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Abstract: The study of retrial queuing systems presents great analytical difficulties. Detailed results are available

for some models, whereas for other models the obtained results revealed poor information and are cumbersome (they

contain Laplace transforms, integral expressions, etc.). Therefore, in practice, they present limited performance. Often,

to overcome this difficulty, we use an approach based on the stochastic decomposition property that can be possessed

by the model. It offers the advantages of simplification of solving complex models. This paper deals with the stochastic

decomposition property of an MX /G/1 retrial queue with impatient customers and exponential retrial times and of an

M/G/1 retrial system with feedback and general retrial times.
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1. Introduction

Queuing theory is a tool of stochastic modeling, performance evaluation, and supervision of real systems. It

is the most suitable to provide a quantitative estimation of a system. Since the 1980s, renewed interest has

been given to retrial queuing models mathematically, numerically, and in practical applications to solve the

performance problems of some real systems, particularly those of telecommunication networks [15, 30, 35].

A queuing model in which an arriving customer finds all servers and all waiting positions busy and is

obliged to leave the service area and try again for service after a random time is called a retrial queuing system

[40]. These systems have been the subject of many studies. Recent progress is summarized in [7, 18].

There are different approaches to the study of retrial queues. We place emphasis on stochastic decompo-

sition because it leads to simplifications when solving complex models. The general concept of the stochastic

decomposition property of an M/G/1 queuing system is defined as follows: at a random time, the number

of customers in the system is distributed as the sum of two or more independent random variables, one of

which is the number of customers in the same M/G/1 system given that the server is idle. The mentioned

systems are in the steady state. Earlier, this property was observed for queuing systems with vacations, which

are characterized by the fact that the idle time of the server can be used for external tasks (priority tasks or

maintenance). One can distinguish the server vacations in the case of an exhaustive service and those in the case

of a nonexhaustive service. In the first situation, the server goes on vacation when the system is empty, whereas

in the second situation, the server is allowed to take a vacation in the presence of customers in the system.

Stochastic decomposition results for the number of customers in the system in the case of an exhaustive service
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were first obtained by Fuhrmann [21] and then confirmed by Doshi [16]. A comprehensive study on vacation

models in the case of a nonexhaustive service was performed by Gaver [23]. The author explicitly established the

validity of the stochastic decomposition property for the models in question. However, Fuhrmann and Cooper

[22] defined a series of assumptions characterizing queuing systems verifying the stochastic decomposition prop-

erty, especially queuing systems with generalized vacations. When the vacation queuing model is in the steady

state, the authors obtained the following decomposition result for the generating function of the steady-state

distribution of the number of customers in the system at an arbitrary service completion time, φ (z) :

φ (z) = π (z)χ (z) ,

where π (z) is the generating function of the number of customers in the ordinary M/G/1 system without

vacation, and χ (z) is the generating function of the steady-state distribution of the number of customers in the

system given that the server is on vacation. This result is known as valid for any queuing system with generalized

vacations and permits us to focus only on studying the effects of vacations on the number of customers in the

system given that the server is on vacation.

In a sense, the retrial queuing model can be considered as a particular type of vacation model where

vacation begins after each service, and its duration depends on the arrival process and system state. The

stochastic decomposition for the number of customers in the M/G/1 retrial queue was observed by Yang and

Templeton [40]. By assuming that the retrial time follows an exponential law, the authors established that the

generating function of the steady-state distribution of the number of customers in the system can be written as

the product of two generating functions: the first one is the Pollaczek–Khintchine equation for the number of

customers in the ordinary M/G/1 queue, and the second one presents the generating function of the steady-

state distribution of the number of customers in the M/G/1 retrial queue given that the server is idle. Yang et

al. [39] proved that this property is always true for the general distribution of the retrial time. The considered

model included the retrial mechanism depending on the number of customers in the orbit. The attempts of

one orbiting customer formed a renewal process whose generic law was arbitrary. The stochastic decomposition

property helps to solve some problems arising in the analysis of the M/G/1 retrial queue, in particular the

obtaining of the factorial moments of the number of customers in the orbit and the convergence of the system

in question to a limiting one when the retrial intensity goes to infinity [6].

