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Abstract: In the present investigation we obtain some sufficient conditions for the analyticity and the p-valence of
an integral operator in the unit disk . Using these conditions we give some applications for a few different integral
operators. The significant relationships and relevance to other results are also given. A number of known univalent

conditions would follow upon specializing the parameters involved in our main results.

Key words: Univalent functions, p-valent function, p-subordination chain, p-valence criterion

1. Introduction

Denote by D, = {z € C: |z|] <r} (0 <r < 1) the disk of radius r and let D = D;. Let A be the class of
analytic functions f in the open unit disk D that satisfy the usual normalization conditions f(0) = f/(0)—1 = 0.
Traditionally, the subclass of A consisting of univalent functions is denoted by S. Let P denote the class of
functions p(z) = 1+ Y07 pn2™, z € D that satisfy the condition Rp(z) > 0. Let A, denote the class of
analytic functions in the open unit disk I that satisfy the normalizations f*)(0) = 0 for k = 1,2,...,p — 1
(peN=1{1,2,...}) and f®)(0) # 0, and let A, be the subclass of A, consisting of functions of the form
f(z) = 2P + ZZOZHP anz"™ in D. These classes have been one of the most important subjects of research
in geometric function theory for a long time (see [22]). For analytic functions f and ¢ in D, f is said to be
subordinate to g, denoted by f(z) < g(z), if there exists an analytic function w satisfying w(0) = 0, |w(z)| < 1,
such that f(z) = g(w(z)) (# € D). In particular, if the function ¢ is univalent in D, the above subordination is
equivalent to f(0) = ¢(0) and f(D) C g(D).

2. p-Normalized subordination chain and related theorem

Before proving our main theorem we need a brief summary of the method of p-subordination chains.

Definition 2.1 (see Hallenbeck and Livingston [8]) Let L(z,t) be a function defined on DxI, where I := [0, 00).
L(z,t) is called a p-subordination chain if L(z,t) satisfies the following conditions:

1. L(z,t) is analytic in D for all t € I,

2. L&N0,t) =0, k=1,2,....,p—1, and LP)(0,t) # 0,

3. L(z,t) < L(z,8) forall 0 <t<s<o0, z€D.

*Correspondence: edeniz36@gmail.com
2010 AMS Mathematics Subject Classification: 30C45, 30C55, 30C80.
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A p-subordination chain is said to be normalized if £(0,t) =0 and L£®)(0,t) = pleP* for all t € I.

In order to prove our main results we need the following lemma due to Hallenbeck and Livingston [§].

Lemma 2.1 Let L(z,t) = ay(t)2P +ap41(t)2PT + ..., a,(t) # 0, be analytic in D, for all t € I. Suppose that:

(i) L(z,t) is a locally absolutely continuous function in the interval I and locally uniformly with respect to
D,..

(i1) ap(t) is a complex valued continuous function on I such that |a,(t)] — oo for t — oo and

forms a normal family of functions in D,.
(iii) There exists an analytic function h: 1D x I — C satisfying Rh(z,t) >0 for all z€ D, t € I and

AL(zt)  OL(z1)
P T o

h(z,t), zeD,, tel. (2.1)

Then, for each t € I, the function L(z,t) is the pth power of a univalent function in D.

Pommerenke’s theory of subordination chains (see [18, 19]) corresponds to p = 1.

The univalence of complex functions is an important property, but unfortunately it is difficult and in
many cases impossible to show directly that a certain complex function is univalent. For this reason, many
authors obtained different types of sufficient conditions of univalence or not. Pommerenke [18, 19] and Becker
[2] used the idea of normalized 1-subordination chains to obtain sufficient conditions for univalence. Two of
the most important conditions of univalence are the well-known criteria of Becker [2] and Ahlfors [1], which
were obtained by a clever use of the theory of 1-subordination chains and the generalized Loewner differential
equation. Detailed information about 1-subordination chains can be found in Hotta’s works (see [10] and [9]).
Furthermore, Pascu [15] and Pescar [16] obtained some extensions of Becker and Ahlfors’ univalence criteria for
an integral operator, respectively, using 1-subordination chains.

For further results we refer to the recent papers [3-6, 9-12, 14, 20, 21] where, among other things, some
interesting univalence criteria and quasiconformal extensions were established.

