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Abstract: This work continues the investigation of perfect locally finite minimal non- F'C'-groups in totally imprimitive
permutation p-groups. At present, the class of totally imprimitive permutation p-groups satisfying the cyclic-block
property is known to be the only class of p-groups having common properties with a hypothetical minimal non- F'C'-
group, because a totally imprimitive permutation p-group satisfying the cyclic-block property cannot be generated
by a subset of finite exponent and every non- F'C'-subgroup of it is transitive, which are the properties satisfied by a
minimal non- F'C-group. Here a sufficient condition is given for the nonexistence of minimal non- F'C-groups in this
class of permutation groups. In particular, it is shown that the totally imprimitive permutation p-group satisfying the
cyclic-block property that was constructed earlier and its commutator subgroup cannot be minimal non- F'C-groups.

Furthermore, some properties of a maximal p-subgroup of the finitary symmetric group on N* are obtained.
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1. Introduction
Let © be a nonempty (infinite) set. A permutation g on € is called finitary if its support supp(g) is finite. The
set of all the finitary permutations on ) forms a normal subgroup of the symmetric group Sym(Q) and is called
the restricted symmetric group on Q. It is denoted by FSym(2). A subgroup of F'Sym(f) is called a finitary
permutation group on 2. Let G be a transitive finitary permutation group on €2, where (2 is infinite. If G has
no proper blocks or has a maximal proper block, then G is called primitive or almost primitive, respectively,
and then G has a homomorphic image that is isomorphic to one of Alt(Q2) or Fsym(2) by [10, p.261] (see
also [9, Corollary 6.9]). Note that if A is a proper block for G, then there exists a g € G with g(A)NA =0
since two blocks are either equal or disjoint and then A must be finite since supp(g) is finite. In the remaining
case (G is called totally imprimitive. In this case, G has an infinite ascending chain of proper blocks and their
union is an infinite block for G, which must be equal to €2 since G is transitive. Thus, 2 and G are countably
infinite. It is well known that a finitary permutation group G has only finite orbits if and only if one of the
following holds:

G is solvable, hypercentral, an F'C-group, or residually finite by [23, Theorems 1,2] or [10, Lemma 8.3D].
If G is locally solvable, then G is totally imprimitive and hyperabelian of height at most w by [18, Theorem
2].

Let G be a totally imprimitive subgroup of F'Sym(Q2), where Q is infinite. It is well known that set-wise
stabilizers of finite sets are F'C-groups and they are hypercentral when G is a p-group by [23, Theorem 1] or
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[10, Lemma 8.3D]. Subgroups having infinite orbits of G are non- F'C'-subgroups (N F'C-subgroups for short).
In general an NFC-group is called a minimal NFC-group (M N FC-group for short) if every proper subgroup
of this group is an FC-group.

The structure of an imperfect M N FC-group was determined in [6, 7] (see also [22, Theorem 8.13]). In
this group the commutator subgroup is a divisible abelian g-group of finite rank (Chernikov g-group) and the
commutator quotient is a finite p-group, where p, ¢ are primes. On the other hand, it is still unknown whether
or not a perfect M N FC-group exists. If a perfect M N F'-group exists, then it is a p-group for a prime p by [7,
Theorem 2] and [14, Theorem], and it has a nontrivial representation in the group of finitary permutations on
some infinite set by the characterizations given in [8, 15]. (Some partial results in this direction are contained
in [1-5].)

Let G be a totally imprimitive p-subgroup of FSym(Q2), where € is infinite. An element g of G is said
to satisfy the cyclic-block property if the support of each cycle in the cycle decomposition of g is a block for
G, and a subset Y of G satisfies the cyclic-block property if every element of Y satisfies this property. Now
suppose in addition that G satisfies the cyclic-block property. By [4, Lemma 2.2] two blocks for G are either
disjoint or one is contained in the other one. This implies that G must be a p-group for a prime p. Furthermore,
every N F(C-subgroup of G is transitive and a subset of finite exponent of G generates a subgroup of finite
exponent and so cannot be equal to G (see Lemma 3.1(b) below). These are properties satisfied by a perfect
MNFC-group. (A perfect M NFC-group cannot be generated by a subset of finite exponent (see [1, Remark
1.10]).) There are no known other types of p-groups that share common properties with a perfect M NFC-p-
group. For this reason it is a rather crucial step to settle the existence problem of M N FC-groups in the class
of permutation groups satisfying the cyclic-block property. In this work a new result (Theorem 1.1) is obtained
in this direction. This result is a considerable generalization of [1, Theorem 1.5] (see below). In particular, if a
group in this class is generated by homogeneous elements and satisfies (%) (see below), then the group cannot
be MNFC (Corollary 1.2). Furthermore, Theorem 1.1 provides a short proof for [4, Theorem 1.2] (Corollary
1.3). (Another proof of [4, Theorem 1.2] is contained in [5, Theorem 1.6].) The group given in [4, Theorem
1.1] satisfies the cyclic-block property, it has an easily defined generating set, and all of its blocks of p-power
size are easily described, but it is not known whether or not it contains an M N FC-subgroup. (This group
satisfying the cyclic-block property is a transitive subgroup of the maximal p-subgroup, denoted by W here,
of FSym(N*) constructed in [22]; see Proposition 2.1 for some properties of W.) [5] contains new properties
of NFC-subgroups of a perfect totally imprimitive p-subgroup of FSym(f2). Among other things it is shown
there that the normalizer of an N FC'-subgroup is self-normalizing and a self-normalizing subgroup is closed in
the topology of point-wise convergence (see also [15]). It follows from [5] that a group of finitary permutations

contains an M N F'C-subgroup if and only if the set of self-normalizing subgroups contains minimal elements.