Stochastic decomposition simplifies the resolution of the models characterized by a high interference

between the components. In the case of exponential retrial times, the stochastic decomposition property was

observed for retrial models with server breakdowns [2, 38]; for M2/G2/1 retrial system with two types of

customers, priority and nonpriority [3, 9, 17]; for queuing systems where the phenomena of retrials and server

vacations are present [5, 10]; and for retrial models with batch arrivals and persistent customers [1, 27, 40]. In

the case of general retrial times and retrial mechanisms depending on the number of customers in the orbit,

the validity of the property in question was verified (under some conditions) for M/G/1 retrial queues with

server subject to active and passive breakdowns, and this was done by using an approximation method [12, 14].

In recent years, there has been an increasing interest in the study of the retrial models operating under so-

called FCFS orbiting discipline (the retrial mechanism is independent of the number of customers in the orbit):

orbiting customers form a FCFS queue and only the customer at the head of the queue can access the server.

By assuming that the retrial time follows a general distribution, these systems were studied in the context of

queuing systems with generalized vacations, that led to the establishment of their stochastic decomposition

property [8, 24, 26, 29, 33, 37].
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This paper deals with the stochastic decomposition property (SDP) of retrial queuing systems. To this

end, we consider an MX/G/1 retrial queue with impatient customers and exponential retrial times. After

reviewing some results obtained in our previous work (steady-state joint distribution of the server state and

the number of customers in the orbit, an embedded Markov chain) [4], we investigate the SDP of the model

in question. Our study also includes the asymptotic behavior of the system under high retrial intensity. We

estimate the proximity of the considered retrial queuing system and the ordinary MX/G/1 queue with impatient

customers. Then we demonstrate that the SDP exists in M/G/1 retrial queues with Bernoulli feedback and

general retrial times. The obtained result is verified by using an approximation method.

The paper is organized as follows. In the next section, by assuming that the retrial time is exponentially

distributed, we give the SDP of the MX/G/1 retrial queue with impatient customers and study the convergence

of the considered retrial model to the ordinary one (without retrials). Section 3 is devoted to the M/G/1 retrial

queue with Bernoulli feedback. We verify its stochastic decomposition property by using an approximation

method. The precision of the approximation is illustrated by some numerical results. Finally, we give the

concluding remarks.

2. Stochastic decomposition for an MX/G/1 retrial queue with impatient customers

In telephone networks, one can observe that a calling subscriber after some unsuccessful retrials gives up further

repetitions and abandons the system (an impatient customer). In retrial queues, this phenomenon is represented

by set of probabilities {Hk, k ≥ 1} , where Hk is the probability that after the k th attempt fails, a customer

will make the (k + 1)th one. In general, it is assumed that the probability of a customer reinitializing after

failure of a repeated attempt does not depend on the previous attempts (i.e. H2 = H3 = ...). In the queuing

literature, one can find an extensive body of research addressing impatience phenomena observed in single or

multiserver retrial systems but with single arrivals, e.g., [20, 28]. An M/G/1 retrial queue with impatient

customers (where H2 ≤ 1 and H1 < 1) was analyzed in [18]. Recent contributions on this topic include the

papers of Shin and Choo [31] and Shin and Moon [32]. In [31], the authors modeled the M/M/s retrial queue

with balking and reneging as a Markov chain on two-dimensional lattice space Z+ × Z+ and presented an

algorithm for the steady-state distribution of the number of customers in the retrial group and service facility.

The considered model contains the retrial model with finite capacity of service facility by assigning specific

values to the probabilities with which the balking customers and reneging ones join the retrial group. In [32],

a retrial queuing system in which the number of retrials of each customer is limited by a finite number (m) is

analyzed as a model with Hk = 1 for k ≤ m and with Hk = 0 for k > m .

We consider a single server queuing system at which primary customers arrive in batches of size k (with

probability ck , k ≥ 1) according to a Poisson stream with rate λ > 0. If the server is busy at the arrival

epoch, then with probability 1−H1 > 0 all these customers leave the system without receiving service and with

probability H1 join the retrial group (orbit), whereas if the server is idle, then one of the arriving customers

begins his service and leaves the system after the service, while the rest of the batch’s customers go to the

orbit. Let C(z) =
∑∞

k=1 ckz
k be the generating function of the steady-state distribution of the batch size and

c = C ′ (1) be the mean batch size. The impatience phenomenon is represented by the probability 1 − H1

(the probability H2 = 1) . Any orbiting customer will repeatedly retry until the time at which he finds the

server idle and starts his service. The retrial times are exponentially distributed with distribution function

T (x) = 1−e−θx, x ≥ 0, having finite mean 1
θ . The service times follow a general distribution with distribution
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function B (x) and Laplace–Stieltjes transform B̃ (s) , Re (s) > 0. Let βk = (−1)
k
B̃(k) (0) be the k th moment

of the service time about the origin and ρ = λcH1β1 be the traffic intensity. Finally, we admit the hypothesis

that all random variables defined above are mutually independent.