It is the purpose of this paper to use p-subordination chains to obtain conditions for an integral operator
to be the pth power of a univalent function where p = 1,2, ... . In special cases our results contain the results
obtained by some of the authors cited in the references. We also extend the aforementioned results of Hallenbeck

and Livingston [8]. Our considerations are based on the theory of p-subordination chains.

3. p-Valence criteria

Making use of Lemma 2.1 we can prove now our main results.

Theorem 3.1 Let « and ¢ be complex numbers such that R(a) >0, |¢| <p and f € Aj. If the inequality

clz|

20p+<1_|:|2(w) [1 p+ Zfﬂ(z)} <p (3.1)

T f(z)
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holds true for all z € D, then the integral operator

2 1/«
F.(z) = a/up(a_l)f’(u)du (3.2)
0
is the pth power of a univalent function in D, where the principal branch is considered.

Proof We will prove that there exists a real number r € (0, 1] such that the function £ : D, x I — C, defined
formally by

—t 1/«

L(z,t)= |« / uP O f (u)du + ]i (e®°P" —1) (e7'z) (pla=t)+1) f'(e7t2) (3.3)
0

is analytic in D, for all ¢ € I.

Consider the function

and then we have
_ «a = a(n + _ ap+n
p1(z,t) = (e772) ™" + Z Manﬂ, (e7'2) P
n=1
Let the function ¢2(z,t) be such that
D1(2,t) = 2P da(2, t).

It is easy to check that ¢o(z,t) is analytic in D for all ¢ € I and

oo

¢2('Z7t) ap+n

n
OntpZ -

Since the function f(z) is analytic in D, it follows that the function
(z,t) = (€27 — 1) et P+ 1p (o=t )

is an analytic function in D for all ¢ € I. Then the function ¢4(z,t) given by

¢4(Z,t) = ¢2(Z,t)+

(e

is also analytic in D.
We have

$4(0,1) = ¢2(0,)+

1 p + ce 2Pt
0,t) = e | ———1| .
C¢3( 7) € |: :|

p+ec
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The conditions |c¢| < p and R(a) > 0 yield ¢4(0,t) # 0 for all ¢ € I. Therefore, there is a disk D,.,, r; € (0,1],
in which ¢4(z,t) # 0 for all ¢ € I. Then we can choose a uniform branch of [¢4(z,¢)]"”* analytic in D,,,
denoted by ¢5(z,t).

It follows from (3.3) that

L(z,1) = 2P5(2,1) = ap(t)2F + ap+1(t)2’p+1 + ..

and thus the function £(z,t) is analytic in D, .
We have
p+ce—2o¢pt 1/«
pte } '

ap(t) = e [
From |c| < p and R(«) > 0, we obtain

Jim Jay(1)] = oo,

Moreover, a,(t) # 0 for all ¢t € I.

From the analyticity of L£(z,t) in D,,, it follows that there exists a number 79, 0 < ro < r; where
L(z,t)/ap(t) is analytic in disk D,, and a constant K = K(rs) such that

L(z,t
(= )‘ <K, VzeD,, tel
ap(t)
Then, by Montel’s theorem, {i(’z(tt)) } , is a normal family in D,,. From the analyticity of %, we obtain
» te

that for all fixed numbers T' > 0 and r3, 0 < r3 < 79, there exists a constant K; > 0 (that depends on T and
r3) such that

'8£(z, t)
ot

‘ <K;, VzeD,,, tel0,T].

Therefore, the function L£(z,t) is locally absolutely continuous in I, locally uniform with respect to D,.,.
Let h: DD x I — C be the function defined by

_ 0L(z,t) , 0L(z,t)
If the function
OL(z,t z0L(z,t
wep) = MED 1P - 2 (3.0
T (e ) 41 pOEGA | LG

is analytic in D x I and |w(z,t)| <1, for all z € D and ¢ € I, then h(z,t) is an analytic function with positive
real part in D, for all ¢t € I.
From equality (3.4), we have
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where
—672Oépt) e—tzf//(e—tz)

. 1
(e t) = oo Fle )

