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Abstract: Recently, in the literature, we can see quite a few papers about general coefficient bounds for subclasses

of bi-univalent functions. However, we can find just a few papers about general coefficient estimates for subclasses of

bi-close-to-convex functions. In the present study, we give and look into a new subclass of analytic and bi-close-to-convex

functions in the open unit disk. Making use of the Faber series, we have an upper bound for the general coefficient of

functions in this class. We also demonstrate the invisible behavior of the beginning coefficients of a special subclass of

bi-close-to-convex functions.
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1. Introduction

We know that a function is univalent if it never takes the same value twice. We also know that a function is
bi-univalent if both it and its inverse are univalent.

Let A denote the class of functions f that are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} .
Let S denote the class of functions in A that are univalent in U and normalized by the conditions f(0) =

f ′(0)− 1 = 0 and having the form

f (z) = z +

∞∑
n=2

anz
n. (1.1)

For α ; 0 ≤ α < 1, we let S∗(α) denote the class of function g ∈ S that are starlike of order α in

U , namely, Re
{

zg′(z)
g(z)

}
> α in U and C(α) indicate the class of functions f ∈ S that are close-to-convex of

order α in U , namely, if a function g is in S∗(0) = S∗ so that Re
{

zf ′(z)
g(z)

}
> α in U [6, 10]. We note that

S∗(α) ⊂ C(α) ⊂ S and that |an| ≤ n for f ∈ S by the Bieberbach conjecture [3, 6].

The Koebe 1/4 theorem [6] asserts that the image of U under each univalent function f ∈ A contains

the disk of radius 1/4. According to this, if F = f−1 is the inverse of a function f ∈ S , then F has a Maclaurin

series expansion in some disk about the origin. Thus every function f ∈ S has an inverse f−1 that satisfies

f−1(f(z)) = z for z ∈ U and f(f−1(w)) = w for |w| < 1/4.
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A function f ∈ A is said to be bi-univalent in U if both f and F = f−1 are univalent in U . Similarly, a

function f ∈ A is said to be bi-close-to-convex of order α if both f and F = f−1 are bi-close-to-convex of order

α in U . Let Σ define the class of all bi-univalent functions in U represented by the Taylor–Maclaurin series

expansion (1.1). For a short history and examples of functions in the class Σ, see [13] (see also [5, 11, 12, 14]).

For some (0 ≤ β < 1, 0 ≤ λ ≤ 1), we let TΣ(λ, β) define the subclass of close-to-convex functions f

given by (1.1) if a function g(z) is in S∗ such that

ℜ
{

zf ′(z) + λz2f ′′(z)

(1− λ)g(z) + λzg′(z)

}
> β, (z ∈ U). (1.2)

In particular, for λ = 0, we have TΣ(0, β), which was introduced by Hamidi and Jahangiri [8] and

they said that the bi-close-to-convex functions considered in their paper are the largest subclass of bi-univalent

functions.

Faber polynomials, which are used by us in this paper, play a considerable act in geometric function

theory, which was introduced by Faber [7].

Firstly, Lewin [11] considered the class of bi-univalent functions, obtaining the estimate |a2| ≤ 1.51.

Subsequently, Brannan and Clunie [4] developed Lewin’s result to |a2| ≤
√
2 for f ∈ Σ. Accordingly, Netanyahu

[12] showed that |a2| ≤ 4
3 . Brannan and Taha [5] defined certain subclasses of bi-univalent function class Σ

similar to the usual subclasses. In fact, the aforementioned work by Srivastava et al. [13] essentially revived the

investigation of various subclasses of bi-univalent function class Σ in recent years. Lately, many mathematicians

found bounds for several subclasses of bi-univalent functions (see [9, 13, 16]). Only a few papers determine

general coefficient bounds |an| for the analytic bi-close-to-convex functions in the associated documents. In

particular, in [8] Hamidi and Jahangiri introduced the class of bi-close-to-convex functions and determined

estimates for the general coefficient |an| of bi-close-to-convex function under certain gap series condition by

using Faber polynomials.