Let G be a subgroup of FSym(Q)) and let ¢ € G. The minimum of the lengths of the cycles in the
cycle decomposition of g is denoted by m(g). g is called homogeneous if every cycle of g has equal length. An
infinite subset Y of G is called ascending if Y has an infinite exponent and is not contained in a set stabilizer
of a finite set. We say that Y satisfies the property (x) if for every y,z € Y, and for all cycles ¢,,c, in
the cycle decompositions of y and z, respectively, the following holds. Put supp(c,) = A and suppose that
A C supp(c;). Then
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[CZ(CZ,A”A’CZJ] -1
where s(c.,A) is the smallest positive integer such that ci(cz’A) € Gay-

It is well known that this condition is equivalent to

Ci(cz,A)M - c’;
for a k > 1 by [13, Lemma 1]. (The centralizer of a cycle is generated by the cycle itself and permutations
disjoint with it.)

Let A be a block for G and put ¥ = {z(A) : « € G}. Then the kernel of the natural permutation
representation of G into Sym(X) is denoted by Kerg(A) and is called the kernel subgroup of G with respect
to A. Since Kerg(A) fixes 2(A) for every = € G it follows that Kerg(A) is isomorphic to a subgroup of the
direct product of copies of a finite group, and so Kerg(A) is an F'C-group of finite exponent.

For a nonempty subset X of G, exp(X) denotes the maximum of the set {|z| : x € X} if it exists;

otherwise, it is equal to oco.

Theorem 1.1 Let G be a perfect totally imprimitive p-subgroup of FSym(Q), where 0 is infinite. Suppose
that G contains an ascending subset X satisfying the cyclic-block property such that the following properties
hold.
(a) X satisfies (x). Thus for all x,y € X and for all cycles cg,c, in the cycle decompositions of x and y,
respectively, the following holds. If supp(cy) C supp(cy), then

[CZ(cy,supP(Cz))|Supp(6m)7 cz] = 1,
where supp(cg) and supp(cy) are blocks for G, which is equivalent to

CZ(Cy’S“pP(CI))|supp(cm) = ()

for a q(eg) > 1.
(b) For every x € X there exists a y € X so that m(z) < m(y).
Then G cannot be an M N FC -group.

Theorem 1.1 is a considerable generalization of [1, Theorem 1.5]. In [1, Theorem 1.5] if F' is a finite
subgroup of G and supp(F') C A for a finite block A, then there exists y € G\ Ga} so that y* W) € Cg(F).
In particular [F¥, F] =1 since supp(F¥) N A = 1. This leads to the existence of an ascending subgroup H of
G for a given a € G with (a“) nonabelian so that (a?) is abelian, which gives a contradiction. On the other
hand, in Theorem 1.1, there is information only about the centralizer of a cycle, namely ¢, of x € X, but X is

required to satisfy the additional property called the cyclic-block property. (Also in the proof of Theorem 1.1

(c%) is not abelian, but there will exist an ascending subgroup, say X* of G, so that (¢X') is abelian, which

gives a contradiction.) It is not known yet whether condition (b) of Theorem 1.1 is indispensable.
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Corollary 1.2 Let G be a perfect totally imprimitive p-subgroup of FSym(Q), where Q is infinite. Suppose
that G contains an ascending subset X of homogeneous elements satisfying the cyclic-block property and the
(%) condition. Then G cannot be an M N FC -group.

Corollary 1.3 The totally imprimitive p-subgroup of FSym(N*) given in [{, Theorem 1.1] and its commutator
subgroup cannot be M N FC -groups.

For definitions, notations, and basic properties the reader is referred to [9, 10, 21, 22].
Question. Let G be a totally imprimitive p-subgroup of FSym(Q) satisfying the cyclic-block property where

Q is infinite. Does G contain a minimal non- F'C' subgroup?

2. A finitary permutation group with cyclic-block property

In this section the finitary permutation p-group given in [4] and satisfying the cyclic-block property is described
briefly for the convenience of the reader. This group is a subgroup of the example given in [23] by Wiegold.
For each k,n > 1 define

k—1
p

T = [[ G+ m=1p" i+ (n—Dp" +p* 1 ik (n=1)pF + (= 1)p* ).

i=1

Each xy, is a disjoint product of p~! cycles, each of which has length p.
For each k£ > 1 define

T ={zkm;n>1}and T = (T; : 1 < i < k).

Wiegold’s group, denoted here by W, is defined as W = (T}, : k > 1). T is a set of pairwise disjoint
permutations of order p and it is easy to check that 7)) <W and T}, ,/T}; is elementary abelian for every

k>0, where Ty = 1. W is a totally imprimitive p-subgroup of FSym(N*) since every element of every T
has finite support.
For p=2,

T, ={(1,2),(3,4),(5,6),... },To = {(1,3)(2,4), (5,7)(6,8),(9,11)(10,12),... }

Ts = {(1,5)(2,6)(3,7)(4,8), (9,13)(10,14)(11, 15)(12, 16), . .. }.

