the objectives and

then seek a solution that minimizes the (weighted) sum of deviations of these objective functions from their

respective goals.

The standard mathematical formulation of the GP model is given as follows:

minimize

p∑
i=1

(δ+i + δ−i )

subject to:

fi(x)− δ+i + δ−i = gi (i = 1, 2, ..., p),

x ∈ S, δ+i , δ
−
i ≥ 0 (i = 1, 2, ..., p),

where δ−i and δ+i are the positive and the negative deviations with respect to the targets gi , respectively.

The GP approach for solving multiobjective linear programing problems with interval coefficients was

investigated by Inuguichi et al. [9]. In this model, they specified an interval as the target of each objective

function. Minimizing the sum of (the weighted sum) deviations of objective functions from their targets under

the constraints of the original problem, they obtained an optimal solution.
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The GP model for solving multiobjective stochastic programming problems was proposed by Contini

[2]. In his study, he specified random variables with an arbitrary known distribution as the targets of random

objectives, then via the concepts of the expected value and variance, he solved his GP model.

Consider the following form of RILP problem:

minimize z(x) = c̃x

subject to : (3.1)

x ∈ S = {x ∈ Rn : Ax ≤ b, x ≥ 0},

where x is an n -dimensional decision variable column vector and A and b are an m × n matrix and m-

dimensional column vector, respectively. Moreover, c̃ =
(
c̃1, c̃2, ..., c̃n

)
is a vector of random interval data.

It is obvious that Problem (3.1) is not well-defined due to the randomness and intervalness of the

coefficients involved in the objective function. In this situation, we cannot optimize the problem likewise

in deterministic cases. Problem (3.1) can be regarded as a kind of stochastic programming problem. In order to

handle such stochastic programming problems, there are several decision-making models such as the variance

minimization model, the expectation optimization model, the fractile optimization model, and the probability

maximization model [10, 18]. We use an extension of the expected value model and replace the objective function

by its mean [18]. Hence, Problem (3.1) will be transformed into the following problem:

minimize E[z(x)] = E[c̃x]

subject to: (3.2)

x ∈ S = {x ∈ Rn : Ax ≤ b, x ≥ 0},

where E [c̃x] denotes the mean of c̃x . According to Definition (3.3), Problem (3.2) will be transformed into

the following problem:

minimize E
[
z(x)

]
=

[
E(c̃L)x,E(c̃R)x

]
subject to: (3.3)

x ∈ S = {x ∈ Rn : Ax ≤ b, x ≥ 0},

where E(c̃L) = (E(c̃L1 ), E(c̃L2 ), ..., E(c̃Ln)) and E(c̃R) = (E(c̃R1 ), E(c̃R2 ), ..., E(c̃Rn )) are two vectors of the mean

of random data.

Consider now the random interval T̃ =
[
T̃L, T̃R

]
, T̃R > T̃L , with the mean E(T̃) =

[
E(T̃L), E(T̃R)

]
as

the target of the objective function. Obviously, both
[
E(c̃L)x,E(c̃R)x

]
and E(T̃ ) are intervals. According to

Relation (2.3), the deviation
(
subtraction of

[
E(c̃L)x,E(c̃R)x

]
from E

(
T̃

))
is an interval. This subtraction

can be written as:

D(x) = |E(T̃)− E(c̃)x|

= |
[
E(T̃L)− E(c̃R)x,E(T̃R)− E(c̃L)x

]
|.
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From Relation (2.6), the following three cases may occur for D(x):

D(x) =



[
E
(
T̃L

)
− E

(
c̃R

)
x,E

(
T̃R

)
− E

(
c̃L

)
x
]
,

if E
(
T̃L

)
− E

(
c̃R

)
x ≥ 0,[

0,
(
E
(
c̃R

)
x− E

(
T̃L

))
∨
(
E
(
T̃R

)
− E

(
c̃L

)
x
)]
,

if E
(
T̃L

)
− E

(
c̃R

)
x < 0 < E

(
T̃R

)
− E

(
c̃L

)
x,[

E
(
c̃L

)
x− E

(
T̃R

)
, E

(
c̃R

)
x− E

(
T̃L

)]
,

if E
(
T̃R

)
− E

(
c̃L

)
x ≤ 0.