In this study, we let f ∈ TΣ(λ, β) and F = f−1 ∈ TΣ(λ, β). We make use of the Faber series to

determine the general Taylor–Maclaurin coefficients |an| of functions in a certain subclass of bi-close-to-convex

functions under some condition. We demonstrate the unpredictability of the beginning coefficients behavior of

bi-starlike functions. For some special cases, the coefficient estimates for the functions in this class are the same

as the coefficient estimates of the bi-close-to-convex functions considered in [8], which are the largest subclass

of bi-univalent functions.

We need the following theorem from Airault and Bouali [1] for proving our main results.

Theorem 1.1 Let f(z) = z + a2z
2 + a3z

3 + · · · . The inverse function of f , f−1(f(z)) = z is given in terms

of the Faber polynomials of f with

F (w) = f−1(w) = w +
∞∑

n=2

1

n
K−n

n−1(a2, a3, ..., an)w
n = w +

∞∑
n=2

Anw
n, (1.3)

K−n
n−1 =

(−n)!

(−2n+ 1)!(n− 1)!
an−1
2 +

(−n)!

(2(−n+ 1))!(n− 3)!
an−3
2 a3

+
(−n)!

(−2n+ 3)!(n− 4)!
an−4
2 a4

889
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+
(−n)!

(2(−n+ 2))!(n− 5)!
an−5
2 [a5 + (−n+ 2)a23]

+
(−n)!

(−2n+ 5)!(n− 6)!
an−6
2 [a6 + (−2n+ 5)a3a4] +

∑
j≥7

an−j
2 Vj ,

where Vj is a homogeneous polynomial in the variables a2, a3, ..., an [2]. The first few terms of K−n
n−1 are

K−2
1 = −2a2

K−3
2 = 3

(
2a22 − a3

)
K−4

3 = −4
(
5a32 − 5a2a3 + a4

)
.

In general, an expansion of Kp
n−1(a2, a3, ..., an) is given by

Kp
n−1 = pan +

p(p− 1)

2
D2

n−1 +
p!

(p− 3)!3!
D3

n−1 + · · ·+ p!

(p− n+ 1)!(n− 1)!
Dn−1

n−1, (p ∈ Z),

where Z = {0,∓1,∓2, · · · } and Dp
n−1 = Dp

n−1(a2, a3, . . .) and by [15],

Dm
n−1 = Dm

n−1(a2, a3, . . . an) =
∞∑

n=2

m!(a2)
µ1 ...(an)

µn−1

µ1!...µn−1!
, for, m ≤ n.

and the sum is taken over all nonnegative integers µ1, ..., µn−1 satisfying the following conditions:

 µ1 + µ2 + ...+ µn−1 = m

µ1 + 2µ2 + ...+ (n− 1)µn−1 = n− 1.

(see, for details, [1, 2]). It is clear that

Dn−1
n−1(a2, ..., an) = an−1

2 .

2. Main results

Firstly, we state the general coefficient estimate of functions in TΣ(λ, β) as follows.

Theorem 2.1 For 0 ≤ β < 1 and 0 ≤ λ ≤ 1, let f ∈ TΣ(λ, β) and F = f−1 ∈ TΣ(λ, β). If ak = 0 for

2 ≤ k ≤ n− 1, then

|an| ≤
2(1− β)

n [1 + (n− 1)λ]
+ 1. (2.1)

Proof Let f ∈ TΣ(λ, β) given by (1.1). Therefore, there is a function g(z) = z +
∑∞

n=2 bnz
n ∈ S∗ so that

ℜ
{

zf ′(z) + λz2f ′′(z)

(1− λ)g(z) + λzg′(z)

}
> β, z ∈ U.
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By using Faber polynomial expansion, we obtain

zf ′(z) + λz2f ′′(z)

(1− λ)g(z) + λzg′(z)
= 1+

∞∑
n=2

[(1 + (n− 1)λ)(nan − bn)

