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Abstract:We introduce a generalized convolution product (F ∗G)α⃗,β⃗ for integral transform Fγ,η for functionals defined

on K[0, T ] , the space of complex valued continuous functions on [0, T ] that vanish at zero. We study some interesting

properties of our generalized convolution product and establish various relationships that exist among the generalized

convolution product, the integral transform, and the first variation for functionals defined on K[0, T ] . We also discuss

the associativity of the generalized convolution product.
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1. Introduction

In a unifying paper [14], Lee defined an integral transform Fγ,η of analytic functionals on an abstract Wiener

space. For certain values of the parameters γ and η and for certain classes of functionals, the Fourier–Wiener

transform [1], the Fourier–Feynman transform [2, 8], and the Gauss transform [10] are special cases of his

integral transform Fγ,η .

In [5, 11], Chang et al. established interesting relationships that exist among the integral transform,

the convolution product, and the first variation. In this paper, we introduce a generalized convolution product

and study some interesting properties of this convolution product. Our convolution product generalizes the

convolution product defined and studied in [3, 5, 11].

Let C0[0, T ] denote a one-parameter Wiener space, that is, the space of all real valued continuous functions

x(t) on [0, T ] with x(0) = 0. Let M denote the class of all Wiener measurable subsets of C0[0, T ] and let

m denote the Wiener measure. Then (C0[0, T ],M,m) is a complete measure space and we denote the Wiener

integral of a Wiener integrable functional F by∫
C0[0,T ]

F (x) dm(x).

Let K[0, T ] be the space of complex valued continuous functions defined on [0, T ] that vanish at t = 0.

Let {θ1, θ2, . . .} be a complete orthonormal set of real valued functions in L2[0, T ] . Furthermore, assume that
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each θi is of bounded variation on [0, T ] . Then for each y ∈ K[0, T ] and i = 1, 2, . . . , the Riemann–Stieltjes

integral ⟨θi, y⟩ =
∫ T

0
θi(t) dy(t) exists [11].

Next we describe the class of functionals that we work with in this paper. For σ ∈ [0, 1), let Eσ be the

space of all functionals F : K[0, T ] → C of the form

F (y) = f(⟨θ⃗, y⟩) = f(⟨θ1, y⟩, . . . , ⟨θn, y⟩) (1.1)

for some positive integer n , where f(λ⃗) = f(λ1, . . . , λn) is an entire function of the n complex variables

λ1, . . . , λn such that

|f(λ1, . . . , λn)| ≤ AF exp
{
BF

n∑
i=1

|λi|1+σ
}

(1.2)

for some positive constants AF and BF . Note that if σ = 0, the space Eσ reduces to E0 , which was introduced

and used in [3, 11, 17]. Moreover, if 0 < σ1 < σ2 < 1, we have E0 ⊊ Eσ1 ⊊ Eσ2 ⊊ L2(C0[0, T ]) .

For any F and G in Eσ , we can always express F by (1.1) and G by

G(y) = g(⟨θ⃗, y⟩) = g(⟨θ1, y⟩, . . . , ⟨θn, y⟩) (1.3)

using the same positive integer n , where f and g are entire functions of exponential type. For details, see

Remark 1.4 of [11].

Eσ is a very natural class of functionals in which to study the relationships that exist among the integral

transform, the generalized convolution product, and the first variation. In addition, Eσ is a very rich class of

functionals. For appropriate θ and ϕ , the functionals

exp
{∫ T

0

θ(t, x(t)) dt
}
, exp

{∫ T

0

θ(t, x(t)) dt
}
ϕ(x(T ))

are elements of Eσ . These functionals are of interest in Feynman integration theories and quantum mechanics.

For details on the usefulness of the class Eσ , see Sections 1 and 5 of [11].

In this paper we introduce a generalized convolution product (F ∗G)α⃗,β⃗ for integral transform Fγ,η for

functionals defined on K[0, T ] . In Section 2, we study some interesting properties of the generalized convolution

product. Theorem 2.5 gives necessary and sufficient conditions for the generalized convolution product to be

commutative, from which we conclude that the convolution product studied in [3, 11] is also commutative.

In Section 3, we establish various relationships between the generalized convolution product and the

integral transform. We also study an associativity result of the generalized convolution product in Theorem 3.9.

Although the associativity of the convolution product for the Fourier–Feynman transform was studied in [4, 9],

the associativity for the convolution product has not yet been established. In Section 4, we establish various

relationships between the generalized convolution product and the first variation, while in Section 5, we obtain

relationships involving the integral transform, the generalized convolution product, and the first variation where

each concept is used exactly once.

Relevant studies to this paper are [6, 10]. Im et al. [10] introduced a convolution product F1 ∗A,B,C,D F2

for Fourier–Gauss transforms, and studied relationships among the first variation, the convolutions, and the

Fourier–Gauss transforms. Chang et al. [6] introduced and studied a modified convolution product (Ψ∗Φ)ABCD
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for generalized exponential type functionals of the form

Ψ(x) = exp
{
(w, x)∼ − 1

2
∥w∥2C′

a,b
− (w, a)C′

a,b

}
for w ∈ C ′

a,b[0, T ] and x ∈ Ca,b[0, T ] . For the function space Ca,b[0, T ] induced by generalized Brownian

motion, see [6] and the references therein.