This model can be used to study a situation that is frequently observed in communication networks and

characterized by the fact that a batch of packets that is not taken for service immediately upon arrival can leave

the system once and for all or join the “orbit” from which it retries to be served at random time intervals.

2.1. Steady-state distribution of the system state

The state of the considered system at time t can be described by means of the process {C (t) , N0 (t) , ζ (t) , t ≥ 0} ,
where N0 (t) is the number of customers in the orbit and C (t) is the state of the server at time t. We have

that C (t) is 0 or 1 depending on whether the server is idle or busy. If C (t) = 1 , ζ (t) represents the elapsed

service time of the customer in service at time t .

Let ρ < 1. Define

P0,n = lim
t→∞

P (C (t) = 0, N0 (t) = n) ;

P1,n =

∞∫
0

lim
t→∞

d

dx
P (C (t) = 1, ζ (t) ≤ x,N0 (t) = n) dx.

In our previous work [4], we found the partial generating functions:

P0 (z) =
∞∑

n=0

znP0,n =
H1 (1− ρ)

ρ+H1 (1− ρ)
exp

[
λ

θ

∫ z

1

1− g (u) C(u)
u

g (u)− u
du

]

and

P1 (z) =
∞∑

n=0

znP1,n =

∫ ∞

0

P1 (z, x) dx =
1− g (z)

g (z)− zH1
P0 (z) ,

where g (u) = B̃ (λH1 (1− C (u))) ; the generating function of the number of customers in the orbit is

P (z) = P0 (z) + P1 (z) ,

=
(1−H1z)− g (z) (1−H1)

H1 (g (z)− z)

× H1 (1− ρ)

ρ+H1 (1− ρ)
exp

[
λ

θ

∫ z

1

1− g (u) C(u)
u

g (u)− u
du

]

and the steady-state distribution of the server state is

P0 = lim
t→∞

P (C (t) = 0) = P0 (1) =
H1 (1− ρ)

ρ+H1 (1− ρ)
,

P1 = lim
t→∞

P (C (t) = 1) = P1 (1) =
ρ

ρ+H1 (1− ρ)
.
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We have also studied the stationary distribution of the number of customers in the orbit at departure

times ξk (the time when the server becomes idle for the k th time). The generating function of the steady-state

distribution πn = limk−→∞ P (N0 (ξk) = n) of the embedded Markov chain was obtained as follows [4]:

φ (z) =
1− ρ

cρ

g (z) (1− C (z))

g (z)− z
exp

[
λ

θ

∫ z

1

1− g (u) C(u)
u

g (u)− u
du

]
. (1)

2.2. Stochastic decomposition property

At present, we investigate the decomposition property of the considered system. In the context of our paper,

vacations of the server are due to the retrials and the model without vacations is the queuing system with batch

arrivals, waiting line, and impatience phenomenon.

From (1), φ (z) can be rewritten as a product of two factors:

φ (z) = Ω (z)Ψ (z) . (2)

We have found that the first factor Ω (z) = 1−ρ
cρ

g(z)(1−C(z))
g(z)−z is the generating function for the number of

customers at the departure epochs in the ordinary MX/G/1 queue with impatient batches (model M∞). The

second factor Ψ (z) = P0(z)
P0(1)

= exp

{
λ
θ

∫ z

1

1−g(u)
C(u)

u

g(u)−u du

}
presents the generating function for the number of

customers at departure epochs in the corresponding retrial queue (model Mθ) given that the server is idle.