Using deviation variables dL−, dL+, dR− , and dR+ , we define the following relations:

E
(
c̃R

)
x+ dL− − dL+ = E

(
T̃L

)
, (3.4)

E
(
c̃L

)
x+ dR− − dR+ = E

(
T̃R

)
, (3.5)

dL−dL+ = 0, dR−dR+ = 0. (3.6)

The difference E(T̃)− E(c̃)x is represented as

E(T̃)− E(c̃)x =
[
dL− − dL+, dR− − dR+

]
. (3.7)

Now we consider a representation of D(x) via deviational variables dL−, dL+, dR− , and dR+ . The

following three cases are possible:

(i) dL− = 0 and dR− = 0. Then

D(x) =
[
dR+, dL+

]
. (3.8)

(ii) dL− = 0 and dR+ = 0. Then

D(x) =
[
0, dL+ ∨ dR−]. (3.9)

(iii) dL+ = 0 and dR+ = 0. Then

D(x) =
[
dL−, dR−]. (3.10)

Note that the case dL+ = 0 and dR− = 0 cannot happen, because if we consider dL+ = 0 and dR− = 0,

then deviation D(x) will be obtained as |
[
dL−,−dR+

]
| , which is not an interval.

It is clear that dL−dR+ = 0, because if we consider dL− > 0 and dR+ > 0, then we have E
(
c̃R

)
x <

E
(
T̃L

)
and E

(
c̃L

)
x > E

(
T̃R

)
, which contradict E

(
c̃R

)
x > E

(
c̃L

)
x and E

(
T̃R

)
> E

(
T̃L

)
. Thus, deviation

D(x) is obtained as

D(x) =
[
dL− + dR+, dL+ ∨ dR−]. (3.11)
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The GP model with random interval coefficients and random interval target becomes the problem of

minimizing D(x) under the constraints of Problem (3.1). However, D(x) is obtained as an interval. The

inequality relation between intervals is not a total order. Thus, the meaning of minimizing D(x) should be

defined. In this paper, we adopt a definition based on the end points. According to this definition, we minimize

the lower and upper bound of D(x) under the constraints of the original problem, which gives the following

biobjective programming problem. Hence, the GP problem can be formulated as follows:

minimize {dL− + dR+, dL+ ∨ dR−}

subject to:

E
(
c̃R

)
x+ dL− − dL+ = E

(
T̃L

)
,

E
(
c̃L

)
x+ dR− − dR+ = E

(
T̃R

)
, (3.12)

x ∈ S = {x ∈ Rn : Ax ≤ b, x ≥ 0},

dL−dL+ = 0, dR−dR+ = 0,

dR−, dR+, dL−, dL+ ≥ 0.

The following theorem shows that there is no need to add the constraints dL−dL+ = 0 and dR−dR+ = 0 to

this model.

Theorem 3.4 The constraints dL−dL+ = 0 and dR−dR+ = 0 of Problem (3.12) satisfy other constraints and

can be omitted.

Proof Let x̂, d̂L−, d̂L+, d̂R− , and d̂R+ be a Pareto optimal solution of (3.12), i.e. there does not exist another

x̄, d̄L−, d̄L+, d̄R− , or d̄R+ such that d̄L−+ d̄L+ ≤ d̂L−+ d̂L+ and d̄L+∨ d̄R− ≤ d̂L+∨ d̂R− with a strict inequality

holding for at least one. Suppose d̂L−d̂L+ ̸= 0. We consider dL−
0 ≥ 0 and dL+

0 ≥ 0 such that dL−
0 dL+

0 = 0 and

d̂L−− d̂L+ = dL−
0 −dL+

0 . Obviously, dL−
0 and dL+

0 satisfy the constraints of (3.12) and the relations d̂L− > dL−
0

and d̂L+ > dL+
0 hold, because for dL−

0 dL+
0 = 0 two cases are possible:

1. If dL+
0 = 0 and dL−

0 > 0, then

d̂L− − d̂L+ = dL−
0 − dL+

0 = dL−
0 ,

and in addition we have d̂L−, d̂L+ > 0. Hence, relation d̂L− > dL−
0 is satisfied.