2. Generalized convolution product of functionals in Eσ

In this section we introduce a generalized convolution product and study necessary and sufficient conditions for

the generalized convolution product to be commutative. Let α⃗ = (α1, α2) and β⃗ = (β1, β2), where αi and βi

for i = 1, 2 are complex numbers. We begin with defining a generalized convolution product for functionals

defined on K[0, T ] .

Definition 2.1 Let F and G be functionals defined on K[0, T ] . Then a generalized convolution product

(F ∗G)α⃗,β⃗ of F and G is defined by

(F ∗G)α⃗,β⃗(y) =

∫
C0[0,T ]

F (α1x+ β1y)G(α2x+ β2y) dm(x), y ∈ K[0, T ] (2.1)

if it exists.

Remark 2.2 (i) If α⃗ = (α/
√
2,−α/

√
2) for a nonzero complex number α and β⃗ = (1/

√
2, 1/

√
2) , then the

generalized convolution product (2.1) reduces to the convolution product (F ∗G)α in the integral transform

defined and studied in [3, 11].

(ii) If α⃗ = (1/
√
2, 1/

√
2) and β⃗ = (1/

√
2,−1/

√
2) , then the generalized convolution product (2.1) reduces to

the convolution product F ∗G in the Fourier–Wiener transform studied in [17, 18].

(iii) Our generalized convolution product satisfies the additive distribution properties, that is,

((F +G) ∗H)α⃗,β⃗(y) = (F ∗H)α⃗,β⃗(y) + (G ∗H)α⃗,β⃗(y) (2.2)

and
(F ∗ (G+H))α⃗,β⃗(y) = (F ∗G)α⃗,β⃗(y) + (F ∗H)α⃗,β⃗(y) (2.3)

for y ∈ K[0, T ] .

(iv) If α⃗ = (0, 0) and β⃗ = (1, 1) , then from the definition (2.1), it is easy to see that

(F ∗G)α⃗,β⃗(y) = F (y)G(y) (2.4)

for y ∈ K[0, T ] .

After Lee defined the integral transform Fγ,η as a generalization of the Fourier–Wiener transform [14],

Chang and the authors defined the convolution product (F ∗ G)γ so that the relationship (3.8) in Section 3
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is satisfied [3]. That is, to satisfy (3.8), the convolution product (F ∗ G)γ should be defined using the same

parameter γ in Fγ,η . Our generalized convolution product (F ∗ G)α⃗,β⃗ does not depend on the parameter

γ and η in Fγ,η . Moreover, we find a sufficient condition to satisfy (3.5) in Theorem 3.3 below, which is a

generalization of (3.8).

Now we discuss the existence and commutativity of our generalized convolution product for functional

in Eσ . In our first theorem, we show that if F and G are elements of Eσ , then the generalized convolution

product (F ∗G)α⃗,β⃗ exists and is an element of Eσ .

Theorem 2.3 Let F and G in Eσ be given by (1.1) with corresponding entire functions f and g , respectively.

Then the generalized convolution product (F ∗G)α⃗,β⃗ exists, belongs to Eσ , and is given by the formula

(F ∗G)α⃗,β⃗(y) = k(⟨θ⃗, y⟩) (2.5)

for y ∈ K[0, T ] , where

k(λ⃗) = (2π)−n/2

∫
Rn

f(α1u⃗+ β1λ⃗)g(α2u⃗+ β2λ⃗) exp
{
−1

2
∥u⃗∥2

}
du⃗, (2.6)

where ∥u⃗∥2 =
∑n

i=1 u
2
i and du⃗ = du1 · · · dun .

Proof For each y ∈ K[0, T ] , using the well-known Wiener integration formula we obtain

(F ∗G)α⃗,β⃗(y) =

∫
C0[0,T ]

f(α1⟨θ⃗, x⟩+ β1⟨θ⃗, y⟩)g(α2⟨θ⃗, x⟩+ β2⟨θ⃗, y⟩) dm(x)

= (2π)−n/2

∫
Rn

f(α1u⃗+ β1⟨θ⃗, y⟩)g(α2u⃗+ β2⟨θ⃗, y⟩) exp
{
−1

2
∥u⃗∥2

}
du⃗

= k(⟨θ⃗, y⟩),

where k is given by (2.6). By Theorem 3.15 of [7], k(λ⃗) is an entire function. Since

|α1ui + β1λi|1+σ ≤ |2α1ui|1+σ + |2β1λi|1+σ,

we have

|f(α1u⃗+ β1λ⃗)| ≤ AF exp
{
BF |2α1|1+σ

n∑
i=1

|ui|1+σ +BF |2β1|1+σ
n∑

i=1

|λi|1+σ
}
.

Of course we have a similar inequality for g . Hence we have

|k(λ⃗)| ≤ A(F∗G)
α⃗,β⃗

exp
{
B(F∗G)

α⃗,β⃗

n∑
i=1

|λi|1+σ
}
,

where

A(F∗G)
α⃗,β⃗

= AFAG

( 1√
2π

∫
R
exp

{
(BF |2α1|1+σ +BG|2α2|1+σ)|u|1+σ − 1

2
u2

}
du

)n

which is finite since 0 ≤ σ < 1, and

B(F∗G)
α⃗,β⃗

= BF |2β1|1+σ +BG|2β2|1+σ < ∞.