For all k,n > 1 the sets
A = {1+ (n—1)p" 24 (n—1)p* ... pF +(n—1)p"}

are blocks for W and |Ay | = p*. We may show that each Aj 1 is a block. We may put A, = Ay ; when no
confusion arises. Thus, A, = {1,2,...,p"} for k > 1. It suffices to show that T; (1) = Ay, for all k£ > 1 by [10,
Theorem 1.6A(i)]. For k=1 T1(1) ={1,2,...,p} = Ay. Assume that T} (1) = Ay. Now

Tpprn = (L14+p5 142" . 1+ (p—1)p") - (0", " + 0%, 0" + 20", . 0" + (p— 1)pP)
= (1,1 +pk71+2pk7"',1 + (pf 1)pk) (pk72pk73pk,"'apk+1)'
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Hence, it is easy to see that

<xk+171>(Ak) = {1723"'7pk} U{]- +pka2+pk7a2pk} U---u {1 + (pf ]-)pkaQ+ (pf 1)pka"'7pk+1}
= Ak

since the sets in the union are pairwise disjoint and are contained in Ag;;. In particular, it is easy to see that

ZTk+1,1 permutes the sets

(L2, p L ph 2405 2b ) L (o= Dp 2+ (0= pF, 0T

among themselves. Since (zpy1,1)(Ar) = (Zry1,1)(TF (1) = ((@ry1,1)T5)(1) = T, (1) it follows that
Ty, (1) = Agy1, which was to be shown. It can be shown that the finite blocks of p-power size for W
consist of
Apn={1+n—1p" 2+ (n—1)p" ..., 0"+ (n—1)p*}
for k,n>1.
Define

Uk = Tk,1Tk—1,1"""L1,1

for all k> 1. Then u;, € T} and uj, = (a1,az,...,a,), where 1 < a; < p* by [4, Lemma 3.2(a)]. Next define

Tk+1,1 z£7} 1
Uk:Uk+""Uk+’~
Th41,1 zi;i 1 C e .
Then vp = u, """ x -+« x """, ie. a product of disjoint cycles since supp(ur) = Ay and xpq1,1 sends

each 1 < i < p**! to i+ p* mod (pF*1). (Always ¢ = a x b means that a,b are disjoint permutations.) Put
gk = ug X vy, for every k > 1 and define G = (g : k > 1). Then G satisfies the cyclic-block property by [4,
Theorem 1.1]. We see from the definitions that {gr : k > 1} is an ascending set of homogeneous elements of

G . Furthermore, it follows from the definition that

p—1 p—1
p _ p__ P Trt11 L, Tt o Th41,1 . Tei11
Uy, g = (Tpy1,1up)? = Thyq U uy, U = U X Uy X X Uy, = g

for every k > 1. Hence, it follows that the g satisfy (x) as can be seen from the proof of Corollary 1.2. It can
also be shown easily that G < W’. Indeed,

p—1
_ T2 1 Ta1 _ D p—1 /
G =z o wg =2 [T, aa] v, a0 | €W

since xll),l = 1. Assume that g, € W’ for a k> 1. Now

p—1
o Th41,1 Thi11 _ p p—1
Ger1 = upuy 0w T = g fug, Tega ] Juk, 2577

Since u} = gr—1 € W' it follows that gx1 € W', which completes the induction, and so G < W'.

As was indicated above, each wy is a cycle of length p* with supp(uz) = Ay by [4, Lemma 3.2(a)].
Hence, supp(uzk“’l) = x,;_il 1(Ay) for every ¢ > 1 and hence

pk*l ;
supp(ve) = | supp(u,"") = Agyr \ Ay
=1
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For p=2
ur = (1,2);u2 = (1,4,2,3);us = (1,8,4,6,2,7,3,5)

and
ug = (1,16,8,12,4,14,6,10,2,15,7,11, 3,13,5,9).

Hence,
g1 =(1,2)(3,4);92 = (1,4,2,3)(5,8,6,7); 93 = (1,8,4,6,2,7,3,5)(9, 16,12, 14,10, 15,11, 13).

Finally, it follows from [4, Theorem 1.1, Lemmas 2.2 and 3.4] that G satisfies the cyclic-block property,
any two blocks for G are either disjoint or one is contained in the other one, and the blocks for G are the blocks
for W. Thus, the set of the blocks of the same p-power size for G form a block system for G and hence also
for W.

We end this section with a characterization of W.

Proposition 2.1 W is a transitive mazimal p-subgroup of FSym(N*), Z(W) = 1, self-normalizing, and
W/W' is infinite elementary abelian.
Proof Put Wi = (z1,1,%21,...,%k,1) for every k > 1. Then W = |J;—; Wi and also N* = |J;—; Ay, where
A ={1,2,...,p*} for every k > 1. It is easy to see that each W}, is transitive on Ay, which implies that W
is transitive on €, and then Z(W) =1 by [10, Lemma 8.3C(ii)].