Thus, the SDP of the considered system can be expressed in the following manner:

{0, No,θ(t), t ≥ 0} = {0, Nq,∞(t), t ≥ 0}+ {0, Rθ(t), t ≥ 0} . (3)

The processes {0, No,θ(t), t ≥ 0} and {0, Rθ(t), t ≥ 0} are related to the model Mθ, where Rθ(t) repre-

sents the number of customers in the orbit at time t given that the server is idle. The process {0, Nq,∞(t), t ≥ 0}
is associated with the model M∞, where Nq,∞(t) is the number of customers in the waiting line at time t.

Therefore, the number of customers in the MX/G/1 retrial queue with impatient customers (at the time

when the server enters the idle state) is equal to the sum of two independent random variables: the number of

customers in the ordinary MX/G/1 queue with impatient batches (at idle epochs of the server) and the number

of customers in the corresponding retrial queue given that the server is idle. The obtained result is important

for understanding the real contribution of the retrials to the number of customers in the system.

2.3. Behavior of the system under high retrial rate

Now we study the asymptotic behavior of our system when the retrial rate is high. When θ → ∞, the steady-

state distribution of the system with retrials converges to a limit, which is generally the steady-state distribution

of a limiting system. In our case, it is intuitive that this is the model M∞ . To prove this heuristic argument,

we use the SDP.

Let

πn(θ) = lim
k→∞

P (No,θ(ξk) = n) ,

πn(∞) = lim
k→∞

P (Nq,∞(ξk) = n) , (4)

qn (θ) = lim
k→∞

P (Nθ(ξk) = n).
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Note that qn (θ) = P0,n(
H1(1−ρ)

ρ+H1(1−ρ)

) and its generating function is Ψ (z) . We can announce the following

result:

Theorem 1 As θ → ∞ the distance
∞∑

n=0

|πn(θ)− πn(∞)|

between distributions πn(θ) and πn(∞) is o
(
1
θ

)
. To be more exact, the following inequalities hold:

2
1− ρ

cρB̃ (λH1)
(1− q0 (θ)) ≤

∞∑
n=0

|πn(θ)− πn(∞)| ≤ 2 (1− q0 (θ)) ,

where

q0 (θ) = exp

{
−λ

θ

∫ 1

0

1− g (u) C(u)
u

g (u)− u
du

}
.

Proof From (2), we see that πn(θ) is a convolution of two distributions, πn(∞) and qn (θ) ; that is,

πn(θ) =

n−1∑
k=0

πk(∞)qn−k (θ) . (5)

Expression (5) can be rewritten as

πn(θ)− πn(∞) = πn(∞)q0 (θ)− πn(∞) +
n∑

k=0

πk(∞)qn−k (θ) .

We obtain that

|πn(θ)− πn(∞)| ≤ |πn(∞)q0 (θ)− πn(∞)|+
n−1∑
k=0

πk(∞)qn−k (θ)

≤ πn(∞)(1− 2q0 (θ)) + πn(θ),

∞∑
n=0

|πn(θ)− πn(∞)| ≤ 2(1− q0 (θ)),

where

q0 (θ) = Ψ (0) = exp

{
−λ

θ

∫ 1

0

1− g (u) C(u)
u

g (u)− u
du

}
.

Thus, the upper inequality follows. By using the inequality |x− y| ≥ x− y, we find that

∞∑
n=0

|πn(θ)− πn(∞)| ≥ |π0(θ)− π0(∞)|+ π0(∞)− π0(θ). (6)
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From (5), one can see that π0(θ) = π0(∞)q0 (θ) < π0(∞). Therefore, expression (6) becomes

∞∑
n=0

|πn(θ)− πn(∞)| ≥ 2π0(∞) (1− q0 (θ)) .

We obtain the probability π0(∞) from the generating function 1−ρ
cρ

(1−C(z))
g(z)−z of the random variable Nq,∞

by putting z = 0; that is, π0(∞) = 1−ρ

cρB̃(λH1)
.

Thus,

∞∑
n=0

|πn(θ)− πn(∞)| ≥ 2
1− ρ

cρB̃ (λH1)
(1− q0 (θ)) .

