p-Subordination chains and p-valence integral operators

Erhan DENİZ ${ }^{1, *}$, Halit ORHAN ${ }^{2}$, Murat ÇAĞLAR ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Science, Atatürk University, Erzurum, Turkey

| Received: 04.05.2015 | Accepted/Published Online: 04.10 .2016 | \bullet | Final Version: 25.07 .2017 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

In the present investigation we obtain some sufficient conditions for the analyticity and the p-valence of an integral operator in the unit disk \mathbb{D}. Using these conditions we give some applications for a few different integral operators. The significant relationships and relevance to other results are also given. A number of known univalent conditions would follow upon specializing the parameters involved in our main results.

Key words: Univalent functions, p-valent function, p-subordination chain, p-valence criterion

1. Introduction

Denote by $\mathbb{D}_{r}=\{z \in \mathbb{C}:|z|<r\} \quad(0<r \leqslant 1)$ the disk of radius r and let $\mathbb{D}=\mathbb{D}_{1}$. Let \mathcal{A} be the class of analytic functions f in the open unit disk \mathbb{D} that satisfy the usual normalization conditions $f(0)=f^{\prime}(0)-1=0$. Traditionally, the subclass of \mathcal{A} consisting of univalent functions is denoted by \mathcal{S}. Let \mathcal{P} denote the class of functions $\mathfrak{p}(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}, z \in \mathbb{D}$ that satisfy the condition $\Re \mathfrak{p}(z)>0$. Let \mathcal{A}_{p} denote the class of analytic functions in the open unit disk \mathbb{D} that satisfy the normalizations $f^{(k)}(0)=0$ for $k=1,2, \ldots, p-1$ $(p \in \mathbb{N}=\{1,2, \ldots\})$ and $f^{(p)}(0) \neq 0$, and let \mathcal{A}_{p}^{*} be the subclass of \mathcal{A}_{p} consisting of functions of the form $f(z)=z^{p}+\sum_{n=1+p}^{\infty} a_{n} z^{n}$ in \mathbb{D}. These classes have been one of the most important subjects of research in geometric function theory for a long time (see [22]). For analytic functions f and g in \mathbb{D}, f is said to be subordinate to g, denoted by $f(z) \prec g(z)$, if there exists an analytic function w satisfying $w(0)=0,|w(z)|<1$, such that $f(z)=g(w(z))(z \in \mathbb{D})$. In particular, if the function g is univalent in \mathbb{D}, the above subordination is equivalent to $f(0)=g(0)$ and $f(\mathbb{D}) \subset g(\mathbb{D})$.

2. p-Normalized subordination chain and related theorem

Before proving our main theorem we need a brief summary of the method of p-subordination chains.
Definition 2.1 (see Hallenbeck and Livingston [8]) Let $\mathcal{L}(z, t)$ be a function defined on $\mathbb{D} \times I$, where $I:=[0, \infty)$. $\mathcal{L}(z, t)$ is called a p-subordination chain if $\mathcal{L}(z, t)$ satisfies the following conditions:

1. $\mathcal{L}(z, t)$ is analytic in \mathbb{D} for all $t \in I$,
2. $\mathcal{L}^{(k)}(0, t)=0, k=1,2, \ldots, p-1$, and $\mathcal{L}^{(p)}(0, t) \neq 0$,
3. $\mathcal{L}(z, t) \prec \mathcal{L}(z, s)$ for all $0 \leq t \leq s<\infty, z \in \mathbb{D}$.
[^0]A p-subordination chain is said to be normalized if $\mathcal{L}(0, t)=0$ and $\mathcal{L}^{(p)}(0, t)=p!e^{p t}$ for all $t \in I$.
In order to prove our main results we need the following lemma due to Hallenbeck and Livingston [8].
Lemma 2.1 Let $\mathcal{L}(z, t)=a_{p}(t) z^{p}+a_{p+1}(t) z^{p+1}+\ldots, a_{p}(t) \neq 0$, be analytic in \mathbb{D}_{r} for all $t \in I$. Suppose that:
(i) $\mathcal{L}(z, t)$ is a locally absolutely continuous function in the interval I and locally uniformly with respect to \mathbb{D}_{r}.
(ii) $a_{p}(t)$ is a complex valued continuous function on I such that $\left|a_{p}(t)\right| \rightarrow \infty$ for $t \rightarrow \infty$ and

$$
\left\{\frac{\mathcal{L}(z, t)}{a_{p}(t)}\right\}_{t \in I}
$$

forms a normal family of functions in \mathbb{D}_{r}.
(iii) There exists an analytic function $h: \mathbb{D} \times I \rightarrow \mathbb{C}$ satisfying $\Re h(z, t)>0$ for all $z \in \mathbb{D}, t \in I$ and

$$
\begin{equation*}
p \frac{\partial \mathcal{L}(z, t)}{\partial t}=z \frac{\partial \mathcal{L}(z, t)}{\partial z} h(z, t), \quad z \in \mathbb{D}_{r}, t \in I \tag{2.1}
\end{equation*}
$$

Then, for each $t \in I$, the function $\mathcal{L}(z, t)$ is the p th power of a univalent function in \mathbb{D}.
Pommerenke's theory of subordination chains (see $[18,19]$) corresponds to $p=1$.
The univalence of complex functions is an important property, but unfortunately it is difficult and in many cases impossible to show directly that a certain complex function is univalent. For this reason, many authors obtained different types of sufficient conditions of univalence or not. Pommerenke [18, 19] and Becker [2] used the idea of normalized 1 -subordination chains to obtain sufficient conditions for univalence. Two of the most important conditions of univalence are the well-known criteria of Becker [2] and Ahlfors [1], which were obtained by a clever use of the theory of 1 -subordination chains and the generalized Loewner differential equation. Detailed information about 1-subordination chains can be found in Hotta's works (see [10] and [9]). Furthermore, Pascu [15] and Pescar [16] obtained some extensions of Becker and Ahlfors' univalence criteria for an integral operator, respectively, using 1 -subordination chains.