First we show that W}, is a Sylow p-subgroup of Sym(Ayg) for every k > 1. Note that supp(Wy) = Ag.
Put

Pe = (- ((w1,1) Vwz,1)) U V1))

Then Py is isomorphic to a Sylow p-subgroup of Sym(Ay) by [11, Proposition 19.10] since each (zy ;) has order
p. It will suffice to show that Wy, = Py,. For k = 1 the assertion holds since (x11) = ((1,2,...,p)) is a Sylow p-
subgroup of Sym({1,2,...,p}). Suppose that the assertion holds for k& > 1. Then Wy = (z1,1)0(z21)0 - - UTk,1),
and by identifying these two groups, W) becomes a Sylow p-subgroup of Sym(Ag). Thus, we get Ppiq =
Wi U (zk+1,1). Let By be the base subgroup; that is, By = Hbe(xk+1,1)(Wk>b7 where each (W), is equal to
Wy. Then P44 is isomorphic to By{(xk+1,1) and so |Py41| = p|Bi| = p|Wk|P. However, we have seen above
that @j411 permutes the sets {1,2,...,pF} {1+p¥,24p%, ... 205}, ... {1+ (p—1)pF, 2+ (p—1)pk, ..., pFTi}
among themselves and induces a cycle of length p on them. Also, Wy is a Sylow p-subgroup of Sym(Ayg).
Clearly then x,;frl’kax};H are Sylow p-subgroups on the corresponding sets x,;iLl(Ak) for : =1,...,p.
Thus, x;i1,1ka?c+1 and m;il’lwkxiﬂ have disjoint supports for i # j and so they commute. Therefore, we
get

— -1 —(p—1) p—1
Wk+1 = (Wk X xk+1,1kak+1 X X J)k+1,1 Wk$k+1)<l‘k+1,1>~

This gives |Wit1| = |[Wi|P|xg+1,1] = p|Wi|P and hence |Wyi1| = |Pry1|. This implies that Wy11 is a Sylow
p-subgroup of Sym(Ag41) since Wiy < Sym(Agy1), which completes the induction. Clearly it follows from
this that W is a Sylow p-subgroup of FSym(N*) since FSym(N) = Jp—, Sym(Ay).

Next we show that W is self-normalizing. Assume not. Then there exists a subgroup Y of FSym(N*)
with W <Y and Y/W is abelian. Also, Y is transitive since W is. Moreover, Y’ < W and so Y’ is a
p-group, but then Y is a p-group by [20, Lemma 2.1], which is a contradiction.
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Finally, we show that W/W’ = [[,2 (zx,1W'), as a direct product. This will be the case if we can show
that Wy /W] = H?:1<a:i71 W/), as a direct product, for every k > 1. For k =1 this is trivial. Suppose that the

assertion holds for k > 1. We have seen above that

Wi Z Wil (@pg11) = ( H (We)o)(@rs1,1) = Br(Trs1,1),
be(Tht1,1)
which implies that Wi /Wi | = Br(xry1,1)/(Be(®ry1,1)). We can now apply [17, Corollary 4.5] to
By (xk11,1)- This gives
(Br(wkt1.1)) = M

where M = {f € By : 7(f) € Wi} and 7(f) = [lye(s,,,,) f(b). Next define 27,(1) = @i and x7,(b) =1
for b#1 for 1 <i < k. Each a7, € Br = [Iye(s,,, ,)(Wk)s). We claim that 27 ,M,...,a} ;M are linearly
independent over Z,, the field of p elements. Assume if possible that there exists an f = (z] ;)% -~ (27 ;)"
where 1 <r <k and 1 <s; <psothat f € M. Then f = (21" ---277,1,...,1) and 7 (f) = 27"y --- 277, € W[,
but since Wy /Wy = (11 W) x -+ x (z1W}) by the induction hypothesis it follows that =", W} = ... =
z; Wy, =1, which means that 7", € W} and then p|s; since |v; 1| = p, which is impossible since 1 <'s; < p
for every i > 1. Consequently it follows that z7 ; M, ..., x} ;M are linearly independent in By, (xg+1,1/M . Then

also 21 M, ... ,x}; M, x},, M are linearly independent in By(zy+1,1/M since (x}, ;)N By = 1. Therefore,
Bi(why1,0)/M = (@] 1 M) X -+ X (g4 1 M).
Hence, using the above isomorphism, we get
Wit/ Wiga = (@1 W) X X (@ra1a W),

which completes the induction. Now since W = [J;—, Wy, it follows easily that

oo
W/W' =[] (exaW)
k=1

as a direct product. Suppose that (x,1W') N (g W' : k > 1,k #t) # 1 for a t > 1. Then (z;1W') <
(xpgaW' 1 k> 1,k #1t) since |x1| = p. Hence, 241 is a finite product of elements of certain cosets of the right
side. Also, W’ = [J;-; W/.. Clearly then there exists an n > ¢ so that z;1 € (2,1 W), : 1 <k <n,k #t), but
since W, /W) = (z11W,,) x -+ X (x,,1W},), as was shown above, this is impossible. Therefore, the assumption
is false and so W/W’ is a direct product of the (zj1W’) as k ranges over the positive integers. O

Remark.The commutator subgroup W’ of W is perfect and transitive by [19, Theorem 1]. Also, W
does not satisfy the normalizer condition by [1, Theorem 1.2(b)] since G < W and G’ is not an M NFC-group
by Corollary 1.3. The reader may observe that W is exactly the same group that is constructed in [12, 18.2.2

Example|, where it is shown also that this group does not satisfy the normalizer condition.