+
n−2∑
s=1

(1 + (n− s− 1)λ)K−1
s [(1 + λ)b2, (1 + 2λ)b3, ..., (1 + sλ)bs+1]((n− s)an−s − bn−s)

]
zn−1. (2.2)

Now for the inverse map F = f−1 there exists a function G(w) = w +
∑∞

n=2 Bnw
n ∈ S∗ so that

ℜ
{

wF ′(w) + λw2F ′′(w)

(1− λ)G(w) + λwG′(w)

}
> β, z ∈ U.

According to (2.2), the Faber polynomial series of the inverse map F = f−1 is F (w) = w+
∑∞

n=2 Anw
n . Thus

we have

wF ′(w) + λw2F ′′(w)

(1− λ)G(w) + λwG′(w)
= 1+

∞∑
n=2

[(1 + (n− 1)λ)(nAn −Bn)

+
n−2∑
s=1

(1 + (n− s− 1)λ)K−1
s [(1 + λ)B2, (1 + 2λ)B3, ..., (1 + sλ)Bs+1]((n− s)An−s −Bn−s)

]
wn−1. (2.3)

Nevertheless, since f ∈ TΣ(λ, β) and F = f−1 ∈ TΣ(λ, β), we know that there are two positive real part

functions:

p(z) = 1 +
∞∑

n=1

cnz
n

and

q(w) = 1 +

∞∑
n=1

dnw
n,

where Re (p(z)) > 0 and Re (q(w)) > 0 in U so that

zf ′(z) + λz2f ′′(z)

(1− λ)g(z) + λzg′(z)
= β + (1− β)p(z)

= 1 + (1− β)
∞∑

n=1

cnz
n (2.4)

and
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wF ′(w) + λw2F ′′(w)

(1− λ)G(w) + λwG′(w)
= β + (1− β)q(w)

= 1 + (1− β)

∞∑
n=1

dnw
n. (2.5)

Comparing the coefficients of (2.2) with (2.4) and considering the Caratheodory Lemma, |cn| ≤ 2 and

|dn| ≤ 2 yield

[
(1+(n− 1)λ)(nan − bn)+

n−2∑
s=1

(1+(n− s− 1)λ)K−1
s [(1 + λ)b2, (1 + 2λ)b3, ..., (1+sλ)bs+1]((n− s)an−s − bn−s)

]

= (1−β)cn−1.

(2.6)

In a similar way, comparing the coefficients of (2.3) with (2.5), we obtain[
(1+(n− 1)λ)(nAn −Bn) +

n−2∑
s=1

(1 + (n− s− 1)λ)K−1
s [(1 + λ)B2, (1 + 2λ)B3, ..., (1 + sλ)Bs+1]((n− s)An−s −Bn−s)

]

= (1−β)dn−1.

(2.7)

Note that for the special case n = 2, (2.6) and (2.7) respectively, yield

(1 + λ)(2a2 − b2) = (1− β)c1

and
−(1 + λ)(2a2 +B2) = (1− β)d1.

Now, solving for a2 and taking modulus, we have

|a2| ≤
(2 + λ− β)

(1 + λ)
.

For ak = 0, 2 ≤ k ≤ n− 1, we note that (2.6) and (2.7) respectively, yield

(1 + (n− 1)λ)(nan − bn) = (1− β)cn−1 (2.8)

−(1 + (n− 1)λ)(nan +Bn) = (1− β)dn−1. (2.9)

It is known that, with respect to the Caratheodory Lemma [6], |cn| ≤ 2 and |dn| ≤ 2 for n ∈ N . Just

taking the absolute values of (2.8) and (2.9) for |bn| ≤ n and |Bn| , we get

|an| ≤
2(1− β)

n [1 + (n− 1)λ]
+ 1

which evidently finishes the proof of Theorem 2.1.
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If we take λ = 0 in Theorem 2.1, we obtain Corollary 2.2, which was proved by Hamidi and Jahangiri

[8].