For further results we refer to the recent papers [3-6, 9-12, 14, 20, 21] where, among other things, some interesting univalence criteria and quasiconformal extensions were established.

It is the purpose of this paper to use p-subordination chains to obtain conditions for an integral operator to be the p th power of a univalent function where $p=1,2, \ldots$. In special cases our results contain the results obtained by some of the authors cited in the references. We also extend the aforementioned results of Hallenbeck and Livingston [8]. Our considerations are based on the theory of p-subordination chains.

3. p-Valence criteria

Making use of Lemma 2.1 we can prove now our main results.
Theorem 3.1 Let α and c be complex numbers such that $\Re(\alpha)>0,|c|<p$ and $f \in \mathcal{A}_{p}^{*}$. If the inequality

$$
\begin{equation*}
\left.\left.|c| z\right|^{2 \alpha p}+\frac{\left(1-|z|^{2 \alpha p}\right)}{\alpha}\left[1-p+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right] \right\rvert\, \leqslant p \tag{3.1}
\end{equation*}
$$

holds true for all $z \in \mathbb{D}$, then the integral operator

$$
\begin{equation*}
F_{\alpha}(z)=\left[\alpha \int_{0}^{z} u^{p(\alpha-1)} f^{\prime}(u) d u\right]^{1 / \alpha} \tag{3.2}
\end{equation*}
$$

is the pth power of a univalent function in \mathbb{D}, where the principal branch is considered.
Proof We will prove that there exists a real number $r \in(0,1]$ such that the function $\mathcal{L}: \mathbb{D}_{r} \times I \rightarrow \mathbb{C}$, defined formally by

$$
\begin{equation*}
\mathcal{L}(z, t)=\left(\alpha \int_{0}^{e^{-t} z} u^{p(\alpha-1)} f^{\prime}(u) d u+\frac{1}{p+c}\left(e^{2 \alpha p t}-1\right)\left(e^{-t} z\right)^{(p(\alpha-1)+1)} f^{\prime}\left(e^{-t} z\right)\right)^{1 / \alpha} \tag{3.3}
\end{equation*}
$$

is analytic in \mathbb{D}_{r} for all $t \in I$.
Consider the function

$$
\phi_{1}(z, t)=\alpha \int_{0}^{e^{-t} z} u^{p(\alpha-1)} f^{\prime}(u) d u=e^{-\alpha p t} z^{\alpha p}+\ldots
$$

and then we have

$$
\phi_{1}(z, t)=\left(e^{-t} z\right)^{\alpha p}+\sum_{n=1}^{\infty} \frac{\alpha(n+p)}{\alpha p+n} a_{n+p}\left(e^{-t} z\right)^{\alpha p+n}
$$

Let the function $\phi_{2}(z, t)$ be such that

$$
\phi_{1}(z, t)=z^{\alpha p} \phi_{2}(z, t)
$$

It is easy to check that $\phi_{2}(z, t)$ is analytic in \mathbb{D} for all $t \in I$ and

$$
\phi_{2}(z, t)=\left(e^{-t}\right)^{\alpha p}+\sum_{n=1}^{\infty} \frac{\alpha(n+p) e^{-(\alpha p+n) t}}{\alpha p+n} a_{n+p} z^{n} .
$$

Since the function $f(z)$ is analytic in \mathbb{D}, it follows that the function

$$
\phi_{3}(z, t)=\left(e^{2 \alpha p t}-1\right) e^{-t(p(\alpha-1)+1)} z^{1-p} f^{\prime}\left(e^{-t} z\right)
$$

is an analytic function in \mathbb{D} for all $t \in I$. Then the function $\phi_{4}(z, t)$ given by

$$
\phi_{4}(z, t)=\phi_{2}(z, t)+\frac{1}{p+c} \phi_{3}(z, t)
$$

is also analytic in \mathbb{D}.
We have

$$
\phi_{4}(0, t)=\phi_{2}(0, t)+\frac{1}{p+c} \phi_{3}(0, t)=e^{\alpha p t}\left[\frac{p+c e^{-2 \alpha p t}}{p+c}\right] .
$$

The conditions $|c|<p$ and $\Re(\alpha)>0$ yield $\phi_{4}(0, t) \neq 0$ for all $t \in I$. Therefore, there is a disk $\mathbb{D}_{r_{1}}, r_{1} \in(0,1]$, in which $\phi_{4}(z, t) \neq 0$ for all $t \in I$. Then we can choose a uniform branch of $\left[\phi_{4}(z, t)\right]^{1 / \alpha}$ analytic in $\mathbb{D}_{r_{1}}$, denoted by $\phi_{5}(z, t)$.