3. Proof of Theorem 1.1
We begin with a known result on the cyclic-block property for the convenience of the reader. (See also [5,

Proposition 1.7].)
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Lemma 3.1 3.1 Let G be a totally imprimitive p-subgroup of FSym(Q) satisfying the cyclic-block property,
where ) is infinite. Then the following hold:

(a) Let A be a finite block for G and let a € A. Then for every y € G\ Gay, (¥*@2)(a) = A.
(b) Let A be a finite block for G. Then
Kerg(A)={g € G :|g| <|Al}.
Furthermore, exp(Gay) is infinite.

(¢) Any NFC -subgroup of G is transitive on ).

Proof (a) (See [4, Lemma 2.1].) Put H = G{ay and let y € G\ H. Put ¢t = s(y,A). Then ¢ is the smallest
number such that y* € H. Also, t = p" for an 7 > 1. Next put (y)(a) =T and (y*)(a) = A. Then T and A
are blocks for G by the cyclic-block property. Also, A C T' and A C A by [4, Lemma 2.2] since y ¢ H but
yt € H. Clearly |I'| = p"|A|. Assume if possible that there exists a /(o) € A\ A. Then j{p" and so j < p",
but since a € ANy ~J(A) and since A is a block, it follows that y/(A) = A, which is a contradiction since
t = p" is the smallest number with the property that y*(A) = A. Therefore, the assumption is false and so
(y') () = A.

(b) Put M = Kerg(A). Then M < H since H # G due to the fact that  is infinite and G is
transitive. Let y € G and put |y| = t. First suppose that ¢ < |A|. Then we claim that y € H. This is trivial
if supp(y) N A = since then y(A) = A. Suppose that y(a) # a for an e € A. Put I' = (y)(a). Then I' is a
block for G by the hypothesis and |I'| < ¢t < |A|. Also, since o € I'NA applying [4, Lemma 2.2], we get ' C A,
which implies that y € H. Thus, {g € G : |g| < |A|} C M. Next suppose that ¢ > |A|. There exists a 3 € Q so
that t = |(y)(B)|. Also, there exists a g € G so that g(3) = a. Since (y)(8) = {B,4y(8),...,y" ()}, it follows
that (gyg=1)(a) = {gy(B),...,9y" 1 (B),9(B)}. Now if y € M then also gyg~' € M, but since (gyg~1)(a) is a
block containing « and has size greater than |A|, this is a contradiction. Therefore, M = {g € G : |g| < |A|}.
In particular it follows that any subgroup of finite exponent of G is contained in a kernel subgroup which is
nilpotent of finite exponent. It is well-known that a transitive subgroup of FSym() has infinite exponent if
Q is infinite by [18, Lemma 3.1] or [10, Theorem 8.3A]). Let « € 2. We show that G, contains a conjugate of
every element of G. Let g € G. There exists a 5 € {2 so that g(8) = and so g € Gg. Also, f = z(«a) for an

1

r € G. Hence, g € Gyo) = vGor™" and so g” € G, which completes the proof of (b).

(¢) Let X be a proper NFC- subgroup of G. Then X cannot be contained in the set-wise stabilizer
of a finite block for G since X is not an FC-group. However, if exp(X) < |A| for a finite block A, then
X < Ker(A) < Ggay by (b), which is impossible. Therefore, exp(X) = 0o. Let o, € Q and let A be a finite
block for G containing both of them. Then there exists a g € X \ Xta} so that (¢*)(a) = A by (a), which

implies that 3 = (gP)/(a) for a j > 1, and so X is transitive. O

Lemma 3.2 Let G be a totally imprimitive p-subgroup of FSym(Q) and let ¢,d be two cycles in G such that
supp(c), supp(d) are blocks for G and supp(c) C supp(d). Let |¢| = p|d| = p® and put t = s(d, supp(c)).
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Then t = p*=*. If & |suppe) = ¢* , then (p,k) = 1 and

b—a b—a_4

P = () x o x ()
Proof Put A = supp(c), I' = supp(d). Then |A| = p® and || = p®. Let a € A. Now A C I'. Clearly
I = AUd(A)U---Ud(A) as a disjoint union since A is a block and d is a cycle. Hence, p* = tp® and

hence t = p?~®.
Put H = G{a}. Then t is the smallest number with d* € H. Hence, (d" Y(a) C A and |d®" | =
[(d”""")(a)| since d is a cycle, which implies that |(d” “)(a)| = p®. Now suppose that d”’ “|n = ¢*. Then

p1k since |c| is a cycle of length p®. Thus, (p,k) =1 and c* is a cycle.

