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Abstract: In this paper we discuss the existence of positive periodic solutions for nonautonomous second order delay

differential equations with singular nonlinearities in the presence of impulsive effects. Simple sufficient conditions are

provided that enable us to obtain positive periodic solutions. Our approach is based on a variational method.
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1. Introduction

The impulsive differential equations characterize various processes of the real world, described by models that are

subject to sudden changes in their states. Essentially, impulsive differential equations correspond to a smooth

evolution that may change instantaneously or even abruptly; this type of equation allows the study of models

in physics, population dynamics, ecology, industrial robotics, economics, biotechnology, optimal control, and

chaos theory. Due to its significance, a great deal of work has been done in the theory of impulsive differential

equations; see for example [3, 13, 28], and for an introduction of the basic theory of impulsive differential

equations in Rn we refer to [5, 12, 17].

Recently, variational methods and critical point theory have been successfully employed to investigate

impulsive differential equations when the nonlinearity is regular; the existence and multiplicity of solutions for

impulsive boundary value problems have been considered in [9, 16, 19–28].

However, few papers have investigated the case of impulsive boundary value problems with singular

nonlinearity [10, 18, 20]. In fact, it seems that the work [20] is the first paper along this line. We must emphasize

that singular boundary value problems without impulses have attracted the attention of many researchers

[1, 2, 6, 14].

For delay differential equations, the variational approach has been little used (see [4, 8, 11, 23]).

The aim of this paper is to study the existence of positive 2r-periodic solutions of the following nonlinear

impulsive problem:


−u′′(t) + λ(t)u(t) = f(t, u(t− r)), a.e t ∈ R,
u(t)− u(t+ 2r) = u′(t)− u′(t+ 2r) = 0,

∆u′(tj) = Ij(u(tj)), j ∈ Z,
(1)

where r ∈ R+∗ is a given constant, f : R × (0,+∞) → R is 2r−periodic in t, and f(t, .) is singular at 0;
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∆u′(tj) = u′(t+j ) − u′(t−j ) with u′(t±j ) = limt→t±j
u′(t); tj , j ∈ Z are the instants where the impulses occur;

there exists an p ∈ N such that 0 = t0 < t1 < t2 < ... < tp < tp+1 = 2r, tj+p+1 = tj + 2r; Ij , j ∈ Z are

continuous and Ij+p+1 ≡ Ij , for all j ∈ Z , λ is a L∞ function 2r−periodic in t such that α := essinf
t

λ(t) > 0.

We are motivated by the paper by Chen and Dai [8] in which, using the mountain pass theorem, the

authors ensured the existence of at least one 2π−periodic solution for the impulsive delay differential system{
u′′(t)− u(t) = −f(t, u(t− π)), t ∈ (tj−1, tj)

∆u′(tj) = gj(u(tj − π)).
,

where j ∈ Z , f : R × Rn → R is π−periodic in t and satisfying some technical conditions. tj , j ∈ Z are

the instants where the impulses occur; there exists a p ∈ N such that 0 = t0 < t1 < t2 < ... < tp < tp+1 = π,

tj+p+1 = tj + π; gj , j ∈ Z, are continuous; and gj+p+1 ≡ gj for all j ∈ Z.

Our goal in this paper is to obtain some simple sufficient conditions to guarantee that problem (1) has

at least a positive 2r-periodic solution when the nonlinearity f is singular and the impulses are independent of

the delay.

This paper is organized as follows, in section 2 we give some necessary preliminaries, in section 3 we show

the existence of at least one positive 2r -periodic solution of problem (1), and lastly we present an example to

illustrate our result.

2. Preliminaries

We begin this preliminary section with the following theorem, applied in the proof of our main result.

Theorem 1 (Mountain Pass Theorem; Th. 4.10 in [15]). Let X be a Banach space and φ ∈ C1(X,R).
Assume that there exist u0 ∈ X,u1 ∈ X, and a bounded open neighborhood Ω of u0 such that u1 ∈ X/Ω and

inf
∂Ω

φ > max (φ (u0) , φ (u1)) .

Let

Γ = {g ∈ C ([0, 1] ;X) ; g(0) = u0, g(1) = u0} ,

and

c = inf
g∈Γ

max
0≤s≤1

φ(g(s)).