Hence (F ∗G)α⃗,β⃗ belongs to Eσ . 2
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Chang et al. [6] and Im et al. [10] studied convolution products defined using bounded linear operators.

Hence our convolution product defined using complex numbers can be viewed, in some sense, as a special

case of the convolution products in [6, 10]. However, they considered functionals in a dense subset of a

fundamental set in L2(Ca,b[0, T ]) (Theorem 4.4 in [6]), or studied the existence of the convolution product and

some relationships (Theorem 4.6 and Corollaries 4.9, 4.10 in [10]). Our results show not only the existence but

also the explicit expressions for our convolution product (Theorem 2.3) and some relationships (2nd displayed

equation in Theorem 3.3 etc.).

The convolution product (F ∗G)α in the integral transform defined and studied in [3, 11] is commutative,

while the convolution product F ∗ G in the Fourier–Wiener transform defined and studied in [17, 18] is not

commutative. In general, our generalized convolution product is not commutative, that is, it is not always true

that (F ∗G)α⃗,β⃗(y) = (G ∗ F )α⃗,β⃗(y) as in the following example.

Example 2.4 Let F (x) = ⟨θ1, x⟩ and let G ≡ 1 be the constant function for x ∈ K[0, T ] . Then

(F ∗G)α⃗,β⃗(y) =

∫
C0[0,T ]

(α1⟨θ1, x⟩+ β1⟨θ1, y⟩) dm(x) = β1⟨θ1, y⟩

and

(G ∗ F )α⃗,β⃗(y) =

∫
C0[0,T ]

(α2⟨θ1, x⟩+ β2⟨θ1, y⟩) dm(x) = β2⟨θ1, y⟩

for all y ∈ K[0, T ] . Hence (F ∗G)α⃗,β⃗(y) ̸= (G ∗ F )α⃗,β⃗(y) unless β1 = β2 .

The following theorem gives necessary and sufficient conditions for the generalized convolution product

on Eσ to be commutative.

Theorem 2.5 (F ∗G)α⃗,β⃗ = (G ∗ F )α⃗,β⃗ for all F and G in Eσ if and only if α2
1 = α2

2 and β1 = β2 .

Proof Considering the definition (2.1) of the generalized convolution product, it is easy to see that (F ∗G)α⃗,β⃗ =

(G ∗ F )α⃗,β⃗ for all F and G in Eσ if α2
1 = α2

2 and β1 = β2 . Now let us prove the converse, that is, we shall

show that if α2
1 ̸= α2

2 or β1 ̸= β2 , then (F ∗G)α⃗,β⃗ ̸= (G ∗ F )α⃗,β⃗ for some F and G in Eσ . First assume that

β1 ̸= β2 . If we take F (x) = ⟨θ1, x⟩ and G(x) = 1 as in Example 2.4, then we know that (F ∗ G)α⃗,β⃗ does

not equal (G ∗ F )α⃗,β⃗ in this case. Next assume that β1 = β2 and α2
1 ̸= α2

2 . If we take F (x) = ⟨θ1, x⟩2 and

G(x) = 1, then

(F ∗G)α⃗,β⃗(y) =

∫
C0[0,T ]

(α1⟨θ1, x⟩+ β1⟨θ1, y⟩)2 dm(x) = α2
1 + β2

1⟨θ1, y⟩2

and

(G ∗ F )α⃗,β⃗(y) =

∫
C0[0,T ]

(α2⟨θ1, x⟩+ β2⟨θ1, y⟩)2 dm(x) = α2
2 + β2

2⟨θ1, y⟩2.

Since β1 = β2 and α2
1 ̸= α2

2 , (F ∗ G)α⃗,β⃗ does not equal (G ∗ F )α⃗,β⃗ in this case, and this completes the

proof. 2
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If α⃗ = (α/
√
2,−α/

√
2) and β⃗ = (1/

√
2, 1/

√
2) for some nonzero complex number α , then α2

1 = α2
2

and β1 = β2 . In this case our generalized convolution product (F ∗G)α⃗,β⃗ reduces to the convolution product

(F ∗G)α in the integral transform as we commented in Remark 2.2. Hence we obtain the following corollary.

Corollary 2.6 The convolution product (F ∗G)α is commutative for any nonzero complex number α .

3. Generalized convolution product and integral transform

In this section we establish several results involving our generalized convolution product and integral transform.

We begin with introducing the definition of integral transform of functionals defined on K[0, T ] . Let γ and η

be complex numbers in the rest of this paper.

Definition 3.1 Let F be a functional defined on K[0, T ] . Then the integral transform Fγ,ηF of F is defined

by

Fγ,ηF (y) =

∫
C0[0,T ]

F (γx+ ηy) dm(x), y ∈ K[0, T ] (3.1)

if it exists [3, 5, 11, 12, 14].

The following theorem shows that if F is an element of Eσ , then the integral transform of F exists and

is an element of Eσ . For the proof, see Theorem 2.1 and Remark 5.6 of [11].

Theorem 3.2 Let F ∈ Eσ be given by (1.1) . Then the integral transform Fγ,ηF exists, belongs to Eσ , and is

given by the formula

Fγ,ηF (y) = ft(⟨θ⃗, y⟩) (3.2)

for y ∈ K[0, T ] , where

ft(λ⃗) = (2π)−n/2

∫
Rn

f(γu⃗+ ηλ⃗) exp
{
−1

2
∥u⃗∥2

}
du⃗. (3.3)

Now let us investigate relationships involving an integral transform and our generalized convolution

product.