2

2.4. Numerical illustration

In Table 1 below, we present some numerical values of the lower bounds and upper bounds of the inequalities

verified by the number of customers in the system when the retrial rate θ tends to ∞ . We assign the following

values to the various parameters of the MX/G/1 retrial queue with batch arrivals and impatient customers:

λ = 0.2, γ = 1
β1
,H1 = 0.8 (such that ρ = 0.8). Suppose that the service time follows the law:

1. Exponential E : B (x) = 1− e−γx, x ≥ 0, with coefficient of variation CV = 1;

2. Two-stage Erlang E2 : B (x) = 1− e−2γx − 2γxe−2γx, x ≥ 0, with coefficient of variation CV ≃ 0.7;

3. Two hyperexponential H2 : B (x) = 1 − p1e
−γ1x − p2e

−γ2x, x ≥ 0, where p1 + p2 = 1 and p1

γ1
+ p2

γ2 = 1
γ .

The coefficient of variation CV = 1.5, and then p1 ≃ 0.19, p2 ≃ 0.81, and γ1 ≃ 0.38, γ2 ≃ 2.

We can see that the convergence is faster when the service time is exponential.

Table 1. MX /G/1 retrial queue with impatient customers.

Exponential Two-stage Two-stage
Erlang hyperexponential

Lower Upper Lower Upper Lower Upper
θ bound bound bound bound bound bound

(LB) (UB) (LB) (UB) (LB) (UB)
1 0.0029800 0.05138 0.0558671 0.95794 0.1943957 0.93146
5 0.0006020 0.01038 0.0142592 0.24450 0.0491822 0.23566
10 0.0003016 0.00520 0.0073623 0.12624 0.0253612 0.12152
100 0.0000302 0.00052 0.0007582 0.01300 0.0026088 0.01250
103 0.0000035 0.00006 0.0000758 0.00130 0.0002630 0.00126
104 0 0 0.0000082 0.00014 0.0000250 0.00012
105 0 0 0.0000012 0.00002 0.0000042 0.00002
106 0 0 0 0 0 0
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3. Stochastic decomposition for M/G/1 retrial queue with feedback and general retrial time

Most of the papers on retrial queues have considered queuing systems without feedback, but many practical

situations (for instance, in communication networks where data transmissions need to be guaranteed to be

error-free within a specified probability, or feedback schemes that are used to request retransmission of packets

that are lost or received in a corrupted form) can be modeled as retrial queues with feedback. The analysis of

these systems can be found in [11, 19, 25, 26].

We consider a single server queuing system with no waiting space. The primary customers arrive according

to a Poisson process with rate λ > 0. An arriving customer receives immediate service if the server is idle;

otherwise, he leaves the service area temporarily to join the retrial group (orbit). Times between the successive

retrials of any orbiting customer are governed by an arbitrary probability distribution function T (x) having

finite mean 1
θ . The service times follow a general distribution with distribution function B (x) having finite

mean 1
γ and Laplace–Stieltjes transform B̃ (x). After the customer is served, he will decide either to join the

orbit for another service with probability c or to leave the system forever with probability c = 1 − c. Finally,

we admit the hypothesis of mutual independence between all random variables defined above.

The state of the system at time t can be described by means of the process {C (t) , No(t), ζ(t),∈ (t), t ≥ 0} ,
where No(t) is the number of customers in the orbit and C (t) is the state of the server at time t. We have

that C (t) is 0 or 1 depending on whether the server is idle or busy. If C (t) = 1, ζ(t) represents the elapsed

service time of the customer being served. When C (t) = 0 and No(t) > 0, the random variable ζ(t) represents

the elapsed retrial time.

3.1. Notations

Let ξn be the time when the server enters the idle state for the nth time, ς be the time at which the nth

customer arrives at the server, Xn
i be the time elapsed since the last attempt made by the ith customer in the

orbit until instant ξ+n , andqn = No(ξ
+
n ) be the number of customers in the orbit at instant ξ+n .

We assume that the system is in steady state; that is, ρ = λ
γ +c < 1 [15] . Let q = lim

n→∞
qn;Xi = lim

n→∞
Xn

i .

When q > 0, we have a vector X = (X1, X2, ..., Xq). We denote by fq(x1, x2, ..., xq) = fq(x) the joint density

function of q and X.

Define

rij = lim
n→∞

P (C(ς−n ) = i,No(ς
−
n ) = j) i = 0, 1 j = 0, 1, 2, ...

pij = lim
n→∞

P (C(t) = i,No(t) = j) i = 0, 1 j = 0, 1, 2, ...

dk = lim
n→∞

P (No(ξ
+
n ) = k) k = 0, 1, 2, ...; dk =

∞∫
0

fk (x) dx k = 1, 2, ...