Corollory 2.2 For 0 ≤ β < 1 let the function f ∈ S be bi-close-to-convex of order β in U . If ak = 0 for

2 ≤ k ≤ n− 1, then

|an| ≤ 1 +
2(1− α)

n
.

In particular, we let f(z) = g(z) in (1.2). Thus, for the bi-starlike case, we have the class S∗
Σ(λ, β),

which is a subclass of TΣ(λ, β). Then we give Theorem 3, which proves the unpredictability of the coefficient

behaviour of this subclass of bi-univalent functions.

Theorem 2.3 Let f ∈ S∗
Σ(λ, β) (0 ≤ β < 1, 0 ≤ λ ≤ 1) be given by (1.1) and F = f−1 ∈ S∗

Σ(λ, β). Then

|a2| ≤


√

2(1−β)
1−λ2+2λ ; 0 ≤ β < 1+2λ−3λ2

2(1+2λ−λ2)

2(1−β)
1+λ ; 1+2λ−3λ2

2(1+2λ−λ2) ≤ β < 1

and

|a3| ≤


2(1−β)

−λ2+2λ+1 ; 0 ≤ β < 1+2λ−3λ2

2(1+2λ−λ2)

(1−β)(3−2β)
1+2λ ; 1+2λ−3λ2

2(1+2λ−λ2) ≤ β < 1.

Proof We note that the function g(z) = z +
∑∞

n=2 bnz
n will be equal to the function f(z) = z +

∑∞
n=2 anz

n

in the proof of Theorem 2.1 for the bi-starlike case. Namely, an = bn in there.

Replacing n by 2 in (2.6) and (2.7), respectively, we have

(1 + λ)a2 = (1− β)c1 (2.10)

and
−(1 + λ)a2 = (1− β)d1. (2.11)

By taking the absolute values of either (2.10) or (2.11) we obtain

|a2| ≤ 2
(1− β)

(1 + λ)
. (2.12)

Replacing n by 3 in (2.6) and (2.7), respectively, we have

2(1 + 2λ)a3 − (1 + λ)2a22 = (1− β)c2 (2.13)

and

−2(1 + 2λ)a3 + (3 + 6λ− λ2)a22 = (1− β)d2. (2.14)

Adding the above two equations (2.13) and (2.14), taking absolute values and solving for |a2| , gives

|a2| ≤

√
2(1− β)

(1 + 2λ− λ2)
. (2.15)
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SAKAR and GÜNEY/Turk J Math

As a result of this, we obtain the bound on |a2| upon noting that
√

2(1−β)
(1+2λ−λ2) < 2(1 − β), if

β < 1+2λ−3λ2

2(1+2λ−λ2) .

When we solve the equations (2.13) and (2.14) for a3 and then taking absolute values we obtain

|a3| ≤
2(1− β)

(1 + 2λ− λ2)
. (2.16)

Substituting a2 = (1−β)
(1+λ) c1 in equation (2.13) we obtain 2(1+2λ)a3 = (1−β)

∣∣c2 + (1− β)c21
∣∣ , calculating

their absolute values, and implementing the Caratheodory Lemma, we have

|a3| =
(1− β)

[
c2 + (1− β)c21

]
2(1 + 2λ)

≤ (1− β)(3− 2β)

1 + 2λ
.

Thus the proof of Theorem 2.3 was completed.

If we take λ = 0 in Theorem 2.1, we have Corollary 2.4, which was proved by Hamidi and Jahangiri [8].

Corollory 2.4 For 0 ≤ β < 1 let f ∈ S∗(β) and F = f−1 ∈ S∗(β). Then

|a2| ≤


√
2(1− β); 0 ≤ β < 1

2

2(1− β); 1
2 ≤ β < 1.

and

|a3| ≤

 2(1− β); 0 ≤ β < 1
2

(1− β)(3− 2β); 1
2 ≤ β < 1.
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