The most interesting feature of the generalized convolution product is that if α⃗ and β⃗ satisfy some

conditions, then the integral transform of the generalized convolution product of two functionals is equal to the

product of integral transforms of each functional.

Our formula (3.5) below is useful because it permits one to calculate Fγ,η(F ∗ G)α⃗,β⃗(y) without ever

actually calculating (F ∗ G)α⃗,β⃗ . In general, a convolution product is more complicated to calculate than the

integral transforms.

Theorem 3.3 Suppose that α⃗ and β⃗ satisfy the condition

γ =
α1

β1
= −α2

β2
. (3.4)
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Let F and G in Eσ be given by (1.1) with corresponding entire functions f and g , respectively. Then we have

Fγ,η(F ∗G)α⃗,β⃗(y) = F√
2γβ1,ηβ1

F (y)F√
2γβ2,ηβ2

G(y)

= F√
2γβ1,η

F (β1y)F√
2γβ2,η

G(β2y)
(3.5)

for y ∈ K[0, T ] .

Proof By (2.5), (3.2), and (3.3), we have

Fγ,η(F ∗G)α⃗,β⃗(y) = (2π)−n/2

∫
Rn

k(γu⃗+ η⟨θ⃗, y⟩) exp
{
−1

2
∥u⃗∥2

}
du⃗,

where k is given by (2.6). Then

Fγ,η(F ∗G)α⃗,β⃗(y) = (2π)−n

∫
R2n

f(α1v⃗ + β1γu⃗+ β1η⟨θ⃗, y⟩)

g(α2v⃗ + β2γu⃗+ β2η⟨θ⃗, y⟩) exp
{
−1

2
(∥u⃗∥2 + ∥v⃗∥2)

}
du⃗ dv⃗.

Since α1 = γβ1 and α2 = −γβ2 , we have

Fγ,η(F ∗G)α⃗,β⃗(y) = (2π)−n

∫
R2n

f
(√

2γβ1
v⃗ + u⃗√

2
+ ηβ1⟨θ⃗, y⟩

)
g
(√

2γβ2
u⃗− v⃗√

2
+ ηβ2⟨θ⃗, y⟩

)
exp

{
−1

2
(∥u⃗∥2 + ∥v⃗∥2)

}
du⃗ dv⃗.

Now letting p⃗ = v⃗+u⃗√
2

and q⃗ = u⃗−v⃗√
2
, we obtain

Fγ,η(F ∗G)α⃗,β⃗(y) = (2π)−n

∫
R2n

f(
√
2γβ1p⃗+ ηβ1⟨θ⃗, y⟩)

g(
√
2γβ2q⃗ + ηβ2⟨θ⃗, y⟩) exp

{
−1

2
(∥p⃗∥2 + ∥q⃗∥2)

}
dp⃗ dq⃗.

Finally by Theorem 3.2, we know that the last expression is equal to the second expression of (3.5) as we wished

to show. The second equality follows directly from the fact that

ηβi⟨θ⃗, y⟩ = η⟨θ⃗, βiy⟩,

for i = 1, 2 and for all y ∈ K[0, T ] . 2

Remark 3.4 Letting p⃗ = v⃗+u⃗√
2

and q⃗ = v⃗−u⃗√
2

in the proof of Theorem 3.3, we obtain

Fγ,η(F ∗G)α⃗,β⃗(y) = (2π)−n

∫
R2n

f(
√
2γβ1p⃗+ ηβ1⟨θ⃗, y⟩)

g(−
√
2γβ2q⃗ + ηβ2⟨θ⃗, y⟩) exp

{
−1

2
(∥p⃗∥2 + ∥q⃗∥2)

}
dp⃗ dq⃗.
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Then we have an alternative relationship

Fγ,η(F ∗G)α⃗,β⃗(y) = F√
2γβ1,ηβ1

F (y)F−
√
2γβ2,ηβ2

G(y)

= F√
2γβ1,η

F (β1y)F−
√
2γβ2,η

G(β2y)
(3.6)

for y ∈ K[0, T ] .

The following example shows that the condition (3.4) in Theorem 3.3 is not necessary to satisfy the

relationship (3.5).

Example 3.5 Let F (x) = ⟨θ1, x⟩ and let G ≡ 1 be the constant function as in Example 2.4. Then

F√
2γβ1,ηβ1

F (y) =

∫
C0[0,T ]

(
√
2γβ1⟨θ1, x⟩+ ηβ1⟨θ1, y⟩) dm(x) = ηβ1⟨θ1, y⟩

and
F√

2γβ2,ηβ2
G(y) = 1

for all y ∈ K[0, T ] . On the other hand, since we obtained

(F ∗G)α⃗,β⃗(y) = β1⟨θ1, y⟩

in Example 2.4, we have

Fγ,η(F ∗G)α⃗,β⃗(y) = β1

∫
C0[0,T ]

(γ⟨θ1, x⟩+ η⟨θ1, y⟩) dm(x) = ηβ1⟨θ1, y⟩

for all y ∈ K[0, T ] . Hence we may have

Fγ,η(F ∗G)α⃗,β⃗(y) = F√
2γβ1,ηβ1

F (y)F√
2γβ2,ηβ2

G(y)

even if the condition (3.4) is not satisfied.