D (z) =
∞∑
k=0

dkz
k and Ri (z) =

∞∑
j=0

rijz
j i = 0, 1, ....
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3.2. Stochastic decomposition property

The decomposition property of the M/G/1 retrial queue with Bernoulli feedback and exponential retrial

times (linear retrial policy) was analyzed in [13]. Now we extend the obtained result for general retrial time

distribution. To this end, the method of the embedded Markov chain is used.

Consider a sequence of random variables {qn = No(ξ
+
n ), n ≥ 1}. This is an embedded Markov chain for

our model. Its fundamental equation is

qn+1 = qn − δ(qn;X
n) + υn+1 + u, (7)

where δ(qn;X
n) is 1 or 0 depending on whether the (n + 1)th served customer is an orbiting customer or a

primary one. When qn = 0, P (δ(0;Xn) = 0) = P (δ(0) = 0) = 1. The random variable υn+1 represents the

number of primary customers arriving at the system during the (n+ 1)th service time interval. It does not

depend on events that have occurred before the beginning of the (n+ 1)th service. Its distribution is given by

ki = P (υn+1 = i) =

∫ ∞

0

(λx)
i

i!
e−λxdB (x) ,

having the generating function K (z) =
∑∞

i=0 kiz
i = B̃ (λ− λz) [6]. The random variable u is 0 or 1 depending

on whether the served customer leaves the system or goes to orbit. We have also that P (u = 0) = c and

P (u = 1) = c.

Theorem 2 If the M/G/1 retrial queue with Bernoulli feedback and general retrial times is in the steady state(
ρ = λ

γ + c < 1
)
, we have the following decomposition result for the generating function of the steady-state

distribution of the embedded Markov chain, D (z) :

D (z) =
(1− ρ) B̃ (λ− λz) (1− z)

(c+ cz) B̃ (λ− λz)− z
· (c+ cz)R0 (z)

1− ρ
.

Proof Consider the fundamental equation (7). Since the random variables υn+1, qn − δ(qn;X
n), and u are

mutually independent, we have

zqn+1 = zqn−δ(qn;X
n)zυn+1zu;

E [zqn+1 ] = E
[
zqn−δ(qn;X

n)
]
E [zυn+1 ]E [zu] .

Let n → ∞. We find

D (z) = E
[
zq−δ(q;X)

]
B̃ (λ− λz) (c+ cz) . (8)
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Using the rule of conditional expectation, one can obtain

E
[
zq−δ(q;X)

]
=

∞∑
j=0

∫ ∞

0

fj (x)E
[
zj−δ(j;x)

]
dx (9)

=
∞∑
j=0

∫ ∞

0

fj (x)
[
zjP (δ (j;x) = 0) + zj−1 (1− P (δ (j;x) = 0))

]
dx

=

∞∑
j=0

[∫ ∞

0

fj (x) z
jP (δ (j;x) = 0) dx+

1

z

∫ ∞

0

fj (x) z
jdx

−1

z

∫ ∞

0

fj (x) z
jP (δ (j;x) = 0) dx

]

=
1

z

∞∑
j=0

zj
∫ ∞

0

fj (x) dx+

(
1− 1

z

) ∞∑
j=0

zj
∫ ∞

0

fj (x)P (δ (j;x) = 0) dx

=
1

z

∞∑
j=0

zjdj +

(
1− 1

z

) ∞∑
j=0

zj
∫ ∞

0

fj (x)P (δ (j;x) = 0) dx.

Consider
∫∞
0

fj (x)P (δ (j;x) = 0) dx. This is the probability that an arriving customer finds j customers

in the orbit and no customer at the server. This event takes place if and only if the last served customer leaves

j customers in the orbit, he still did not decide to join the orbit or to leave the system, and the new arrival

occurs before any of the j orbiting customers retry for service. Therefore, roj =
∫∞
0

fj (x)P (δ (j;x) = 0) dx.