It follows from (3.3) that

$$
\mathcal{L}(z, t)=z^{p} \phi_{5}(z, t)=a_{p}(t) z^{p}+a_{p+1}(t) z^{p+1}+\ldots
$$

and thus the function $\mathcal{L}(z, t)$ is analytic in $\mathbb{D}_{r_{1}}$.
We have

$$
a_{p}(t)=e^{p t}\left[\frac{p+c e^{-2 \alpha p t}}{p+c}\right]^{1 / \alpha} .
$$

From $|c|<p$ and $\Re(\alpha)>0$, we obtain

$$
\lim _{t \rightarrow \infty}\left|a_{p}(t)\right|=\infty .
$$

Moreover, $a_{p}(t) \neq 0$ for all $t \in I$.
From the analyticity of $\mathcal{L}(z, t)$ in $\mathbb{D}_{r_{1}}$, it follows that there exists a number $r_{2}, 0<r_{2}<r_{1}$ where $\mathcal{L}(z, t) / a_{p}(t)$ is analytic in disk $\mathbb{D}_{r_{2}}$ and a constant $K=K\left(r_{2}\right)$ such that

$$
\left|\frac{\mathcal{L}(z, t)}{a_{p}(t)}\right|<K, \quad \forall z \in \mathbb{D}_{r_{2}}, t \in I .
$$

Then, by Montel's theorem, $\left\{\frac{\mathcal{L}(z, t)}{a_{p}(t)}\right\}_{t \in I}$ is a normal family in $\mathbb{D}_{r_{2}}$. From the analyticity of $\frac{\partial \mathcal{L}(z, t)}{\partial t}$, we obtain that for all fixed numbers $T>0$ and $r_{3}, 0<r_{3}<r_{2}$, there exists a constant $K_{1}>0$ (that depends on T and r_{3}) such that

$$
\left|\frac{\partial \mathcal{L}(z, t)}{\partial t}\right|<K_{1}, \quad \forall z \in \mathbb{D}_{r_{3}}, t \in[0, T] .
$$

Therefore, the function $\mathcal{L}(z, t)$ is locally absolutely continuous in I, locally uniform with respect to $\mathbb{D}_{r_{3}}$.
Let $h: \mathbb{D} \times I \rightarrow \mathbb{C}$ be the function defined by

$$
h(z, t)=p \frac{\partial \mathcal{L}(z, t)}{\partial t} / z \frac{\partial \mathcal{L}(z, t)}{\partial z} .
$$

If the function

$$
\begin{equation*}
w(z, t)=\frac{h(z, t)-1}{h(z, t)+1}=\frac{p \frac{\partial \mathcal{L}(z, t)}{\partial t}-\frac{z \partial \mathcal{L}(z, t)}{\partial z}}{p \frac{\partial \mathcal{L}(z, t)}{\partial t}+\frac{z \partial \mathcal{L}(z, t)}{\partial z}} \tag{3.4}
\end{equation*}
$$

is analytic in $\mathbb{D} \times I$ and $|w(z, t)|<1$, for all $z \in \mathbb{D}$ and $t \in I$, then $h(z, t)$ is an analytic function with positive real part in \mathbb{D}, for all $t \in I$.

From equality (3.4), we have

$$
\begin{equation*}
w(z, t)=\frac{(p+1) \Psi(z, t)-2 p^{2}}{(p-1) \Psi(z, t)-2 p^{2}}, \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi(z, t)=c e^{-2 \alpha p t}+\frac{\left(1-e^{-2 \alpha p t}\right)}{\alpha}\left[1-p+\frac{e^{-t} z f^{\prime \prime}\left(e^{-t} z\right)}{f^{\prime}\left(e^{-t} z\right)}\right]+p \tag{3.6}
\end{equation*}
$$

for $z \in \mathbb{D}$ and $t \in I$.
The inequality $|w(z, t)|<1$ for all $z \in \mathbb{D}$ and $t \in I$, where $w(z, t)$ is defined by (3.5), is equivalent to

$$
\begin{equation*}
|\Psi(z, t)-p|<p, \quad \forall z \in \mathbb{D}, t \in I . \tag{3.7}
\end{equation*}
$$

From the hypothesis of the theorem and (3.6), we have

$$
\begin{equation*}
|\Psi(z, 0)-p|=|c|<p, \quad \text { for all } z \in \mathbb{D} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
|\Psi(0, t)-p|=\left|c e^{-2 \alpha p t}\right|=|c| e^{-2 p t \mathcal{R}(\alpha)}<p, \quad \text { for all } t \in I . \tag{3.9}
\end{equation*}
$$

Let $t>0$ and let $z \in \mathbb{D} \backslash\{0\}$. Since $\left|e^{-t} z\right| \leqslant e^{-t}<1$ for all $z \in \overline{\mathbb{D}}=\{z \in \mathbb{C}:|z| \leqslant 1\}$ we find that $\Psi(z, t)-p$ is an analytic function in $\overline{\mathbb{D}}$. Using the maximum modulus principle it follows that for all $z \in \mathbb{D} \backslash\{0\}$ and each $t>0$ arbitrarily fixed there exists $\theta=\theta(t) \in \mathbb{R}$ such that

$$
\begin{equation*}
|\Psi(z, t)-p|<\lim _{|z|=1}|\Psi(z, t)-p|=\left|\Psi\left(e^{i \theta}, t\right)-p\right| . \tag{3.10}
\end{equation*}
$$