If φ satisfies the Palais–Smale condition, then c is a critical value of φ and

c > max (φ (u0) , φ (u1)) .

In this study we are concerned with the existence of 2r-periodic solutions; for this, the problem (1) is

equivalent to the following one


−u′′(t) + λ(t)u(t) = f(t, u(t− r)), a.e t ∈ [0, 2r]

u(0)− u(2r) = u′(0)− u′(2r) = 0,

∆u′(tj) = Ij(u(tj)), j = 1, 2, ..., p

(2)
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Throughout this work we shall use the following notations: I = [0, 2r] ; for 1 ≤ q < ∞, Lq(I) is the

classical Lebesgue space of measurable functions u : I → R such that |u(.)|q is integrable, and for u ∈ Lq(I) we

define its norm by

∥u∥Lq =

 2r∫
0

|u(t)|q dt


1
q

.

L∞ (I) is the classical Lebesgue space of measurable functions u : I → R such that there exists a

constant C > 0 such that |u(t)| ≤ C a.e. t ∈ I , and for u ∈ L∞ (I) we define its norm by

∥u∥L∞ = inf {C; |u(t)| ≤ C a.e t ∈ I} .

Let ∥u∥∞ = sup {|u(t)| ; t ∈ I} denote the norm of u ∈ C(I), the space of real-valued continuous

functions. W 1;2(I) is the classical Sobolev space of functions u ∈ L2(I) with their distributional derivatives

u′ ∈ L2(I). We set H1
2r =

{
u ∈ W 1,2 (I);u(0) = u(2r))

}
, and for u, v ∈ H1

2r we define the inner product (., .)

and the norm∥.∥ by

(u, v) =

2r∫
0

u′(t)v′(t)dt+

2r∫
0

λ(t)u(t)v(t)dt,

and

∥u∥ =

(
∥u′∥2L2 +

∥∥∥√λu
∥∥∥2
L2

) 1
2

.

H1
2r endowed with the norm ∥.∥ is a reflexive Hilbert space.

By comparing the norm ∥u∥ with the norm ∥u∥L2 , we find

∥u∥L2 ≤ 1

α
∥u∥ where, α = essinf

t
λ(t). (3)

For all u ∈ H1
2r, we denote by ur(t) := u(t− r) for t ∈ R .

From an elementary result in analysis, we have that if u is a T -periodic function, then
T∫
0

u(t)dt =

T+a∫
a

u(t)dt, for all a ∈ R. Hence, for all u ∈ H1
2r,

∥ur∥ = ∥u∥ . (4)

For all u ∈ H1
2r, we have (see [7])

∥u∥L∞ ≤ 1√
2
∥u∥L2 +

1

2
∥u′∥L2 . (5)

Definition 1 f : I × (0,+∞) → R is an L1 -Carathéodory function if

– the mapping t 7−→ f(t, x) is measurable for every x ∈ (0,+∞) ;
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– the mapping x 7−→ f(t, x) is continuous for almost every t ∈ I ;

– for every ρ > 0 there exists a function lρ ∈ L1(I) such that, for almost every t ∈ I .

sup
|x|≤ρ

|f(t, x)| ≤ lρ(t).

Now we introduce the concept of solution for problem (2).

Let H2 (a, b) =
{
x : (a, b) → R; x, x′ are absolutely continuous, x′′ ∈ L2(a, b)

}
.

For x ∈ H2 (0, 2r) we have that x and x′ are absolutely continuous and x′′ ∈ L2(0, 2r). Hence

∆x′(tj) = x′(t+j )− x′(t−j ) = 0 for every t ∈ I. If x ∈ H1
2r, then x is absolutely continuous and x′ ∈ L2(0, 2r).

In this case, the one-sided derivatives x′(t+j ), x′(t−j ) may not exist. As a consequence we need to introduce a

different concept of solution.

Definition 2 We say that u ∈ H1
2r is a solution of (2) , if u ∈ C(I) , for every j = 1, 2, ..., p, uj := u|(tj ,tj+1)

∈ H2(tj , tj+1) and it satisfies the differential equation of (2) , for t ̸= tj , the limits u′(t−j ), u
′(t+j ) j = 1, 2, ..., p

exist, and impulsive conditions and boundary 2r-periodic conditions of (2) hold.