1—p+ +p (3.6)

for zreD and t € I.
The inequality |w(z,t)] <1 for all z €D and ¢ € I, where w(z,t) is defined by (3.5), is equivalent to

|U(z,t) —p| <p, V2eD, tel. (3.7)
From the hypothesis of the theorem and (3.6), we have
|U(2,0) —p|=|c| <p, forallzeD (3.8)

and
|W(0,t) — p| = |ce 2P| = || e PR < forallt el (3.9
Let t > 0 and let z € D\{0}. Since e *2| < et <1 forall zeD={z€C: |z <1} we find that U(z,t) —p

is an analytic function in D. Using the maximum modulus principle it follows that for all z € D\{0} and each
t > 0 arbitrarily fixed there exists 8 = 6(¢t) € R such that

|¥(z,8) = pl < lim [¥(z,8) —p| = |w (e, t) - p|. (3.10)

t

Denote u = e~*e?. Then |u| = e~!, and from (3.6), we have

; e (1) uf” ()
|\I/(ea,t)—p’— clul p—|—T {l—p—k ) ] .

Since u € D, the inequality (3.1) implies that

@ (e, t) —p| <p.
and from (3.8), (3.9), and (3.10), we conclude that

(W, t) —p| <p

for all z €D and ¢ € I. Therefore, |w(z,t)| <1 forall zeD and ¢t € I.

Since all the conditions of Lemma 2.1 are satisfied, we obtain that the function L£(z,t) is the pth power
of a univalent function whole unit disk D, for all ¢t € I. For t = 0 we have L(z,0) = F,(z), for z € D and
therefore the function F,(z) is the pth power of a univalent function in D. O

For p =1, condition (3.1) is a well-known sufficient condition of univalence given by Pescar [16].

Condition (3.1) of Theorem 3.1 can be replaced with a simpler one.

Theorem 3.2 Let f € A; and let a be a complex number such that R(«) > 0. Supposing that

z N(Z)

f'(z)

is true for all z € D, then the integral operator F,(z) defined by (3.2) is the pth power of a univalent function

‘1 —-p+ < pR(a) (3.11)

in D, where the principal branch is considered.
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Proof It is known (see [15]) that for all = € D \{0} and R(a) >0,

1— |z

(07

1— |Z|2P5R(Ot)
R(a)

(3.12)

Making use of (3.11), we obtain

2oy, (L) 1o ps 202

a ')
[ 2f"(2)
< 217%(0‘) 1 _
S T R 5
o 1— |z 2pR(a)
< plaPH 4+ §R(|a) pR(a) =p.

Since the conditions of Theorem 3.1 are satisfied, it follows that the function F,(z) defined by (3.2) is the pth
power of a univalent function in D. O

We now give some results that follow from Theorem 3.1. If we set ¢ = 0, then by Theorem 3.1 we obtain

the following:

Corollary 3.3 Let f € Ay and let « be a complex number such that R(c) > 0. Supposing that

S e

is true for all z € D, then the integral operator F,(z) defined by (3.2) is the pth power of a univalent function
i D, where the principal branch is considered.

Becker’s univalence criterion can also be obtained from Corollary 3.3 for « = p = 1. Using the inequality
(3.12) in Corollary 3.3, we obtain the following result:

Corollary 3.4 Let f € Ay and let « be a complex number such that R(a) > 0. Supposing that

1_ |Z‘2;05R(<X)

R()

2f"(2)
f'(2)

L—p+

~

is true for all z € D, then the integral operator F,(z) defined by (3.2) is the p power of a univalent function

in D, where the principal branch is considered.

Example 3.1 Let a be complex number such that R(a) > 1 — 1%. Then the integral operator

2 1/«
Eu(z) = ozp/upo‘fleu(p_l)du (3.13)
0

s the pth power of a univalent function in D, where the principal branch is considered.
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Proof In the integral operator (3.2) we get f'(z) = p(ze*)?~". Then we have

()
= (p—1)(1+2).
f'(2)
From Corollary 3.4 we see that F, given by (3.13) is the pth power of a univalent function in D. O

For p =1, Corollary 3.4 in turn implies the well-known univalence citerion of Pascu [15].

Theorem 3.5 Let o and ¢ be complex numbers such that R(a) > 0, |¢| < p and g € A. Supposing that

C|Z|2ap+(1_f|2(m) {(1 — ap) (1 _ Zg;g)) +Z;’£S)]

is true for all z € D, then the function g is univalent in D.