Denote $u=e^{-t} e^{i \theta}$. Then $|u|=e^{-t}$, and from (3.6), we have

$$
\left.\left|\Psi\left(e^{i \theta}, t\right)-p\right|=\left.|c| u\right|^{2 \alpha p}+\frac{\left(1-|u|^{2 \alpha p}\right)}{\alpha}\left[1-p+\frac{u f^{\prime \prime}(u)}{f^{\prime}(u)}\right] \right\rvert\, .
$$

Since $u \in \mathbb{D}$, the inequality (3.1) implies that

$$
\left|\Psi\left(e^{i \theta}, t\right)-p\right| \leqslant p,
$$

and from (3.8), (3.9), and (3.10), we conclude that

$$
\left|\Psi\left(e^{i \theta}, t\right)-p\right|<p
$$

for all $z \in \mathbb{D}$ and $t \in I$. Therefore, $|w(z, t)|<1$ for all $z \in \mathbb{D}$ and $t \in I$.
Since all the conditions of Lemma 2.1 are satisfied, we obtain that the function $\mathcal{L}(z, t)$ is the p th power of a univalent function whole unit disk \mathbb{D}, for all $t \in I$. For $t=0$ we have $\mathcal{L}(z, 0)=F_{\alpha}(z)$, for $z \in \mathbb{D}$ and therefore the function $F_{\alpha}(z)$ is the p th power of a univalent function in \mathbb{D}.

For $p=1$, condition (3.1) is a well-known sufficient condition of univalence given by Pescar [16].
Condition (3.1) of Theorem 3.1 can be replaced with a simpler one.
Theorem 3.2 Let $f \in \mathcal{A}_{p}^{*}$ and let α be a complex number such that $\Re(\alpha)>0$. Supposing that

$$
\begin{equation*}
\left|1-p+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leqslant p \Re(\alpha) \tag{3.11}
\end{equation*}
$$

is true for all $z \in \mathbb{D}$, then the integral operator $F_{\alpha}(z)$ defined by (3.2) is the p th power of a univalent function in \mathbb{D}, where the principal branch is considered.

Proof It is known (see [15]) that for all $z \in \mathbb{D} \backslash\{0\}$ and $\Re(\alpha)>0$,

$$
\begin{equation*}
\left|\frac{1-|z|^{2 \alpha p}}{\alpha}\right| \leq \frac{1-|z|^{2 p \Re(\alpha)}}{\Re(\alpha)} \tag{3.12}
\end{equation*}
$$

Making use of (3.11), we obtain

$$
\begin{aligned}
& \left.\left.|c| z\right|^{2 \alpha p}+\frac{\left(1-|z|^{2 \alpha p}\right)}{\alpha}\left[1-p+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right] \right\rvert\, \\
\leq & |c||z|^{2 p \Re(\alpha)}+\frac{1-|z|^{2 p \Re(\alpha)}}{\Re(\alpha)}\left|1-p+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \\
\leq & p|z|^{2 p \Re(\alpha)}+\frac{1-|z|^{2 p \Re(\alpha)}}{\Re(\alpha)} p \Re(\alpha)=p .
\end{aligned}
$$

Since the conditions of Theorem 3.1 are satisfied, it follows that the function $F_{\alpha}(z)$ defined by (3.2) is the p th power of a univalent function in \mathbb{D}.

We now give some results that follow from Theorem 3.1. If we set $c=0$, then by Theorem 3.1 we obtain the following:

Corollary 3.3 Let $f \in \mathcal{A}_{p}^{*}$ and let α be a complex number such that $\Re(\alpha)>0$. Supposing that

$$
\left|\frac{\left(1-|z|^{2 \alpha p}\right)}{\alpha}\left[1-p+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]\right| \leqslant p
$$

is true for all $z \in \mathbb{D}$, then the integral operator $F_{\alpha}(z)$ defined by (3.2) is the pth power of a univalent function in \mathbb{D}, where the principal branch is considered.

Becker's univalence criterion can also be obtained from Corollary 3.3 for $\alpha=p=1$. Using the inequality (3.12) in Corollary 3.3, we obtain the following result:

Corollary 3.4 Let $f \in \mathcal{A}_{p}^{*}$ and let α be a complex number such that $\Re(\alpha)>0$. Supposing that

$$
\frac{1-|z|^{2 p \Re(\alpha)}}{\Re(\alpha)}\left|1-p+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leqslant p
$$

is true for all $z \in \mathbb{D}$, then the integral operator $F_{\alpha}(z)$ defined by (3.2) is the power of a univalent function in \mathbb{D}, where the principal branch is considered.

Example 3.1 Let α be complex number such that $\Re(\alpha)>1-\frac{1}{p}$. Then the integral operator

$$
\begin{equation*}
E_{\alpha}(z)=\left[\alpha p \int_{0}^{z} u^{p \alpha-1} e^{u(p-1)} d u\right]^{1 / \alpha} \tag{3.13}
\end{equation*}
$$

is the pth power of a univalent function in \mathbb{D}, where the principal branch is considered.

Proof In the integral operator (3.2) we get $f^{\prime}(z)=p\left(z e^{z}\right)^{p-1}$. Then we have

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=(p-1)(1+z)
$$

From Corollary 3.4 we see that E_{α} given by (3.13) is the p th power of a univalent function in \mathbb{D}.
For $p=1$, Corollary 3.4 in turn implies the well-known univalence citerion of Pascu [15].