Now d’* di(a) = dickd™" for every 1 <i <p’ ® and I' = AUd(A)U- - UdP" "~1(A). Obviously then

b—a b—a

d" = = () (R

Lemma 3.3 Let G be a totally imprimitive p-subgroup of FSym(Q). Let X be an ascending subset of G
satisfying the cyclic-block property. Suppose also that X satisfies (x). Then X contains an ascending subset
Y ={y;:i>1} of G such that the following holds. Fach y; can be expressed as a direct product of cycles as

Yi = Ci,1 X oo X Cir(s)

so that supp(y;) C supp(cit1,1), m(y;) < m(yi+1), and the following hold. Let 1 < j < r(i) and k > i. Put

|cij| = p* and |cp1| = p°. Then

b—a

[cz,l |SUPP(Ci,j)7Ci,j] =1

Proof Choose a y; # 1 in X so that m(y1) < m(z) for every x € X and let
Y1 ==C11 X -0 X C1p(1)

be the cycle decomposition of y;. Let I'; be the smallest block containing supp(y1). Next choose a yo in
X\G{r,y sothat m(yz2) < m(x) for every x € X\Gr,3. Now (y2)(a) is a block by the cyclic-block property and
Iy C supp({y2)(a)) by [4, Lemma 2.2] since y2 ¢ Gyr,y. Also, m(y1) < m(y2). Put c31 = (o, ...,y Ha)),
where t, is the smallest number such that y2(a) = a. Thus, I'; C supp(c,1). Continuing in this way we
obtain an infinite subset Y = {y; : ¢ > 1} of X such that m(y;) < m(yi4+1) and supp(y;) C supp(ciy1,1) for
every i > 1, where

Yi = Ci1 X w0 X Cip(s)

is the cycle decomposition of y;. Let 1 <i < k and let 1 < j < r(4). Then supp(c; ;) C supp(cg,1). Also, YV

satisfies (*) since Y is a subset of X . Therefore,
[Cifik,lysupp(ci,j))|Supp(c’£yj),Ci’j] =1.
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Let |¢; ;| = p* and |cx1| = p®. Then since s(cx1,supp(ci;)) = p®~@ by Lemma 3.2, substituting this
value above the desired equality is obtained. Furthermore, Y is ascending since supp(c;1) is a block and

supp(ci1) C supp(ciyr,1) for every i > 1. O

Lemma 3.4 Let G be a totally imprimitive p-subgroup of FSym(?). Let X be an ascending subset of G
satisfying the cyclic-block property and (x). Let Y = {y; : i > 1} be the subset of X obtained in Lemma 8.3.

Thus, for each i > 1, the cycle decomposition of y; can be written as
Yi = Ci1 X w0 X Cip(s)

such that supp(y;) C supp(cit1,1) and ma(y;) < mi(yi+1) for every i > 1. Moreover, if we put |c; ;| = palig) |
for every i > 1 and 1 < j <r(i), then for 1 <i <k the equality

a(k,1)—a(i,j)

i |SUPP(C71,J‘) = Cg,(jl’]) (1)

2]

holds for a q(i,7) > 1 with (p,q(i,7)) =1 by Lemma 3.5.
Now let j, k,t > 1 be integers with j < k,t and suppose that |y;| < min{m(yx),m(y:)}. Let m,n > 1.
Then

Yi Ui _ JYr

¢ J,1

Ji)1
for an r € {k,t} and s > 1.
Proof Put ¢; = ¢;1 and let |supp(c;)| = p»® for i = j,k,t. Then ¢; is a factor of the cycle decomposition

of y; for i = j,k,t and supp(y,) C supp(c,) for every 1 < u < v. We may suppose that j < k,t.
Case 1 j <k <t. Now

VeV _ ChYr
ittt =t (2)
since supp(c;) C supp(ck). On the other hand,
a(t)—a(k) ko1 f1) (D) 1 k1
L :cZ( )x---x(ci( ))Ct :cz( )ka

by (1) and Lemma 3.2, where supp(vi) N supp(c) = 0. Also, bg(k,1) =1 mod (p*)) for an integer b since
(q(k,1),p) = 1 by Lemma 3.2. Using this above gives

bpa(H)—a(k) bcfa(t)fa(k),l b
Cy =C X X = C X V.

b (B —a(k)

Hence, ¢ = ¢, ™. Substituting this in (2) gives

b— a(t)—a(k a(t)—a(k —a
R C“{Ebmdﬂb” “yp — cc_lnbp Ty = cc_lnbp e = c.mbpb o
J J J J J
since supp(c;) C supp(ck).
. c™m . Cmyn cm
Case 2 k£ >t > j. We may suppose that supp(cj’f ) N supp(ylt) # 0; otherwise, ¢;* 7 =¢f and we

are done. Then there exists a cycle ¢, in the cycle decomposition of y; so that supp(c?“n) C supp(cer) by
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the cyclic-block property since |y;| < m(y:) by the hypothesis. For simplicity, put u; = ¢;, and q(t) = q(t,r).

Clearly now ciF ¥t = ¢k ™t

y 5t Let |ug| = p*. Then

a(k)—z

p — O s IO T 2 e

= Uy X V¢

where (q(t),p) =1 by (1). Then, as in Case 1, there exists an integer b so that

ppe (k)= b
e = up X v}
h n —0. H n = b7 Qubstituting this above gi
where supp(ut) N supp(ve) = 0. Hence uf = v, ""c;, . Substituting this above gives
a(k)—=z a(k)—=z
e T epeet®
j J j
7n+nbpa(k)_z m,+nbpa(k)_z
= 'k = c°F
j J
since supp(c;’“ ) C supp(uy) and supp(uy) N supp(vy) = B, which completes the proof of the lemma. O

Lemma 3.5 Let G be a totally imprimitive p-subgroup of FSym(?). Let X be an ascending subset of G
satisfying the cyclic-block property and (x). Let Y = {y; : i > 1} be the subset of X obtained in Lemma 3.3 and
suppose that |y;| < m(yit1) for every i > 1. Let j > 1 and put Y = (y; : i > j). Let y = Y ij" €Yy,

where k; >3, r>1, m; > 1, and ky # kyy1. Then cil:cf‘l fora we {ki,....,k} and s > 1.