3. Main result

In this section, by variational method we show the existence of at least one positive solution for problem (2),

which is considered under the following assumptions:

(H1) (i) f : I × (0,+∞) → R is 2r−periodic in the first argument t, and is a L1 -Carathéodory function,

(ii) lims→0+ f(t, s) = −∞ , for almost every t in I ,

(iii) K := sup
s∈]0,+∞[

f(., s) is a function in L1 (I,R),

(iv) lims→0+ F (t, s) = +∞ and lims→+∞ F (t, s) = +∞ , for almost every t in I,where F (t, s) :=∫ s

1
f(t, ξ)dξ, the antiderivative of f,

(v) D1F (t, s) := ∂F
∂t (t, s) exists and is nonnegative, for almost every t in I .

(H2) (i) Ij , j = 1, 2, ..., p. are continuous and there exist two constants m,M ∈ R such that, for any s ∈ R,

m ≤ Ij(s) ≤ M < 0, for every j = 1, 2, ..., p,

(ii) λ ∈ L∞(I), 2r−periodic with α := essinf
t∈I

λ(t) > 0.

Theorem 2 Assume (H1) , and (H2) are satisfied. Then for
√
r(α+

√
2)√

2α2
∥λ∥L∞ < 1, the problem (2) has at

least a positive solution.
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Proof We use a variational approach based on mountain pass theorem 1 to prove this result and we proceed

in five steps.

Step1: Modification of the problem.

To avoid the singularity point 0, we introduce the truncation function fβ defined for β ∈ (0, 1), by

fβ : [0, 2r]× R → R ,

fβ(t, s) =

{
f(t, s) if s ≥ β
f(t, β) if s < β

, (6)

and we consider the following modified problem:
−u′′(t) + λ(t)u(t) = fβ(t, u(t− r)), a.e t ∈ I,

u(0)− u(2r) = u′(0)− u′(2r) = 0,
∆u′(tj) = Ij(u(tj)), j = 1, 2, ..., p.

(7)

Let Fβ(t, s) =
∫ s

1
fβ(t, ξ)dξ be the antiderivative of fβ ; we define the functional Φβ : H1

2r → R, by

Φβ(u) =
1

2
∥u∥2 +

p∑
j=1

∫ u(tj)

0

Ij(s)ds−
∫ 2r

0

Fβ(t, u(t− r))dt. (8)

(H1) and (H2) imply that Φβ is well defined, weakly lower semicontinuous on H1
2r and it is continuously

differentiable functional, whose derivative is the functional Φ′
β(u) given by

Φ′
β(u).v =

∫ 2r

0

u′(t)v′(t)dt+

∫ 2r

0

λ(t)u(t)v(t)dt+

p∑
j=1

Ij(u(tj))v(tj) (9)

−
∫ 2r

0

fβ(t, u(t− r))v(t)dt.

The critical points of Φβ are weak solutions of (7). Thus, to prove the existence of a solution for problem (2),

we show the existence of critical points for Φβ that are greater than some β.

Step2: The functional Φβ satisfies the Palais–Smale condition.

Indeed, let {un}n∈N be a sequence in H1
2r such that {Φβ(un)}n∈N is bounded and Φ′

β(un) → 0 as

n → +∞; i.e. there exist a constant c1 > 0 and a sequence {εn}n∈N ⊂ R+ with εn → 0 as n → +∞ such

that, for all n large enough,∣∣∣∣∣∣12 ∥un∥2 −
∫ 2r

0

Fβ(t, un(t− r))dt+

p∑
j=1

∫ un(tj)

0

Ij(s)ds

∣∣∣∣∣∣ ≤ c1,

and for every v ∈ H1
2r∣∣∣∣∣∣

∫ 2r

0

u′
n(t)v

′(t)dt+

∫ 2r

0

λ(t)un(t)v(t)dt+

p∑
j=1

Ij(un(tj))v(tj)−
∫ 2r

0

fβ(t, un(t− r))v(t)dt

∣∣∣∣∣∣ ≤ εn ∥v∥ . (10)
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Now we show that {un} is bounded in H1
2r . Taking v(t) = 1 in (10), we obtain, for all n large enough,

∣∣∣∣∣∣
∫ 2r

0

[fβ(t, un(t− r))− λ(t)un(t)] dt−
p∑

j=1

Ij(un(tj))

∣∣∣∣∣∣ ≤ εn
√
2r.