Proof Let F,(z) = [g(2)]P. Thus, we obtain

F(2) = pg (2)(g(z)) PP =),

It is easy to see that F,, satisfies the assumption of Theorem 3.1 if it satisfies the assumption of this theorem.

Thus, ¢ is a univalent function in D because F,, in view of Theorem 3.1 is the pth power of a univalent function.

O
Reasoning along the same lines as in the proof of the Theorem 3.1 for the p-subordination chain
etz 1/a
L(zt) = | a / wP@=D £ (w) du + % (€2t — 1) (e7t2) PV (et : (3.14)
p+ec

0

we obtain the following theorem. We omit the details.

Theorem 3.6 Let a and ¢ be complex numbers such that |a — 1| <1, |¢| <p and f € Aj. If the inequality

clz|* + (1 — |z|2p) [p(a -2)+1+ Zﬁ;iz),)] ’ <p (3.15)

holds true for all z € D, then the integral operator Fn(z) defined by (3.2) is the pth power of a univalent
function in D, where the principal branch is considered.

4. Applications

The problem of the univalence of integral operators in D was discussed by many authors. For example,
Pfaltzgraff [17] proved that for f € S the integral operator

is in the class S if |3| < 1. He showed that the bound 1 is sharp.
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On the other hand, Kim and Merkes [13] showed that for f € S the integral operator

oo = /<ﬂ>)

is in the class S if |y| < 1.

The following lemma is of fundamental importance in our investigation.

Lemma 4.1 (Wesolowski [23]). For each function f € S and a fixred z, z € D, the inequality

z

2
‘f(z) 1+ |z]

<2(1+|z|)

holds.

Proof By using a rotation of the form fy(z) = A\f(A\z2), |A| = 1, if needed, we see that it is enough to prove
the inequality

r
——1+r2§21+r, zl=r.
e 1+, I
Grunsky [7, p. 323] proved that the domain of variability in f(zz) is the closed disk
lnifln(lfvg) <lnl+r |z|=r, ze€D
1) St FEnoeen

Hence, arguing as in [7, pp. 323-326] and denoting 1*~ = a, for any 6, 6 € [0,27] we have

r

e

— 142

’(1 - rz)aem -1+ 7’2’

= (1- Tz)\/agcose —2a¢°89 cos(sinflna) + 1

147 cos 6
< (1-7?) (1) +1—72<2(1+7).
—-r
O
Theorem 4.1 Let f€S. If a and B are any complex numbers such that |a — 1| <1 and
p(l—ja—-1
18] < pll —la—1)
6p — 2
then the integral operator
o 1/«
Gap(z) = ap/uapfl (f'(w)’ du (4.1)

0

s the pth power of a univalent function in D, where the principal branch is considered.
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Proof We begin by setting

F(:) = [ (5 () d (4.2)
so that, obviously,
F'(z) = p"~1(f'(2))”, (4.3)
and from (4.3), we obtain
F(z) 2f"(2)
o - () )

It is well known that for any arbitrary point zy € D, the function f € S can be written as

k <1Z++Zz200> — k(ZO)
z) = , z€D, 4.5
T = a—p °© (45)

where k is a function in the class S.
Therefore, we get that for all such z,

—Zof”(—Zo) _ 2 |ZQ|2 — 2a2Z0
f'(—=o0) 1— |z0|2

(4.6)

where az = a2(zp) is the second coefficient in the Taylor series expansion of the function k. The classical
Bieberbach theorem states that |az(29)| < 2 for every zo € D.
From (4.4) and (4.6), putting zo = —z, we have

2|2|° + 2a2(—2)z

1|2

2F"(z)
F'(z)

=p—1+p

)

where |as| = |az(—2)| < 2.

Putting ¢ = p(a — 1) — 28 and F instead of f in (3.15) and using the above equality, we have

2
(pla—1) — 28)|2* + (1 - IZIQP) [p(a —1)+ BW]
1— 2|
= <28 4 pla— 1)+ 28 (1 - [f) 2 + a2z
1|z

IN

pla—1]+2|8] ‘@z (1 P |z\2<f’—1>) + ]2 (1 P |z|2<”—2>)‘

N

< pla—1+2[8[Bp—-1).