Corollary 3.6 Suppose that α⃗ and β⃗ satisfy one of the following conditions.

(i) α1 = α2 = γ√
2
, β1 = −β2 = 1√

2

(ii) α1 = −α2 = γ√
2
, β1 = β2 = 1√

2
.

Let F and G in Eσ be given by (1.1) with corresponding entire functions f and g , respectively. Then we have

Fγ,η(F ∗G)α⃗,β⃗(y) = Fγ,β1ηF (y)F±γ,β2ηG(y) = Fγ,ηF (β1y)F±γ,ηG(β2y) (3.7)

for y ∈ K[0, T ] .

Proof In either case, α⃗ and β⃗ satisfy the condition (3.4). Hence we obtain the relationships by (3.5) and

(3.6). 2

In particular, if α⃗ = (α/
√
2,−α/

√
2) and β⃗ = (1/

√
2, 1/

√
2) for some nonzero complex number α , then

we have the following corollary proved in Formula 3.1 of [11].
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Corollary 3.7 Let α and β be complex numbers. Let F and G in Eσ be given by (1.1) with corresponding

entire functions f and g , respectively. Then

Fα,β(F ∗G)α(y) = Fα,β/
√
2F (y)Fα,β/

√
2G(y) = Fα,βF

( y√
2

)
Fα,βG

( y√
2

)
(3.8)

for y ∈ K[0, T ] .

We close this section by considering the associativity of our generalized convolution product.

Huffman et al. [9] and Chang et al. [4] studied associativity of the convolution product for the Fourier–

Feynman transform. However, Example 3.8 below shows that the generalized convolution product is not

associative, that is, it is not always true that ((F ∗G)α⃗,β⃗ ∗H)α⃗,β⃗(y) = (F ∗ (G ∗H)α⃗,β⃗)α⃗,β⃗(y).

Example 3.8 Let F (x) = ⟨θ1, x⟩ and let 1 be the constant function 1(x) = 1 for x ∈ K[0, T ] . Since

(F ∗ 1)α⃗,β⃗(y) = β1⟨θ1, y⟩ and (1 ∗ 1)α⃗,β⃗(y) = 1 , we have

((F ∗ 1)α⃗,β⃗ ∗ 1)α⃗,β⃗(y) = β2
1⟨θ1, y⟩

and
(F ∗ (1 ∗ 1)α⃗,β⃗)α⃗,β⃗(y) = β1⟨θ1, y⟩

for all y ∈ K[0, T ] . Hence

((F ∗ 1)α⃗,β⃗ ∗ 1)α⃗,β⃗(y) ̸= (F ∗ (1 ∗ 1)α⃗,β⃗)α⃗,β⃗(y)

unless β2
1 = β1 .

However, we have an associativity result of the generalized convolution product for the integral transform

in the following sense.

Theorem 3.9 Let β⃗i = (βi1, βi2) , i = 1, 2, 3, 4 , satisfy the following three conditions.

(i) β12β21 = β31β42

(ii) β22 =
√
2β32β42

(iii) β41 =
√
2β11β21 .

Let

α⃗1 =
√
2γβ21(β11,−β12), α⃗2 = γ(β21,−β22),

α⃗3 =
√
2γβ42(β31,−β32), α⃗4 = γ(β41,−β42).

Let F,G , and H in Eσ be given by (1.1) with corresponding entire functions f, g , and h , respectively. Then

we have [
(F ∗G)α⃗1,β⃗1

(·) ∗H
( ·√

2

)]
α⃗2,β⃗2

(y) =
[
F
( ·√

2

)
∗ (G ∗H)α⃗3,β⃗3

(·)
]
α⃗4,β⃗4

(y) (3.9)

for all y ∈ K[0, T ] .
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Proof For a nonzero complex number η , we know from Section 5 of [11] that Fiγ/η,1/η is an inverse integral

transform of Fγ,η , that is,

Fiγ/η,1/ηFγ,ηF (y) = F (y)

for all y ∈ K[0, T ] . Hence to establish (3.9) it is enough to show that

Fγ,η

[
(F ∗G)α⃗1,β⃗1

(·) ∗H
( ·√

2

)]
α⃗2,β⃗2

(y) = Fγ,η

[
F
( ·√

2

)
∗ (G ∗H)α⃗3,β⃗3

(·)
]
α⃗4,β⃗4

(y)

for all y ∈ K[0, T ] . First consider the left-hand side of the last expression. Since (F ∗G)α⃗1,β⃗1
and (G ∗H)α⃗3,β⃗3

belong to Eσ by Theorem 2.3 and since

γ =
γβ21

β21
= −−γβ22

β22
,

we can apply Theorem 3.3 to obtain

L ≡ Fγ,η

[
(F ∗G)α⃗1,β⃗1

(·) ∗H
( ·√

2

)]
α⃗2,β⃗2

(y)

= F√
2γβ21,η

(F ∗G)α⃗1,β⃗1
(β21y)F√

2γβ22,η
H
( 1√

2
β22y

)
.