2. If dL−
0 = 0 and dL+

0 > 0, then

d̂L− − d̂L+ = dL−
0 − dL+

0 = −dL+
0 ,

and we have d̂L−, d̂L+ > 0. Hence, relation d̂L+ > dL+
0 is satisfied.

According to these facts, the following relations,

d̂L− + d̂R+ > dL−
0 + d̂R+,
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d̂L+ ∨ d̂R− ≥ dL+
0 ∨ d̂R−,

obviously are satisfied. This contradicts the Pareto optimality of x̂ and d̂L−, d̂L+, d̂R− , and d̂R+ . Hence,

d̂L−d̂L+ = 0.

In the case of dR−dR+ = 0, we can prove it in the same manner. 2

In order to obtain a Pareto optimal solution of biobjective problem (3.12), we should transform it into

a single-objective programming problem. There are many approaches that can be used for solving biobjective

programming problems. One of the most popular is the minimax method. In this method, we minimize an

auxiliary variable, which is the upper bound of two objectives. Therefore, Problem (3.12) is converted to the

following equivalent problem:

minimize λ

subject to:

E
(
c̃R

)
x+ dL− − dL+ = E

(
T̃L

)
,

E
(
c̃L

)
x+ dR− − dR+ = E

(
T̃R

)
,

x ∈ S = {x ∈ Rn : Ax ≤ b, x ≥ 0}, (3.13)

dL− + dR+ ≤ λ,

dL+ ∨ dR− ≤ λ,

dR−, dR+, dL−, dL+, λ ≥ 0.

Instead of the constraint dL+ ∨ dR− ≤ λ of Problem (3.13), we can use its equivalent convex constraints.

Problem (3.13) will thus be converted into the following convex programming problem:

minimize

subject to:

E
(
c̃R

)
x+ dL− − dL+ = E

(
T̃L

)
,

E
(
c̃L

)
x+ dR− − dR+ = E

(
T̃R

)
,

x ∈ S = {x ∈ Rn : Ax ≤ b, x ≥ 0, }, (3.14)

dL− + dR+ ≤ υ1,

dL+ ≤ λ,

dR− ≤ λ,

dR−, dR+, dL−, dL+, λ ≥ 0.

Problem (3.14) is a deterministic equivalent linear programming problem of (3.1) and can be solved by convex

techniques. Moreover, the optimal solution of (3.14) is a satisfactory solution of (3.1).
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Example 3.5 Consider the random interval linear programming problem defined as

minimize z (x ) = c̃x

subjectto :

a1x ≤ b1, (3.15)

a2x ≤ b2,

x ≥ 0,

where x = (x1, x2, x3, x4)
T is the decision variable vector and (b1, b2) = (27, 25) is a crisp vector. The

coefficient vectors ai, i = 1, 2 are given in Table 1. The coefficients c̃L and c̃R are two vectors of random

Table 1. The coefficient vectors ai .

a1 7 3 4 6
a2 5 6 7 9

data with means (6, 1, 2, 3)T and (7, 4, 6, 5)T , respectively. Considering the random interval T̃ = [T̃L, T̃R] with

E[T̃L, T̃R] = [33, 43] as the target of the objective function, we have:

minimize λ

subject to :

6x1 + x2 + 2x3 + 3x4 + dL− − dL+ = 43,

7x1 + 4x2 + 6x3 + 5x4 + dR− − dR+ = 33,

7x1 + 3x2 + 4x3 + 6x4 ≤ 27,

5x1 + 6x2 + 7x3 + 9x4 ≤ 25, (3.16)

dL− + dR+ ≤ λ,

dR− ≤ λ,

dL+ ≤ λ,

x1, x2, x3, x4, λ ≥ 0.