We can rewrite (9) as

E
[
zq−δ(q;X)

]
=

1

z
D (z) +

(
1− 1

z

)
R0 (z) . (10)

Finally, putting (10) into (8), we obtain

D (z) =

[
1

z
D (z) +

(
1− 1

z

)
R0 (z)

]
B̃ (λ− λz) (c+ cz)

or

D (z) =
(1− ρ) B̃ (λ− λz) (1− z)

(c+ cz) B̃ (λ− λz)− z
· (c+ cz)R0 (z)

1− ρ
. (11)

2

One can see that the first factor on the right-hand part of (11) is the generating function for the number

of customers in the M/G/1 queuing system with Bernoulli feedback [34]; the remaining one is the generating

function for the number of customers in the retrial queue with feedback given that the server is idle. Note that

if c = 1, one can obtain the same result as in [39] for the M/G/1 retrial queue without feedback.

3.3. Approximate solution

From (11), it is easy to see that steady-state distribution {dk, k ≥ 0} of the embedded Markov chain is a

convolution of two distributions: the steady-state queue size distribution for a model without retrials (we

denote by {ak, k ≥ 0}) and the steady-state joint distribution {p0,k, k ≥ 0} .
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Obviously dk = P (q = k) =
∫∞
0

fk (x) dx for k > 0. Since Poisson arrivals see time averages [36], we

have p0,k = r∗0,k for k ≥ 0, where r∗0,k = cr0,k + cr0,k−1 is defined by the generating function (c+ cz)R0 (z) .

Since expanded retrial times X1, X2, · · · , Xk of the k > 0 orbiting customers depend on each other in a

very complicated way, a derivation of an explicit formula for the joint density function fk (x) is difficult, if not

impossible.

An approximation to fk (x) was proposed in [39]: fk (x) ≈ dkθ
k
∏k

i=1 (1− T (xi)) . It is based on

the intuitive consideration that mean retrial time is very small relative to the mean service time. Using

the above approximation, it was established that r∗0,k ≈ dkbk, where bk =
∫∞
0

(1−m (t))
k
λe−λtdt with

m (t) =
∫ t

0
θ (1− T (u)) du.

We assume that {ak, k ≥ 0} is already known. Under this assumption, we can express the result (11) in

the following manner:

dk =
1

1− ρ

k∑
i=0

air
∗
0,k−i (12)

with

r∗0,k ≈ dkbk, (13)

∞∑
k=0

dk = 1. (14)

The set of equations (12)–(14) gives an approximate solution to {dk, k ≥ 0} , respectively. From (12)–(14)

and using a0 = 1− ρ, it is easy to find the following computational procedure:

d̂k = gkd̂0 k = 0, 1, · · · ; (15)

d̂0 =
1∑∞

k=0 gk
;

where

g0 = 1; gk =
1

(1− ρ) (1− bk)

k∑
i=1

aibk−igk−i k = 1, 2, · · · .

Once the steady-state probabilities
{
d̂k, k ≥ 0

}
are evaluated, we can calculate the mean number of

customers in the system at an arbitrary time when the server is able to start a new service time, E [N ] : E [N ] ≈∑∞
k=0 kd̂k , and also the variance V [N ] : V [N ] ≈

∑∞
k=0 k

2d̂k − (E [N ])
2
.

In [39], for M/G/1 retrial queues (without feedback), it was shown that the performance of the approx-

imation is not affected very much by the type of service time distribution (or its coefficient of variation cs).

The approximation performs well as long as the mean retrial time is less than the mean service time and the

coefficient of variation of retrial times cv is fairly close (cv ≤ 4) to that of the exponential distribution (for

which the approximation produces the exact solution). The mean number of customers in the system at an

arbitrary time when the server is able to start a new service time E [N ] is an increasing function of the second

moments of both the service time distribution and the retrial time distribution.
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Table 2. M/M/1 retrial queue with feedback: γ = 1, c = 0.1.

Retrial times
E E2 H2

λ θ E [N ]
0.1 1 Approx 0.1510 0.1478 0.1580

Simul 0.1494 0.1437 0.1577
3.3 Approx 0.1414 0.1403 0.1437

Simul 0.1394 0.1388 0.1398
10 Approx 0.1385 0.1382 0.1393

Simul 0.1334 0.1306 0.1371
λ θ E [N ]
0.3 1 Approx 0.7023 0.6682 0.7562

Simul 0.7093 0.6759 0.7716
3.3 Approx 0.5862 0.5752 0.6080

Simul 0.5654 0.5603 0.5815
10 Approx 0.5523 0.5486 0.5603

Simul 0.5400 0.5361 0.5426
λ θ E [N ]
0.6 1 Approx 3.4022 3.2163 3.5135

Simul 3.4750 3.2192 4.1864
3.3 Approx 2.4729 2.4061 2.5565

Simul 2.4450 2.3416 2.6404
10 Approx 2.2022 2.1790 2.2384

Simul 2.1692 2.1151 2.2395

Table 3. M/M/1 retrial models: γ = 1.