Moreover, since

√
2γβ21 =

√
2γβ11β21

β11
= −−

√
2γβ12β21

β12
,

we can apply Theorem 3.3 once more to obtain

L = F2γβ11β21,ηF (β11β21y)F2γβ12β21,ηG(β12β21y)F√
2γβ22,η

H
( 1√

2
β22y

)
.

Now consider the integral transform of the right-hand side of (3.9). Since

γ =
γβ41

β41
= −−γβ42

β42
,

by Theorem 3.3, we have

R ≡ Fγ,η

[
F
( ·√

2

)
∗ (G ∗H)α⃗3,β⃗3

(·)
]
α⃗4,β⃗4

(y)

= F√
2γβ41,η

F
( 1√

2
β41y

)
F√

2γβ42,η
(G ∗H)α⃗3,β⃗3

(β42y).

Moreover, since

√
2γβ42 =

√
2γβ31β42

β31
= −−

√
2γβ32β42

β32
,

we have

R = F√
2γβ41,η

F
( 1√

2
β41y

)
F2γβ31β42,ηG(β31β42y)F2γβ32β42,ηH(β32β42y).

Finally, by the conditions (i), (ii), and (iii) we conclude that L = R and this completes the proof. 2
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Remark 3.10 1. If we use the same technique as in the proof of Theorem 3.9 and apply relationship (3.6)

instead of (3.5), then we obtain the same associativity result.

2. Some sets of vectors of complex numbers satisfying the conditions in Theorem 3.9 are as follows:

α⃗1 = α(β,−
√
2β2), α⃗2 = α(β,∓β),

α⃗3 = α(
√
2β2,∓β), α⃗4 = α(β,−β)

and

β⃗1 = (1/
√
2, β), β⃗2 = (β,±β), β⃗3 = (β,±1/

√
2), β⃗4 = (β, β),

where α and β are any complex numbers.

For any complex number α , α⃗i = (α/
√
2,−α/

√
2) and β⃗i = (1/

√
2, 1/

√
2) for i = 1, 2, 3, 4 satisfy the

conditions in Theorem 3.9. Hence we have the following associativity result for the convolution product of the

integral transform.

Corollary 3.11 Let F,G , and H in Eσ be given by (1.1) with corresponding entire functions f, g , and h ,

respectively. Then for any complex number α , we have[
(F ∗G)α(·) ∗H

( ·√
2

)]
α
(y) =

[
F
( ·√

2

)
∗ (G ∗H)α(·)

]
α
(y) (3.10)

for all y ∈ K[0, T ] .

4. Generalized convolution product and the first variation

In this section we establish several results involving our generalized convolution product and the first variation.

We begin by introducing the definition of the first variation of functionals defined on K[0, T ] .

Definition 4.1 Let F be a functional defined on K[0, T ] and let w ∈ K[0, T ] . Then the first variation δF of

F is defined by

δF (y|w) = ∂

∂t
F (y + tw)

∣∣∣
t=0

, y ∈ K[0, T ] (4.1)

if it exists [11, 13, 15, 16].

The following theorem shows that if F is an element of Eσ , then the first variation δF (y|w) of F exists

and is an element of Eσ as a function of y and as a function of w . For the proofs, see Theorems 2.3 and 2.4

and Remark 5.6 of [11].

Theorem 4.2 Let F ∈ Eσ be given by (1.1) . Then the first variation δF (y|w) exists for y, w ∈ K[0, T ] and

is given by the formula

δF (y|w) =
n∑

j=1

⟨θj , w⟩fj(⟨θj , y⟩) =
n∑

j=1

⟨θj , w⟩Fj(y), (4.2)

where fj(λ⃗) = (∂/∂λj)f(λ⃗) and Fj(y) = fj(⟨θj , y⟩) for j = 1, . . . , n . Furthermore, it belongs to Eσ as a

function of y ∈ K[0, T ] and as a function of w ∈ K[0, T ] .
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In our next theorem, we obtain a formula for the first variation of the generalized convolution product.

Theorem 4.3 Let F and G in Eσ be given by (1.1) with corresponding entire functions f and g , respectively.

Then
δ(F ∗G)α⃗,β⃗(y|w) = β1(δF (·|w) ∗G(·))α⃗,β⃗(y) + β2(F (·) ∗ δG(·|w))α⃗,β⃗(y) (4.3)

for y, w ∈ K[0, T ] . Moreover, both sides of the expressions in (4.3) are given by the formula

n∑
j=1

⟨θj , w⟩[β1(Fj ∗G)α⃗,β⃗(y) + β2(F ∗Gj)α⃗,β⃗(y)] (4.4)

for y, w ∈ K[0, T ] .

Proof By applying Theorem 4.2 to the expression (2.5), we obtain

δ(F ∗G)α⃗,β⃗(y|w) =
n∑

j=1

⟨θj , w⟩kj(⟨θ⃗, y⟩),

where kj is the j -th partial derivative of k in (2.6). Since f(⟨θ⃗, ·⟩) and g(⟨θ⃗, ·⟩) belong to Eσ , we can pass the

partial derivative under the integral sign to obtain

kj(⟨θ⃗, y⟩) = (2π)−n/2

∫
Rn

[β1fj(α1u⃗+ β1⟨θ⃗, y⟩)g(α2u⃗+ β2⟨θ⃗, y⟩)

+ β2f(α1u⃗+ β1⟨θ⃗, y⟩)gj(α2u⃗+ β2⟨θ⃗, y⟩)] exp
{
−1

2
∥u⃗∥2

}
du⃗.