Using CVX (a MATLAB-based modeling system for convex optimization) to solve this problem, we obtain the

following satisfactory solution:

x∗ =
(
x∗
1, x

∗
2, x

∗
3, x

∗
4

)
=

(
3.8571, 0.000000, 0.000000, 0.000000

)
,

dL+ = 0.000000, dL− = 19.8571, dR+ = 0.000000, dR− = 6.0000,

λ = 19.8571.

The optimal solution of Problem (3.16) is a satisfactory solution for Problem (3.15). This solution is

obtained by minimizing the upper and lower bound of deviation under the constraints of the original problem.

Indeed, we use the end points to obtain the optimal solution. This definition is based on order relation “LR”.

There are some other orders defined in the literature that can be used instead of order LR [15]. The solution of

this problem depends on how we treat the interval objective function of problem, i.e. which order we choose.
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Example 3.6 Consider the random interval linear programming problem defined as

minimize z (x ) = c̃x
subject to :

a1x ≤ b1,
a2x ≤ b2,
x ≥ 0,

where x =
(
x1, x2, x3

)T
is the decision variable vector and

(
b1, b2

)
=

(
28, 35

)
is a crisp vector. The coefficient

vectors ai, i = 1, 2 are given in Table 2.

Table 2. The coefficient vectors ai .

a1 3 8 4
a2 4 1 7

The coefficient vectors c̃L and c̃R are two vectors of random data with means (1, 2, 4)T and (4, 3, 7)T ,

respectively. Considering the random interval T̃ = [T̃L, T̃R] with E
[
T̃L, T̃R

]
=

[
30, 34

]
as the target of the

objective function, we have:

minimize λ

subjectto :

x1 + 2x2 + 4x3 + dL− − dL+ = 34,

4x1 + 3x2 + 7x3 + dR− − dR+ = 30,

3x1 + 8x2 + 4x3 ≤ 28, (3.17)

4x1 + x2 + 7x3 ≤ 35,

dL− + dR+ ≤ λ,

dL+ ≤ λ,

dR− ≤ λ,

x1, x2, x3, λ ≥ 0.

Using CVX to solve this problem, we obtain a satisfactory solution as follows:

x∗ = (x∗
1, x

∗
2, x

∗
3) =

(
0.000000, 1.727273, 3.545455

)
,

dL+ = 0.000000, dL− = 16.363636, dR+ = 0.000000, dR− = 0.000000,

λ = 16.363636.

The optimal solution of Problem (3.18) is a satisfactory solution for Problem (3.17).

4. Conclusion

In this paper, we have proposed a GP model for solving RILP problems. In the presented model, we first used

the mean of random interval data for transforming the original problem into an interval one. Considering a
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random interval as the target of the objective function, we minimized the subtraction of the mean value of the

random interval function from the mean value of its target. However, this subtraction has been obtained as

an interval. To transform this problem into an equivalent well-defined minimization problem, we have adopted

the order relation “LR”. Introducing an auxiliary variable, we have solved the final problem by the minimax

method. Moreover, we have presented two examples and solved them by the presented method.

In addition to the mean value, there are many variables such as variance and covariance that can

be used as a transforming tool for solving random interval programming problems in future works. Some

practical problems such as transportation problems, financial problems, and supply chain and multiobjective

programming problems involving random interval parameters can be investigated. Moreover, in this paper

we have considered random interval parameters only in the objective function. In future works, they can

be considered for parameters in technical matrix A and limited resources b . Moreover, it should be noted

that the optimization problem involving random interval parameters can be considered as a kind of interval

programming or stochastic programming problem. An extension of the methods used for solving these problems

can be considered for solving random interval programming problems.
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