Theorem 3.5 Let α and c be complex numbers such that $\Re(\alpha)>0,|c|<p$ and $g \in \mathcal{A}$. Supposing that

$$
\left.\left.|c| z\right|^{2 \alpha p}+\frac{\left(1-|z|^{2 \alpha p}\right)}{\alpha}\left[(1-\alpha p)\left(1-\frac{z g^{\prime}(z)}{g(z)}\right)+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right] \right\rvert\, \leqslant p
$$

is true for all $z \in \mathbb{D}$, then the function g is univalent in \mathbb{D}.
Proof Let $F_{\alpha}(z)=[g(z)]^{p}$. Thus, we obtain

$$
f^{\prime}(z)=p g^{\prime}(z)(g(z))^{\alpha p-1} z^{p(1-\alpha)}
$$

It is easy to see that F_{α} satisfies the assumption of Theorem 3.1 if it satisfies the assumption of this theorem. Thus, g is a univalent function in \mathbb{D} because F_{α} in view of Theorem 3.1 is the p th power of a univalent function.

Reasoning along the same lines as in the proof of the Theorem 3.1 for the p-subordination chain

$$
\begin{equation*}
\mathcal{L}(z, t)=\left(\alpha \int_{0}^{e^{-t} z} u^{p(\alpha-1)} f^{\prime}(u) d u+\frac{\alpha}{p+c}\left(e^{2 p t}-1\right)\left(e^{-t} z\right)^{(p(\alpha-1)+1)} f^{\prime}\left(e^{-t} z\right)\right)^{1 / \alpha} \tag{3.14}
\end{equation*}
$$

we obtain the following theorem. We omit the details.

Theorem 3.6 Let α and c be complex numbers such that $|\alpha-1|<1,|c|<p$ and $f \in \mathcal{A}_{p}^{*}$. If the inequality

$$
\begin{equation*}
\left.\left.|c| z\right|^{2 p}+\left(1-|z|^{2 p}\right)\left[p(\alpha-2)+1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right] \right\rvert\, \leqslant p \tag{3.15}
\end{equation*}
$$

holds true for all $z \in \mathbb{D}$, then the integral operator $F_{\alpha}(z)$ defined by (3.2) is the p th power of a univalent function in \mathbb{D}, where the principal branch is considered.

4. Applications

The problem of the univalence of integral operators in \mathbb{D} was discussed by many authors. For example, Pfaltzgraff [17] proved that for $f \in \mathcal{S}$ the integral operator

$$
G_{\beta}(z)=\int_{0}^{z}\left(f^{\prime}(u)\right)^{\beta} d u
$$

is in the class \mathcal{S} if $|\beta| \leqslant \frac{1}{4}$. He showed that the bound $\frac{1}{4}$ is sharp.

On the other hand, Kim and Merkes [13] showed that for $f \in \mathcal{S}$ the integral operator

$$
G_{\gamma}(z)=\int_{0}^{z}\left(\frac{f(u)}{u}\right)^{\gamma} d u
$$

is in the class \mathcal{S} if $|\gamma| \leqslant \frac{1}{4}$.
The following lemma is of fundamental importance in our investigation.
Lemma 4.1 (Wesolowski [23]). For each function $f \in \mathcal{S}$ and a fixed $z, z \in \mathbb{D}$, the inequality

$$
\left|\frac{z}{f(z)}-1+|z|^{2}\right| \leq 2(1+|z|)
$$

holds.
Proof By using a rotation of the form $f_{\lambda}(z)=\bar{\lambda} f(\lambda z),|\lambda|=1$, if needed, we see that it is enough to prove the inequality

$$
\left|\frac{r}{f(r)}-1+r^{2}\right| \leq 2(1+r), \quad|z|=r
$$

Grunsky [7, p. 323] proved that the domain of variability in $\frac{z}{f(z)}$ is the closed disk

$$
\left|\ln \frac{z}{f(z)}-\ln \left(1-r^{2}\right)\right| \leq \ln \frac{1+r}{1-r}, \quad|z|=r, \quad z \in \mathbb{D}
$$

Hence, arguing as in [7, pp. 323-326] and denoting $\frac{1+r}{1-r}=a$, for any $\theta, \theta \in[0,2 \pi]$ we have

$$
\begin{aligned}
\left|\frac{r}{f(r)}-1+r^{2}\right| & =\left|\left(1-r^{2}\right) a^{e^{i \theta}}-1+r^{2}\right| \\
& =\left(1-r^{2}\right) \sqrt{a^{2 \cos \theta}-2 a^{\cos \theta} \cos (\sin \theta \ln a)+1} \\
& \leq\left(1-r^{2}\right)\left(\frac{1+r}{1-r}\right)^{\cos \theta}+1-r^{2} \leq 2(1+r)
\end{aligned}
$$

Theorem 4.1 Let $f \in \mathcal{S}$. If α and β are any complex numbers such that $|\alpha-1|<1$ and

$$
|\beta| \leqslant \frac{p(1-|\alpha-1|)}{6 p-2}
$$

then the integral operator

$$
\begin{equation*}
G_{\alpha, \beta}(z)=\left[\alpha p \int_{0}^{z} u^{\alpha p-1}\left(f^{\prime}(u)\right)^{\beta} d u\right]^{1 / \alpha} \tag{4.1}
\end{equation*}
$$

is the pth power of a univalent function in \mathbb{D}, where the principal branch is considered.