Proof We may use induction on r > 1. For r = 1 the assertion is obvious. Suppose that r > 1 and the asser-

tion holds for numbers less than r. Note that |y;| < m(yg,) for ¢ =1,...,¢ by the hypothesis. Hence, applying
my_mo mgq

Lemma 3.4 we obtain a k € {k1,k2} and an m > 1 so that c;’”f Yea Yk

hypothesis applies to the right side of the preceding equality. Therefore, there exist a u € {k, ks,...,k.} and

TR TSR T

k k ko . .

=c;5 3 7 . Then the induction
;

r

ST i :
an s > 1 so that ¢;; 7 7 = c?“l. Then since ¢;; = ¢

complete. O

Ya

74 the induction and the proof of the lemma are

Lemma 3.6 Let the hypothesis and the notation be as in Lemma 3.5. Let 7 > 1. Then [Cg,p ¢ =1 for every
yeyr.

Proof Put ¢; = c¢j1. Let y € Y. We have cg = cgz fora k > j and an s > 1 by Lemma 3.5. Let

supp(c;) = Tj and put H = Gyp,y. If yi ¢ H, then y;(T;) NT'; = () and since supp(c?’s“) =y, *(I';) it follows

that [cg;@,cj] =1, and the assertion holds in this case since cjy = c?’c .

Next suppose that y; € H. Let cx1 = cx, supp(ck) = I'x, |I';| = p?) and |Tx| = p**¥). Then

. , a(k)—a(j ;
p?M)=ali)|s by Lemma 3.2 and hence s = p*(¥)=2U)¢ for a t > 1. Also, supp(y;) C Ty and ¢}, * _ cg-(j) X Vg,

for a vy € FSym(Q) and ¢(j) > 1 by (1) in Lemma 3.4. Hence, ¢} = céqmv,i, but also yx = ¢ X zx for a
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z € FSym(Q). Combining these values we get y; = czqm(vizg), where supp(vizr) N T, = 0. Using this last

equality we get

M= 1D ik
J J j J
and hence
eV, e) = [ej ] =1,
which was to be shown. o

Lemma 3.7 Let G be a totally imprimitive p-subgroup of FSym(§), where ) is infinite. Let y € G and let

Jj>1 so that « € supp(y) C <c§21>(a) and |cj1| =p* for at >4. Then [cf,cj1] # 1.

Proof Put ¢=¢;;. Then supp(y) C {, (), ..., ()P °~1(a)} by the hypothesis. This means that if y

moves an element of €, then it must be of the form (c?’)*(a) fora 0 < k < pt=2 —1.
Assume if possible that ¢Yc = cc?. Then
yey te(a) = eyey™Ha). (1)

Now

1

yey~ e(a) = yee(a) = y(c* (@)

since y cannot move c(a) and
— 2 2 2
eyey™ ! (0) = eye(c?” (@) = ey(e"?" (@) = " +2(a)

since y cannot move ckp2+1(a), where y~!(a) = (cp2)k(a) and 1 < k < p'~2 — 1 since y(a) # a. Thus the

equality (1) takes the form

(V]

2
y((@) = M7 (a).
Now if p > 2, then y(c2()) = ¢2(a) since () is not of the form (¢ )¥(a). Indeed, if ¢2(a) = (¢?*)*(«), then

c*P*=2(q) = o, which implies that p!|kp? — 2 since |¢| = p!, which is impossible. Therefore, c(c) = c*?*+2(a)

2

and hence a = ckPQ(a), which is a contradiction since 1 < k < p'=2 —1, ¢ is a cycle, |c| = p’, and t > 4. Next

suppose that p = 2. Again since y can move only elements of the form (CPQ)’“(a) = c**(a) and since c?(a) is
not of this form, we get y(c?(a)) = c(a) and hence c?(a) = ¢*+2(a). Hence, c**(

contradiction since |¢| = 2!, t >4, and 1 <k <2072 1. O

a) = «, which is another

Lemma 3.8 Let G be a totally imprimitive p-subgroup of FSym(Q), where Q is infinite. Let X be the
ascending subset of G satisfying the cyclic-block property such that for every x € X there exists a y € X such
that m(x) < m(y). Then there exists an ascending subset Z = {z; : i > 1} of G so that m(z;) < m(zy1) for
every © > 1.
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Proof By the hypothesis we can obtain easily an infinite subset X* = {x; : i« > 1} of X so that
m(xz;) < m(xz;41) for every ¢ > 1. We may suppose that x; # 1. Let d; be a cycle of x; of the smallest length,
that is, of length m(z;) for every ¢ > 1. Then |d;| < |d;11| for every i > 1. Choose an « € supp(dy). By the
transitivity of G for every ¢ > 1 there exists an a; € G so that « € supp(d;*). Then supp(d;*) C supp(d?ff)

by [4, Lemma 2.2 since o € supp(d;*) N supp(d; ') for every i > 1. Put z; =z for every i > 1 and define

Z ={z :i>1}. Since supp(d{’) C supp(dy;;') and since each supp(d;’) is a block for G it follows that
Ui, supp(di’) = Q due to the fact that every proper block is finite by the transitivity of G on Q. Hence,

it follows that Z cannot be contained in the set stabilizer of a finite subset of G and also exp(Z) is infinite.