So that

∣∣∣∣∫ 2r

0

fβ(t, un(t− r))dt

∣∣∣∣ ≤ εn
√
2r +

∫ 2r

0

|λ(t)un(t)| dt+
p∑

j=1

|Ij(un(tj))|

≤ εn
√
2r + ∥λun∥L1 + p |m|

≤ c2 + ∥λun∥L1 , (11)

where c2 := εn
√
2r + p |m| .

Let

I1,n := {t ∈ [0, 2r] ; fβ(t, un(t− r)) ≥ 0} ,

and

I2,n := {t ∈ [0, 2r] ; fβ(t, un(t− r)) < 0} .

It follows from (11) that

∣∣∣∣∣
∫
I2,n

fβ(t, un(t− r))dt

∣∣∣∣∣ ≤ c2 + ∥λun∥L1 +

∫
I1,n

fβ(t, un(t− r))dt

≤ c2 + ∥λun∥L1 + ∥K∥L1 . (12)

Then by (12) we have for all n :

∫ 2r

0

|fβ(t, un(t− r))| dt =

∣∣∣∣∣
∫
I2,n

fβ(t, un(t− r))dt

∣∣∣∣∣+
∫
I1,n

fβ(t, un(t− r))dt

≤ c2 + ∥λun∥L1 + 2

∫
I1,n

fβ(t, un(t− r))dt

≤ c2 + ∥λun∥L1 + 2 ∥K∥L1

≤ c3 + ∥λun∥L1 , (13)

where c3 := c2 + 2 ∥K∥L1 .

On the other hand, if we take, in (10) , v(t) = un(t), taking into account (H2)(ii), (13) , (5) and
√
r(α+

√
2)√

2α2
∥λ∥L∞ <

974



DAOUDI-MERZAGUI and DIB/Turk J Math

1, we get for all n large enough,

c4 ∥un∥ ≥ ∥un∥2 −
∫ 2r

0

fβ(t, un(t− r))un(t)dt+

p∑
j=1

Ij(un(tj))un(tj)

≥ ∥un∥2 − (c3 + ∥λun∥L1 ) ∥un∥L∞ + pm ∥un∥L∞

≥ ∥un∥2 −
√
2r ∥λ∥L∞ ∥un∥L2

(
1√
2
∥un∥L2 +

1

2
∥u′

n∥L2

)
+ (c3 − pm) ∥un∥L∞

= ∥un∥2 −
√
r ∥λ∥L∞ ∥un∥2L2 −

√
r√
2
∥λ∥L∞ ∥un∥L2 ∥u′

n∥L2 + (c3 − pm) ∥un∥L∞

≥ ∥un∥2 −
√
r(α+

√
2)√

2α2
∥λ∥L∞ ∥un∥2 + (c3 − pm) ∥un∥L∞

≥

(
1−

√
r(α+

√
2)√

2α2
∥λ∥L∞

)
∥un∥2 − c4 ∥un∥ ,

for some c4 > 0. It follows that {uk} is bounded in H1
2r. From the reflexivity of H1

2r, we may extract a weakly

convergent subsequence that, for simplicity, we label the same, and so there exists u in H1
2r , such that uk ⇀ u.

Next, we will verify that {uk} is strongly convergent to u in H1
2r. By (9) we have(

Φ′
β (uk)− Φ′

β (u)
)
(uk − u) (14)

= ∥uk − u∥2 −
∫ 2r

0

[fβ(t, uk(t− r))− fβ(t, u(t− r))] (uk(t)− u(t)) dt

+

p∑
j=1

[Ij(uk(tj))− Ij(u(tj))] (uk(tj)− u(tj)) .

By uk ⇀ u in H1
2r, and the Sobolev embedding theorem, we get uk → u in C (I) and uk → u in L2 (I) .