Proof We begin by setting

$$
\begin{equation*}
F(z)=\int_{0}^{z} p u^{p-1}\left(f^{\prime}(u)\right)^{\beta} d u \tag{4.2}
\end{equation*}
$$

so that, obviously,

$$
\begin{equation*}
F^{\prime}(z)=p z^{p-1}\left(f^{\prime}(z)\right)^{\beta} \tag{4.3}
\end{equation*}
$$

and from (4.3), we obtain

$$
\begin{equation*}
\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}=p-1+\beta\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) . \tag{4.4}
\end{equation*}
$$

It is well known that for any arbitrary point $z_{0} \in \mathbb{D}$, the function $f \in \mathcal{S}$ can be written as

$$
\begin{equation*}
f(z)=\frac{k\left(\frac{z+z_{0}}{1+z z_{0}}\right)-k\left(z_{0}\right)}{k^{\prime}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)}, \quad z \in \mathbb{D} \tag{4.5}
\end{equation*}
$$

where k is a function in the class \mathcal{S}.
Therefore, we get that for all such z_{0},

$$
\begin{equation*}
\frac{-z_{0} f^{\prime \prime}\left(-z_{0}\right)}{f^{\prime}\left(-z_{0}\right)}=\frac{2\left|z_{0}\right|^{2}-2 a_{2} z_{0}}{1-\left|z_{0}\right|^{2}} \tag{4.6}
\end{equation*}
$$

where $a_{2}=a_{2}\left(z_{0}\right)$ is the second coefficient in the Taylor series expansion of the function k. The classical Bieberbach theorem states that $\left|a_{2}\left(z_{0}\right)\right| \leq 2$ for every $z_{0} \in \mathbb{D}$.
From (4.4) and (4.6), putting $z_{0}=-z$, we have

$$
\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}=p-1+\beta \frac{2|z|^{2}+2 a_{2}(-z) z}{1-|z|^{2}}
$$

where $\left|a_{2}\right|=\left|a_{2}(-z)\right| \leq 2$.
Putting $c=p(\alpha-1)-2 \beta$ and F instead of f in (3.15) and using the above equality, we have

$$
\begin{aligned}
& \left.\left.|(p(\alpha-1)-2 \beta)| z\right|^{2 p}+\left(1-|z|^{2 p}\right)\left[p(\alpha-1)+\beta \frac{2|z|^{2}+2 a_{2} z}{1-|z|^{2}}\right] \right\rvert\, \\
= & \left.\left.|-2 \beta| z\right|^{2 p}+p(\alpha-1)+2 \beta\left(1-|z|^{2 p}\right)\left[\frac{|z|^{2}+a_{2} z}{1-|z|^{2}}\right] \right\rvert\, \\
\leq & p|\alpha-1|+2|\beta|\left|a_{2} z\left(1+|z|^{2}+\ldots+|z|^{2(p-1)}\right)+|z|^{2}\left(1+|z|^{2}+\ldots+|z|^{2(p-2)}\right)\right| \\
\leq & p|\alpha-1|+2|\beta|(3 p-1) .
\end{aligned}
$$

Finally, in view of the assumption $|\beta| \leqslant \frac{p(1-|\alpha-1|)}{6 p-2}$ and Theorem 3.6, we conclude that the function $G_{\alpha, \beta}$ defined by (4.1) is the p th power of a univalent function in \mathbb{D}. This completes the proof.

For $p=\alpha=1$ in Theorem 4.1 we obtain the following result of Pfaltzgraff [17].

Corollary 4.2 Let $f \in \mathcal{S}$. If $\beta \in \mathbb{C}$ satisfies $|\beta| \leqslant 1 / 4$, then the integral operator

$$
\begin{equation*}
G_{\beta}(z)=\int_{0}^{z}\left(f^{\prime}(u)\right)^{\beta} d u \tag{4.7}
\end{equation*}
$$

is univalent in \mathbb{D}, where the principal branch is considered.

Theorem 4.3 Let $f \in \mathcal{S}$. If α and γ are any complex numbers such that $|\alpha-1|<1$ and

$$
|\gamma| \leqslant \frac{1-|\alpha-1|}{4}
$$

then the integral operator

$$
\begin{equation*}
G_{\alpha, \gamma}(z)=\left[\alpha p \int_{0}^{z} u^{\alpha p-1}\left(\frac{f(u)}{u}\right)^{\gamma} d u\right]^{1 / \alpha} \tag{4.8}
\end{equation*}
$$

is the pth power of a univalent function in \mathbb{D}, where the principal branch is considered.
Proof We begin by setting

$$
\begin{equation*}
F(z)=\int_{0}^{z} p u^{p-1}\left(\frac{f(u)}{u}\right)^{\gamma} d t \tag{4.9}
\end{equation*}
$$

so that, obviously,

$$
\begin{equation*}
F^{\prime}(z)=p z^{p-1}\left(\frac{f(z)}{z}\right)^{\gamma} \tag{4.10}
\end{equation*}
$$

and from (4.10), we obtain

$$
\begin{equation*}
\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}=p-1+\gamma\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \tag{4.11}
\end{equation*}
$$

For the class of univalent functions \mathcal{S} we use the well-known Koebe transformation defined by (4.5) and we have

$$
\begin{equation*}
\frac{-z_{0} f^{\prime}\left(-z_{0}\right)}{f\left(-z_{0}\right)}=\frac{z_{0}}{k\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)}, \quad k \in \mathcal{S} \tag{4.12}
\end{equation*}
$$