By Theorem 2.3, the last integral can be expressed as a sum of two generalized convolution products, that is,

kj(⟨θ⃗, y⟩) = β1(Fj ∗G)α⃗,β⃗(y) + β2(F ∗Gj)α⃗,β⃗(y).

Since our generalized convolution product is distributive as we see in Remark 2.2, by Theorem 4.2 again, we

have

δ(F ∗G)α⃗,β⃗(y|w) =
n∑

j=1

⟨θj , w⟩[β1(Fj ∗G)α⃗,β⃗(y) + β2(F ∗Gj)α⃗,β⃗(y)]

= β1(δF (·|w) ∗G(·))α⃗,β⃗(y) + β2(F (·) ∗ δG(·|w))α⃗,β⃗(y)

as we wanted to show. 2

Next we obtain two formulas: in Theorem 4.4 we take generalized convolution product with respect to

the first argument of the variation, while in Theorem 4.5 we take generalized convolution product with respect

to the second argument of the variation.

Theorem 4.4 Let F and G in Eσ be given by (1.1) with corresponding entire functions f and g , respectively.

Then

(δF (·|w) ∗ δG(·|w))α⃗,β⃗(y) =
n∑

j=1

n∑
l=1

⟨θj , w⟩⟨θl, w⟩(Fj ∗Gl)α⃗,β⃗(y) (4.5)

for y, w ∈ K[0, T ] .
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Proof Applying the additive distribution properties of the generalized convolution product in Remark 2.2 to

the expressions

δF (y|w) =
n∑

j=1

⟨θj , w⟩Fj(y), δG(y|w) =
n∑

l=1

⟨θl, w⟩Gl(y)

yields (4.5) as desired. 2

Theorem 4.5 Let F and G in Eσ be given by (1.1) with corresponding entire functions f and g , respectively.

Then

(δF (y|·) ∗ δG(y|·))α⃗,β⃗(w) = β1β2δF (y|w)δG(y|w) + α1α2

n∑
j=1

Fj(y)Gj(y) (4.6)

for y, w ∈ K[0, T ] .

Proof By the same method as in the proof of Theorem 4.4, we have

(δF (y|·) ∗ δG(y|·))α⃗,β⃗(w) =
n∑

j=1

n∑
l=1

(⟨θj , ·⟩ ∗ ⟨θl, ·⟩)α⃗,β⃗(w)Fj(y)Gl(y),

where

(⟨θj , ·⟩ ∗ ⟨θl, ·⟩)α⃗,β⃗(w) =
∫
C0[0,T ]

(α1⟨θj , x⟩+ β1⟨θj , w⟩)(α2⟨θl, x⟩+ β2⟨θl, w⟩) dm(x).

Evaluating the last Wiener integral we obtain

(⟨θj , ·⟩ ∗ ⟨θl, ·⟩)α⃗,β⃗(w) =

{
α1α2 + β1β2⟨θj , w⟩2, if j = l

β1β2⟨θj , w⟩⟨θl, w⟩, if j ̸= l

which completes the proof. 2

Letting G = F in (4.3), (4.5), and (4.6) yields the following corollary.

Corollary 4.6 Let F in Eσ be given by (1.1) with corresponding entire function f . Then

δ(F ∗ F )α⃗,β⃗(y|w) =
n∑

j=1

⟨θj , w⟩[β1(Fj ∗ F )α⃗,β⃗(y) + β2(F ∗ Fj)α⃗,β⃗(y)], (4.7)

(δF (·|w) ∗ δF (·|w))α⃗,β⃗(y) =
n∑

j=1

n∑
l=1

⟨θj , w⟩⟨θl, w⟩(Fj ∗ Fl)α⃗,β⃗(y) (4.8)

and

(δF (y|·) ∗ δF (y|·))α⃗,β⃗(w) = β1β2[δF (y|w)]2 + α1α2

n∑
j=1

[Fj(y)]
2 (4.9)

for y, w ∈ K[0, T ] . In addition, if α2
1 = α2

2 and β1 = β2 , then the generalized convolution product is

commutative and so (4.7) reduces to

δ(F ∗ F )α⃗,β⃗(y|w) = (β1 + β2)

n∑
j=1

⟨θj , w⟩(F ∗ Fj)α⃗,β⃗(y) (4.10)

for y, w ∈ K[0, T ] .
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Note that (4.10), (4.8), and (4.9) are generalizations of (3.18), (3.19), and (3.20) in [11], respectively.

For a complex number α , let α⃗ = (α/
√
2,−α/

√
2) and β⃗ = (1/

√
2, 1/

√
2). Then Formulas 3.5, 3.6, and

3.7 in [11] can be obtained as corollaries of our Theorems 4.3, 4.4, and 4.5, respectively, as follows.

Corollary 4.7 Let F and G in Eσ be given by (1.1) with corresponding entire functions f and g , respectively.

Then

δ(F ∗G)α(y) =
n∑

j=1

⟨θj , w⟩√
2

[(Fj ∗G)α(y) + (F ∗Gj)α(y)], (4.11)

(δF (·|w) ∗ δG(·|w))α(y) =
n∑

j=1

n∑
l=1

⟨θj , w⟩⟨θl, w⟩(Fj ∗Gl)α(y) (4.12)

and

(δF (y|·) ∗ δG(y|·))α(w) =
1

2
δF (y|w)δG(y|w)− α2

2

n∑
j=1

Fj(y)Gj(y) (4.13)

for y, w ∈ K[0, T ] .