Hence, 
2r∫
0

[fβ(t, uk(t− r))− fβ(t, u(t− r))] (uk(t)− u(t)) dt → 0,∑p
j=1 [Ij(uk(tj))− Ij(u(tj))] (uk(tj)− u(tj)) → 0, as k → ∞.

(15)

By limk→∞ Φβ (uk) = 0 and uk ⇀ u, we have(
Φ′

β (uk)− Φ′
β (u)

)
(uk − u) → 0, as k → ∞. (16)

By (14) , (15) , (16) , and uk → u in L2 (I) we obtain ∥uk − u∥ → 0, as k → ∞. That is, {uk} is strongly

convergent to u in H1
2r , which means that Φβ satisfies the Palais–Smale condition.

Now we proceed to show that Φβ has a mountain pass geometry.

Let

Ω :=
{
u ∈ H1

2r;minu > 1
}
,

and

∂Ω =
{
u ∈ H1

2r;u(t) ≥ 1 for every t ∈ (0, 2r) , ∃tu ∈ (0, 2r) : u(tu) = 1
}
.
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Step3: There exists d > 0 such that infu∈∂Ω Φβ(u) ≥ −d.

Indeed, for u ∈ ∂Ω, there exists tu ∈ (0, 2r) such that inft∈I u(t) = u(tu) = 1, and so tu ∈]ti−1, ti[ for

some i, 1 ≤ i ≤ p. By the 2r -periodicity of u, u′, Fβ , and Ij , taking into account (4) we have

Φβ(u) =
1

2

∫ tu+2r

tu

[
(u′(t))2 + λ(t)(u(t))2

]
dt−

∫ tu+2r

tu

Fβ(t, u(t− r))dt

+

p+i−1∑
j=i

∫ u(tj)

0

Ij(s)ds

=
1

2

∫ tu+2r

tu

[
(u′(t))2 + λ(t)(u(t))2

]
dt−

∫ tu+2r

tu

Fβ(t, u(t− r))dt

+

p+i−1∑
j=i

∫ 1

0

Ij(s)ds+

p+i−1∑
j=i

∫ u(tj)

1

Ij(s)ds

≥ 1

2
∥u∥2 − ∥Kβ∥L2 ∥ur − 1∥L2 + pm+ pm ∥u− 1∥∞

≥ 1

2
∥u∥2 − 1

α
∥Kβ∥L2 ∥ur − 1∥+ pm+ c6pm ∥u− 1∥

≥ 1

2
∥u∥2 −

(
1

α
∥Kβ∥L2 − c6pm

)
∥u− 1∥+ pm,

for some constant c6 > 0. Thus, applying triangular inequality to ∥u− 1∥ ,

Φβ(u) ≥ 1

2
∥u∥2 −

(
1

α
∥Kβ∥L2 − c6pm

)(
∥u∥+

√
2r
)
+ pm

=
1

2
∥u∥2 −

(
1

α
∥Kβ∥L2 − c6pm

)
∥u∥+ pm

(
c6 −

√
2r
)
−

√
2r

α
∥Kβ∥L2 .

The above inequality shows that

Φβ(u) → +∞ as ∥u∥ → +∞, u ∈ ∂Ω.

We infer that Φβ is coercive, and so it has a minimizing sequence; the weak lower semicontinuity of Φβ yields

inf
u∈∂Ω

Φβ(u) > −∞.

It follows that there exists d > 0 such that infu∈∂Ω Φβ(u) ≥ −d.

Step4: There exists β0 ∈ (0, 1) such that for every β ∈ (0, β0) , any solution u of (7) with Φβ(u) ≥ −d

satisfies minu ≥ β0 .

Assume on the contrary that there are sequences {βn}n∈N and {un}n∈N such that

(a) βn ≤ 1
n ,

(b) un is a solution of (7) with β = βn,

(c) Φβn(un) ≥ −d,
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(d) minun < 1
n .

By (H1) (iii), and ∫ 2r

0

[fβn
(t, un(t− r))− λ(t)un(t)] dt = −

∫ 2r

0

u′′
n(t)dt

= −
p∑

j=0

∫ tj+1

tj

u′′
n(t)dt

= −
p∑

j=0

(
u′
n(t

−
j+1)− u′

n(t
+
j )
)

=

p∑
j=1

∆u′
n(tj) + u′

n(0)− u′
n(2r)

=

p∑
j=1

Ij(un(tj)).