From (4.11) and (4.12), putting $z_{0}=-z$, we have

$$
\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}=p-1+\gamma\left(\frac{z}{-k(-z)\left(1-|z|^{2}\right)}-1\right)
$$

Putting $c=p(\alpha-1)$ in (3.15) and using the above equality and Lemma 4.1, we have

$$
\begin{aligned}
& \left.\left.|p(\alpha-1)| z\right|^{2 p}+\left(1-|z|^{2 p}\right)\left[p(\alpha-1)+\gamma\left(\frac{z}{-k(-z)\left(1-|z|^{2}\right)}-1\right)\right] \right\rvert\, \\
= & \left|p(\alpha-1)+\gamma \frac{\left(1-|z|^{2 p}\right)}{1-|z|^{2}}\left[\frac{z}{-k(-z)}-1+|z|^{2}\right]\right| \\
\leq & p|\alpha-1|+2|\gamma|(1+|z|)\left(1+|z|^{2}+\ldots+|z|^{2(p-1)}\right) \\
\leq & p|\alpha-1|+4 p|\gamma|
\end{aligned}
$$

In view of the assumption $|\gamma| \leqslant \frac{1-|\alpha-1|}{4}$ and Theorem 3.6, we obtain the assertion of the theorem.
For $p=\alpha=1$ in Theorem 4.3, we obtain the following result of Kim and Merkes [13].

Corollary 4.4 Let $f \in \mathcal{S}$. If $\gamma \in \mathbb{C}$ satisfies $|\gamma| \leqslant 1 / 4$ then the integral operator

$$
\begin{equation*}
G_{\gamma}(z)=\int_{0}^{z}\left(\frac{f(u)}{u}\right)^{\gamma} d u \tag{4.13}
\end{equation*}
$$

is univalent in \mathbb{D}, where the principal branch is considered.
Another application is as follows.
Theorem 4.5 Let $f \in \mathcal{A}_{p}^{*}$ be the p th power of a univalent function in \mathbb{D}. If α and μ are any complex numbers such that $|\alpha-1|<1$ and

$$
|\mu| \leqslant \frac{p(1-|\alpha-1|)}{4 p^{2}+2 p-2}
$$

then the integral operator

$$
\begin{equation*}
H_{\alpha, \mu}(z)=\left[\alpha p \int_{0}^{z} u^{\alpha p-1}\left(\frac{f^{\prime}(u)}{p u^{p-1}}\right)^{\mu} d u\right]^{1 / \alpha} \tag{4.14}
\end{equation*}
$$

is the pth power of a univalent function in \mathbb{D}, where the principal branch is considered.
Proof We begin by setting

$$
F(z)=\int_{0}^{z} p u^{p-1}\left(\frac{f^{\prime}(u)}{p u^{p-1}}\right)^{\mu} d t
$$

so that, obviously,

$$
\begin{equation*}
F^{\prime}(z)=p z^{p-1}\left(\frac{f^{\prime}(z)}{p z^{p-1}}\right)^{\mu} \tag{4.15}
\end{equation*}
$$

and from (4.15), we obtain

$$
\begin{equation*}
\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}=(p-1)(1-\mu)+\mu \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \tag{4.16}
\end{equation*}
$$

Let $f(z)=(h(z))^{p}$ where $h \in \mathcal{S}$. Thus, we have

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=(p-1) \frac{z h^{\prime}(z)}{h(z)}+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)} \tag{4.17}
\end{equation*}
$$

Now, from (4.16) and (4.17), we rewrite

$$
\begin{equation*}
\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}=(p-1)(1-\mu)+\mu\left((p-1) \frac{z h^{\prime}(z)}{h(z)}+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right) . \tag{4.18}
\end{equation*}
$$

By using the identities (4.6) and (4.12) for h instead of f, putting $c=p(\alpha-1)-2 \mu$ in (3.15) and Lemma 4.1, we find that

$$
\begin{aligned}
& \left.|(p(\alpha-1)-2 \mu)| z\right|^{2 p}+\left(1-|z|^{2 p}\right)[p(\alpha-1) \\
& \left.+\mu(p-1)\left(\frac{z}{-k(-z)\left(1-|z|^{2}\right)}-1\right)+\mu \frac{2|z|^{2}+2 a_{2} z}{1-|z|^{2}}\right] \mid \\
= & \left.\left.|p(\alpha-1)-2 \mu| z\right|^{2 p}+\frac{\left(1-|z|^{2 p}\right)}{\left(1-|z|^{2}\right)}\left[\mu(p-1)\left(\frac{z}{-k(-z)}-1+|z|^{2}\right)+\mu\left(2|z|^{2}+2 a_{2} z\right)\right] \right\rvert\, \\
= & \left\lvert\, p(\alpha-1)+2 \mu\left(-|z|^{2 p}+\frac{1-|z|^{2 p}}{1-|z|^{2}}|z|^{2}\right)+2 \mu a_{2} z \frac{1-|z|^{2 p}}{1-|z|^{2}}\right. \\
\leq & p|\alpha-1|+2|\mu|\left|-|z|^{2 p}+|z|^{2} \frac{1-|z|^{2 p}}{1-|z|^{2}}\right|+2|\mu| \frac{1-|z|^{2 p}}{1-|z|^{2}}\left(\left|a_{2}\right||z|+(p-1)(1+|z|)\right) \\
= & p|\alpha-1|+2|\mu||z|^{2}\left(1+|z|^{2}+\ldots+|z|^{2(p-2)}\right) \\
= & \left.\left.p|\alpha-1|\right|^{2 p}\left(\frac{z}{-k(-z)}-1+|z|^{2}\right) \right\rvert\, \\
\leq & p|\mu|\left(\left|a_{2}\right||z|+(p-1)(1+|z|)\right)\left[1+|z|^{2}+\ldots+|z|^{2(p-1)}\right] \\
= & |\mu|\left[4 p^{2}+2 p-2\right] .
\end{aligned}
$$