5. Further results

Combining properties in Sections 3 and 4, we obtain various interesting relationships involving the integral

transform, the generalized convolution product, and the first variation where each concept is used exactly once.

We begin this section by introducing two relationships involving integral transform and the first variation

proved in Formulas 3.3 and 3.4, respectively, in [11].

Formula 5.1 Let F ∈ Eσ be given by (1.1) . Then we have

Fγ,ηδF (·|w)(y) = 1

η
δFγ,ηF (y|w) =

n∑
j=1

⟨θj , w⟩Fγ,ηFj(y) (5.1)

and
Fγ,ηδF (y|·)(w) = ηδF (y|w) (5.2)

for y, w ∈ K[0, T ] .

Because of Theorems 2.3, 3.2, and 4.2, all the functionals that arise in this section are automatically

elements of Eσ . As usual, F and G in Eσ are given by (1.1) with corresponding entire functions f and g ,

respectively.

Formula 5.2 Let α⃗ and β⃗ satisfy the condition (3.4). Taking the first variation of the expressions in (3.5)

with respect to the first argument of the variation yields the formula

δFγ,η(F ∗G)α⃗,β⃗(y|w)

= F√
2γβ1,ηβ1

F (y) δF√
2γβ2,ηβ2

G(y|w) + δF√
2γβ1,ηβ1

F (y|w)F√
2γβ2,ηβ2

G(y)

= F√
2γβ1,η

F (β1y) δF√
2γβ2,η

G(β2y|w) + δF√
2γβ1,η

F (β1y|w)F√
2γβ2,η

G(β2y)

(5.3)

for y, w ∈ K[0, T ] .
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Formula 5.3 Replacing F with Fγ,ηF and G with Fγ,ηG in (4.3) and (4.4) yields the formula

δ(Fγ,ηF ∗ Fγ,ηG)α⃗,β⃗(y|w)

=

n∑
j=1

⟨θj , w⟩[β1(Fγ,ηFj ∗ Fγ,ηG)α⃗,β⃗(y) + β2(Fγ,ηF ∗ Fγ,ηGj)α⃗,β⃗(y)
(5.4)

for y, w ∈ K[0, T ] .

Formula 5.4 Taking the integral transform of the expressions in (4.3) and (4.4) with respect to the second

argument of the variation or using (5.2) yields the formula

Fγ,ηδ(F ∗G)α⃗,β⃗(y|·)(w) = ηδ(F ∗G)α⃗,β⃗(y|w)

= η

n∑
j=1

⟨θj , w⟩[β1(Fj ∗G)α⃗,β⃗(y) + β2(F ∗Gj)α⃗,β⃗(y)]
(5.5)

for y, w ∈ K[0, T ] .

Formula 5.5 Let α⃗ and β⃗ satisfy the condition (3.4). Taking the integral transform of the expressions in (4.5)

with respect to the first argument of the variation and then using (3.5) and (5.1) yields the formula

Fγ,η(δF (·|w) ∗ δG(·|w))α⃗,β⃗(y) = F√
2γβ1,ηβ1

[δF (·|w)](y)F√
2γβ2,ηβ2

[δG(·|w)](y)

=
1

η2β1β2
δF√

2γβ1,ηβ1
F (y|w)δF√

2γβ2,ηβ2
G(y|w)

(5.6)

for y, w ∈ K[0, T ] .

Formula 5.6 Let α⃗ and β⃗ satisfy the condition (3.4). Taking the integral transform of the expressions in (4.6)

with respect to the second argument of the variation, and then using (5.2) yields the formula

Fγ,η(δF (y|·) ∗ δG(y|·))α⃗,β⃗(w) = F√
2γβ1,ηβ1

δF (y|·)(w)F√
2γβ2,ηβ2

δG(y|·)(w)

= η2β1β2δF (y|w)δG(y|w)
(5.7)

for y, w ∈ K[0, T ] .

Formula 5.7 Taking the convolution product of the expressions in (5.1) with respect to the first argument of

the variation yields the formula

(Fγ,ηδF (·|w) ∗ Fγ,ηδG(·|w))α⃗,β⃗(y) =
n∑

j=1

n∑
l=1

⟨θj , w⟩⟨θl, w⟩(Fγ,ηFj ∗ Fγ,ηGl)α⃗,β⃗(y) (5.8)

for y, w ∈ K[0, T ] .
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Formula 5.8 Taking the convolution product of the expressions in (5.2) with respect to the second argument of

the variation, and then using (4.6) yields the formula

(Fγ,ηδF (y|·) ∗ Fγ,ηδG(y|·))α⃗,β⃗(w)

= η2(δF (y|·) ∗ δG(y|·))α⃗,β⃗(w)

= η2
[
β1β2δF (y|w)δG(y|w) + α1α2

n∑
j=1

Fj(y)Gl(y)
] (5.9)

for y, w ∈ K[0, T ] .

Note that the left-hand side of each of the formulas (5.3)–(5.9) involves all three of the operations of

integral transform, convolution product, and first variation, while each right-hand side involves at most two.
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