Finally, in view of the assumption |3| < % and Theorem 3.6, we conclude that the function G, g
defined by (4.1) is the pth power of a univalent function in D). This completes the proof. O
For p=a =1 in Theorem 4.1 we obtain the following result of Pfaltzgraff [17].
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Corollary 4.2 Let fe€S. If 8 € C satisfies |B] <14, then the integral operator

is univalent in D, where the principal branch is considered.

Theorem 4.3 Let f€S. If a and v are any complex numbers such that |a — 1] < 1 and

Il < 1—|a—1]
T 4 )
then the integral operator
2 1/«
.
Gan(z) = ap/uo‘p_1 (fiu)) du (4.8)
0

is the pth power of a univalent function in D, where the principal branch is considered.

Proof We begin by setting
I ¥
F(z) = /pu’"1 (f u)> dt (4.9)
0

so that, obviously,
¥
F'(z) = pp~t (f(Z>> , (4.10)

and from (4.10), we obtain

ZF”iZ) —p—1+7 (ZJ{;S) - 1> : (4.11)

For the class of univalent functions & we use the well-known Koebe transformation defined by (4.5) and we

have

20/ (—20) _ = kes. (4.12)

=200 k(z0)(1—|20>)’

From (4.11) and (4.12), putting zp = —z, we have

2F'(z) z B
F(z) 7 1+7<—k(—z)(1—|22) 1)’
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Putting ¢ = p(a — 1) in (3.15) and using the above equality and Lemma 4.1, we have

R I

_ p(a—1)+7(11_||;2) {_k(z_z)—uzlﬂ

< pla=1+ 20 (L [2]) (14 2 + 4 [22070)
< pla—1+4ply|.

1—|a—1]
4

In view of the assumption || < and Theorem 3.6, we obtain the assertion of the theorem. O

For p=a =1 in Theorem 4.3, we obtain the following result of Kim and Merkes [13].

Corollary 4.4 Let fe€S8. If v € C satisfies |y] < 174 then the integral operator

(o) = /<f<>) (413)

is univalent in 1D, where the principal branch is considered.

Another application is as follows.

Theorem 4.5 Let f € A} be the pth power of a univalent function in D. If a and p are any complex

numbers such that oo — 1] <1 and

then the integral operator
1/«

Ho(2) = ozp/zuap_l (f/(“) )u du (4.14)
0

pup~!

is the pth power of a univalent function in D, where the principal branch is considered.

Proof We begin by setting

z

Fz) = / pup! ( ;:i“i)udt
0

F'(z) = pzP~! (fl(i)l)u (4.15)

so that, obviously,

and from (4.15), we obtain

(4.16)
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Let f(z) = (h(2))” where h € S. Thus, we have

2f"(z) _ 2 (2) | 2h(2)
e T ) i
Now, from (4.16) and (4.17), we rewrite
2F"(z) 3 2N (=) | 2Rh(2)
= = =w+u(0- 05+ 5 (1.18)

By using the identities (4.6) and (4.12) for h instead of f, putting ¢ = p(aw — 1) — 2 in (3.15) and
Lemma 4.1, we find that

[(pla=1) = 20) 2 + (1= =) [pla — 1)

z 212° + 2a92
”(p”(k(z)(lw)l)*“ P ]

z

— |pa-1)- 2u|2|2p+<(11_||2||:)) 1) ( g1+ f) 2 +2002)

2]

2 1— Zp 2 1—|Z|2p
= p(a— 1)—|—2,U, —|Z| p+72|2| +2MCL22’72
1—|z] 1—|z]

1|z
I S 1— |2
< pla=1+ 2l =2 + 2] ——5 | + 2|ul ———7 (laz| [2| + (p = 1) (1 + [2]))
1— 2] 1— [z
= pla— 1+ 20 ]2 (14 2 + .+ 2707)
2 2(p-1)
+2[pl (laz] [2| + (p = (L + |2])) |1+ [2] + ... + 2]
< pla—1]+|ul [4p* +2p - 2] .
In view of the assumption |u| < % and Theorem 3.6, the proof is completed. O

For a =1 in Theorem 4.5 we obtain the following result of Hallenbeck and Livingston [8].

Corollary 4.6 Let f € A} be the pth power of a univalent function in D. If p is any complex number such
that

p
S 5575 4.19
|l PR (4.19)
then the integral operator
g / H
_ p—1 (')
H,(z)= p/u (pup—l du (4.20)
0

is the pth power of a univalent function in D, where the principal branch is considered.
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