In view of the assumption $|\mu| \leqslant \frac{p(1-|\alpha-1|)}{4 p^{2}+2 p-2}$ and Theorem 3.6, the proof is completed.
For $\alpha=1$ in Theorem 4.5 we obtain the following result of Hallenbeck and Livingston [8].
Corollary 4.6 Let $f \in \mathcal{A}_{p}^{*}$ be the p th power of a univalent function in \mathbb{D}. If μ is any complex number such that

$$
\begin{equation*}
|\mu| \leqslant \frac{p}{4 p^{2}+2 p-2} \tag{4.19}
\end{equation*}
$$

then the integral operator

$$
\begin{equation*}
H_{\mu}(z)=p \int_{0}^{z} u^{p-1}\left(\frac{f^{\prime}(u)}{p u^{p-1}}\right)^{\mu} d u \tag{4.20}
\end{equation*}
$$

is the pth power of a univalent function in \mathbb{D}, where the principal branch is considered.

Acknowledgment

The research of the first author was supported by the Commission for the Scientific Research Projects of Kafkas University, project number 2012-FEF-30. The authors would like to thank the referees for their careful reading of the paper and for their helpful comments to improve it.

References

[1] Ahlfors LV. Sufficient conditions for quasiconformal extension. Ann Math Studies 1974; 79: 23-29.
[2] Becker J. Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen. J Reine Angew Math 1972; 255: 23-43 (in German).
[3] Çağlar M, Orhan H. Sufficient conditions for univalence and quasiconformal extensions. Indian J Pure Appl Math 2015; 46: 41-50.
[4] Deniz E, Orhan H. Some notes on extensions of basic univalence criteria. J Korean Math Soc 2011; 48: 179-189.
[5] Deniz E, Orhan H. Loewner chains and univalence criteria related with Ruscheweyh and Sălăgean derivatives. J Appl Anal Comput 2015; 3: 465-478.
[6] Deniz E, Răducanu D, Orhan H. On an improvement of an univalence criterion. Math Balkanica (N.S.) 2010; 24: 33-39.
[7] Duren PL. Univalent Functions. Berlin, Germany: Springer Verlag, 1983.
[8] Hallenbeck DJ, Livingston AE. Subordination chains and p-valent functions. Not Am Math Soc 1976: A-731.
[9] Hotta I. Explicit quasiconformal extensions and Loewner chains. P Jpn Acad A-Math 2009; 85: 108-111.
[10] Hotta I. Loewner chains with complex leading coefficient. Monatsh Math 2011; 163: 315-325.
[11] Kanas S, Lecko A. Univalence criteria connected with arithmetic and geometric means. In: Proceedings of the Second Workshop on Transform Methods and Special Functions (Varna, 1996). Singapore: Science Culture Technology Publishing Company, 1998, pp. 201-209.
[12] Kanas S, Srivastava HM. Some criteria for univalence related to Ruscheweyh and Sălăgean derivatives. Complex Variables Theory Appl 1997; 38: 263-275.
[13] Kim YJ, Merkes EP. On an integral of power of a spirallike functions. Kyungpook Math J 1972; 12: 249-253.
[14] Ovesea H. A generalization of Ruscheweyh's univalence criterion. J Math Anal Appl 2001; 258: 102-109.
[15] Pascu NN. On a univalence criterion. In: Itinerant Seminar on Functional Equations Approximation and Convexity, Cluj-Napoca, pp. 153-154.
[16] Pescar V. A new generalization of Ahlfors's and Becker's criterion of univalence. Bull Malaysian Math Soc 1996; 19: 53-54.
[17] Pfaltzgraff JA. Univalence of the integral of $\left(f^{\prime}(z)\right)^{\lambda}$. B Lond Math Soc 1975; 7: 254-256.
[18] Pommerenke C. Über die Subordination analytischer Funktionen. J Reine Angew Math 1965; 218: 159-173 (in German).
[19] Pommerenke C. Univalent Functions. Gottingen, the Netherlands: Vandenhoeck Ruprecht, 1975.
[20] Răducanu D, Orhan H, Deniz E. On some sufficient conditions for univalence. Analele Stiint Univ 2010; 18: 217-222.
[21] Ruscheweyh S. An extension of Becker's univalence condition. Math Ann 1976; 220: 285-290.
[22] Srivastava HM, Owa S, editors. Current Topics in Analytic Function Theory. Singapore: World Scientifc Publishing Company, 1992.
[23] Wesolowski A. On the univalence of certain integrals meromorphic functions. Glas Mat 1990; 25: 43-47.

[^0]: *Correspondence: edeniz36@gmail.com
 2010 AMS Mathematics Subject Classification: 30C45, 30C55, 30C80.