Thus, if h denotes the function

h(t) = fβn
(t, un(t− r)),

(H2) implies the existence of a constant c7 > 0, such that

∥h∥L1 ≤ c7.

Hence,

∥u′
n∥L∞ ≤ c8, for some constant c8 > 0.

Now, since Φβn(un) ≥ −d it follows that there must exist two constants R1 and R2, with 0 < R1 < R2 such

that
max {un(t); t ∈ I} ∈ [R1, R2] .

Otherwise, by the assumption (b), un is periodic solution of (7) with β = βn, and so un would tend uniformly

to 0, and in this case from (H1) (iv) and ∥u′
n∥L∞ ≤ c8 , Φβn(un) would go to −∞ , which contradicts

Φβn(un) ≥ −d.

For n large enough, the continuity of un implies that there exist τ1n, τ
2
n ∈ I such that

un

(
τ1n − r

)
=

1

n
< R1 = un

(
τ2n − r

)
.

Multiplying the equation u′′
n(t)+fβn(t, un(t−r)) = λ(t)un(t) by u′

n(t−r) and integrating the resulting equation

on
[
τ1n, τ

2
n

]
, or on

[
τ2n, τ

1
n

]
, we get

J : =

∫ τ2
n

τ1
n

u′′
n(t)u

′
n(t− r)dt+

∫ τ2
n

τ1
n

fβn(t, un(t− r))u′
n(t− r)dt

=

∫ τ2
n

τ1
n

λ(t)un(t)u
′
n(t− r)dt.
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Since un , u
′
n ∈ L2 (I;R) , and λ ∈ L∞ (I;R) , J is bounded.

Let us write J as follows:

J = J1 +

∫ τ2
n

τ1
n

u′′
n(t)u

′
n(t− r)dt,

where

J1 =

∫ τ2
n

τ1
n

fβn(t, un(t− r))u′
n(t− r)dt

Since τ1n, τ
2
n ∈ I , there exists 1 ≤ k, l ≤ p such that τ1n ∈]tk−1, tk[ and τ2n ∈]tl−1, tl[ , then, ∥u′

n∥L∞ ≤ c8

implies

∫ τ2
n

τ1
n

u′′
n(t)u

′
n(t− r)dt ≤ c8

∫ τ2
n

τ1
n

u′′
n(t)dt

= c8[u
′
n(τ

2
n)− u′

n(τ
1
n)−

l−1∑
j=k

∆u′
n(tj)]

Consequently J1 is bounded.

On the other hand, for a.e. t ∈ I, we have

fβn(t, un(t− r))u′
n(t− r) =

d

dt
Fβn(t, un(t− r))−D1Fβn(t, un(t− r)).

Thus,

J1 = Fβn(τ
2
n, R1)− Fβn(τ

1
n,

1

n
)−

∫ τ2
n

τ1
n

D1Fβn(t, un(t− r)).

The assumption (H1) (v) implies that

J1 ≤ Fβn(τ
2
n, R1)− Fβn(τ

1
n,

1

n
).

It follows from (H1) (ii) that J1 is not bounded. This is a contradiction.

Consequently, there exists β0 ∈ (0, 1) such that for every β ∈ (0, β0) , any solution u of (7) with

Φβ(u) ≥ −d satisfies minu ≥ β0 and so by (6) u is a solution of (2) .

Step5: Φβ has a mountain-pass geometry, for all β ≤ β0 , where β0 is defined in step4.

Indeed, from (H1) (ii) we can choose β ∈ (0, β0] such that

f(t, β) < 0, uniformly in t ∈ I.
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Fβ(t, 0) =

∫ 0

1

fβ(t, s)ds = −
∫ 1

0

fβ(t, s)ds

= −
∫ β

0

fβ(t, s)ds−
∫ 1

β

fβ(t, s)ds

= −
∫ β

0

f(t, β)ds−
∫ 1

β

fβ(t, s)ds

= −βf(t, β)−
∫ 1

β

fβ(t, s)ds.