λ θ Retrial times
E E E2 E2 E2 H2 H2 H2

M2 M3 M1 M2 M3 M1 M2 M3

E [N ] E [N ] E [N ] E [N ] E [N ] E [N ] E [N ] E [N ]
V [N ] V [N ] V [N ] V [N ] V [N ] V [N ] V [N ] V [N ]

0.1 1 0.1262 0.1510 0.1194 0.1234 0.1478 0.1277 0.1320 0.1580
0.1399 0.1682 0.1323 0.1370 0.1647 0.1410 0.1460 0.1756

3.3 0.1181 0.1414 0.1135 0.1173 0.1403 0.1164 0.1201 0.1437
0.1310 0.1574 0.1258 0.1301 0.1562 0.1293 0.1331 0.1598

10 0.1158 0.1385 0.1119 0.1155 0.1382 0.1128 0.1165 0.1393
0.1284 0.1542 0.1242 0.1281 0.1338 0.1251 0.1291 0.1550

0.3 1 0.5684 0.7023 0.5304 0.5410 0.6682 0.5997 0.6126 0.7562
0.8102 1.0344 0.7597 0.7749 0.9891 0.8411 0.8610 1.0969

3.3 0.4765 0.5862 0.4591 0.4677 0.5752 0.4842 0.4943 0.6080
0.6788 0.8601 0.6585 0.6673 0.8453 0.6864 0.6997 0.8863

10 0.4498 0.5523 0.4385 0.4468 0.5486 0.4484 0.4562 0.5603
0.6405 0.8094 0.6268 0.6366 0.8044 0.6515 0.6482 0.8190

0.6 1 2.4414 3.4022 2.2623 2.3006 3.2163 2.5471 2.5707 3.5135
6.1069 10.0639 5.7474 5.8466 9.6750 6.1704 6.0895 9.5331

3.3 1.7988 2.4729 1.7204 1.7492 2.4061 1.8413 1.8710 2.5565
4.4950 7.2759 4.3088 4.3981 7.1271 4.5037 4.5704 7.2894

10 1.6117 2.2022 1.5732 1.5945 2.1790 1.6167 1.6414 2.2384
4.0255 6.4639 3.9419 3.9914 6.4110 3.9748 4.0631 6.4931
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We have examined the performance of the approximation in the case of M/G/1 (M/M/1, M/E2 /1, and

M/H2/1) retrial queues with feedback and obtained the same conclusions as in [39]. For illustration purposes,

we present the numerical results only for the M/M/1 model.

For retrial time distributions, we have exponential (E) with cv = 1, two-stage Erlang (E2 ) with cv ≈ 0.7,

and two-stage hyperexponential (H2 ) with cv = 1.5. Table 2 contains the approximate results calculated

according to (15) and those from a simulation study (at 95% confidence intervals). We observe that the

approximate results are close to the simulation ones even when the mean retrial times are as large as the mean

service time.

At present, we compare the efficacy of the approximation used for different models: M1− without

feedback [39], M2−with breakdowns [12], and M3−with feedback.

From Table 3 we can observe that the approximate results obtained for these models present the same

tendency not only for the mean number of customers in the system at an arbitrary time when the server is able

to start a new service time E [N ] but also for the variance V [N ] . Furthermore, E [N ] is an increasing function

of the second moment of retrial time distribution.

4. Concluding remarks

In this paper, we have established the stochastic decomposition property of two single retrial queues: an

MX/G/1 queuing system with impatient batches and exponential retrial times and also an M/G/1 queue with

feedback and general retrial times. In the first case, the property in question was used to study the convergence

of the considered model with retrials to the ordinary one (without retrials). In the second case, by using the

established property, we have presented an approximation method that permits us to conclude that the number

of customers in the M/G/1 retrial queue with feedback (at idle epochs of the server) is equal to the sum of two

independent random variables: the number of customers in the ordinary M/G/1 queue with feedback and the

number of customers in the retrial queue with feedback given that the server is idle.
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