This implies that

Fβ(t, 0) > −
∫ 1

β

fβ(t, s)ds =

∫ β

1

fβ(t, s)ds = Fβ(t, β);

hence

Φβ(0) = −
∫ 2r

0

Fβ(t, 0)dt < −
∫ 2r

0

Fβ(t, β)dt.

By (H1) (iv), we can consider β ∈ (0, β0] such that

Fβ(t, β) >
d

2r
for a.e. t ∈ I.

It follows that Φβ(0) < −d.

Moreover, using (H1) (iv) we can find δ sufficiently large (δ > 1) such that for a.e. t ∈ I ,

Fβ(t, δ) >
d+ ∥λ∥

L∞ rδ2

2r
.

By (H2) (i) we have

Φβ(δ) = −
∫ 2r

0

Fβ(t, δ)dt+

p∑
j=1

∫ δ

0

Ij(s)ds+

∫ 2r

0

λ(t)δ2

2
dt

≤ −
∫ 2r

0

Fβ(t, δ)dt+ ∥λ∥
L∞ rδ2,

and this implies that

Φβ(δ) < −d.

Since Ω is a neighborhood of δ, 0 /∈ Ω and

max {Φβ(0),Φβ(δ)} < inf
u∈∂Ω

Φβ(u).

Hence, we are in the situation of the mountain-pass theorem 1. Step2 and step5 imply that Φβ has a

critical point uβ such that

Φβ(uβ) = inf
η∈Γ

max
0≤s≤1

Φβ(η(s)) ≥ inf
u∈∂Ω

Φβ(u),
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where

Γ :=
{
η ∈ C

(
[0, 1] ;H1

2r

)
; η(0) = 0, η(1) = R

}
.

Now since by step3 infu∈∂Ω Φβ(u) ≥ −d, it follows from step4 that uβ is a solution of (2).

This completes the proof of the main result. 2

Example 1 We consider the following problem:


−u′′(t) + λ(t)u(t) = f(t, , u(t− r)), t ̸= tj , 0 < t < 2r,

u(0)− u(2r) = u′(0)− u′(2r) = 0,

∆u′(tj) = Ij(u(tj)), j = 1, 2,

(17)

where r = 1
3 ,

f(t, u(t− r)) := µ (t)
lnu(t− r)

u(t− r)
, 0 ≤ t < 2r, with µ(t) =

{
t if 0 ≤ t ≤ r

1 if r < t < 2r
,

I1(u(t1)) : = cos(u(t1))− 2,

I2(u(t2)) : =
u(t2)

(u(t2))2 + 1
− 1,

and

λ(t) :=

{
t+ 2 if 0 ≤ t ≤ r

2 + sin t if r < t < 2r
.

The conditions (H1) and (H2) of theorem 2 are satisfied, indeed,

(H1)(i) f : R× (0,+∞) → R; given by f(t, s) = µ(t) ln s
s is a Carathéodory function, 2r−periodic in t.

(ii) lims→0+ f(t, s) = −∞, for almost every t in I ,

(iii) K(t) = sup
s∈]0,+∞[

f(t, s) = µ(t)e is a function in L1 (I,R), where max
s∈]0,+∞[

ln s
s = e.

(iv) Since µ(t) is 2r−periodic, then it is bounded, and so we have

lim
s→0+

F (t, s) = lim
s→0+

µ(t)
(ln s)

2

2
= +∞, and lim

s→+∞
F (t, s) = +∞,

for almost every t in I.

(v) For any (t, s) ∈ (0, 2r)× (0,+∞),

D1F (t, s) :=
∂F

∂t
(t, s) =

 (ln s)
2

2
if 0 ≤ t ≤ r

0 if r < t < 2r
,

Thus, D1F (t, s) ≥ 0 for all s ∈ (0,+∞) and for almost every t in I.
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(H2) (i) for m = −3 and M = −1
2 , we have

m ≤ Ij(s) ≤ M < 0, for any s ∈ R, and j = 1, 2.

(ii)λ ∈ L∞(I) with α := essinf
t∈I

λ(t) = 2 > 0, ∥λ∥L∞ = 2 + sin 2
3 .

Then, since
√
r(α+

√
2)√

2α2
∥λ∥L∞ = 0, 912 < 1, the problem (17) has at least a positive 2

3 -periodic solution.
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