Therefore, Z is an ascending subset of G. O

Proof of Theorem 1.1 Let G be a totally imprimitive p-subgroup of FSym(Q), where Q is infinite. Let X
be an ascending subset of G satisfying the cyclic-block property so that conditions (a) and (b) are satisfied.
Then applying Lemma 3.8 we obtain an ascending subset Z = {z; : ¢ > 1} of G so that m(z;) < m(z;11) for
every i > 1. Next we can choose an infinite subset U = {u; : ¢ > 1} of Z so that |u;| < m(u;41) for every
i > 1 since the numbers m(z;) are increasing without bound. We now substitute U in place of X in Lemma
3.3. This gives an ascending subset Y = {y; : i > 1} of G so that the following hold. The cycle decomposition

of each y; can be expressed as

so that supp(y;) C supp(cit1,1) and if 1 < j <r(i), k >4, |c;j| = p*, |ck1| = p°, then

b q(i,9)

p —a
Ck |supp(ci,j) =G

for a q(i,7) > 1. Furthermore, for each ¢ > 1, the inequality |y;| < m(y;4+1) is satisfied by definition of U.
Thus, Lemmas 3.4, 3.5, and 3.6 can be applied to Y.

Next we may suppose that y; # 1. Choose an a € supp(y1). Let A be the smallest block such that
supp(y1) € A and let |A| < pt, for a t > 4. There exists a j > 1 so that |c;1| > p?* and A C supp(cj1).

Put ¢; = ¢j1. Then ¢; = (a,cj(a),...,c‘jc"lfl(a)). Now c§2 is a product of p? cycles each of length

2
> p?=2 = p2(t=1) > pt since t > 4. Then it is easy to see that A C (cf }(a) by the cyclic-block property since
<c§?2>(a) is a block and o € AN <C§2>(0¢)-

Put Y;* = (yi : % > j). Then the application of Lemmas 3.4, 3.5, and 3.6 gives [cg’l,cjﬂ] =1 for every

y € Y*, but application of Lemma 3.7 gives [c?l,cj] # 1, which implies that y; ¢ Y* and so Y* # G. However,
since {y; : ¢ > j} is ascending by definition of Y, the subgroup Y* cannot be an F'C-subgroup of G. Therefore,
G cannot be an M N FC-group and so the proof of the theorem is complete. O

Proof of Corollary 1.2 Let G be a totally imprimitive p-subgroup of FSym(f2), where  is infinite. Let X
be an ascending subset of homogeneous elements of G satisfying the cyclic-block property so that X satisfies
the (x) condition. Then condition (a) of Theorem 1.1 is satisfied. Therefore, we need only show that condition
(b) of Theorem 1.1 is satisfied. Since X is ascending by the hypothesis, exp(X) is infinite and (X) is a non-
FC-subgroup of G. Also, since G is locally finite, it follows that for every x € X there exists a y € X so that
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|z| < |y|. Now the homogeneity of the elements of X shows that (b) is satisfied by X . Therefore, G cannot
be MNFC by Theorem 1.1. O

Proof of Corollary 1.3 Let G be the p-subgroup of FSym(N*) described in Section 2. Then G satisfies the

cyclic-block property by [4, Theorem 1.1]. We have G = (g : k > 1), where g = up X vg, ux = (ar,...,a,r),
p—1

v = up X -o- X w0 supp(ug) = Ag, and supp(ve) = Agg1 \ Ap. Hence, it follows that each gy is

homogeneous; that is, |gx| = m(gy) = p* for every k > 1. Furthermore,

P —
Jr1lar = gx

since u}, +1 = gk as was shown in Section 2. Thus, G satisfies the hypothesis of Corollary 1.2 and therefore G
cannot be an M N FC'-group.

Next we show that G’ cannot be MNFC. For each s > 2 let Yy = {g;'¢)" : 1 < k < s} and put
Y = U522Ys~ Then Y is an ascending subset of homogeneous elements of G’. To see this let 1 < k < s.

Then g,;lgis = g,:lg;js since supp(gr) = Apt1 = supp(urt1) C supp(us). Also uI,;H = g (see Section

—1 _9gk+1 —1 Uk+1

2). Hence g, g, = 9. G = 1. So suppose that s > k+ 1. Then us(Api1) N Agrp = 0. Also,
supp(gy) = uy (supp(gr)) = uy ' (Apy1). Clearly it follows from this that g, 'g?* = g, ' x g7 and so g, 'g{°
is homogeneous since g is homogeneous. Furthermore, g. ¢ Gya,_,} since g = ug X vg, supp(ugp) = Ay
and Ap_1 C Ag. Now suppose that s > k + 1. Then also g;lg}:‘“ ¢ Gya,_,y since Ap_1 C supp(gr) and
gy € Ga,_, due to the fact that supp(gr) Nsupp(gy*) = 0. Therefore, Y is an ascending subset of homogeneous
elements of G'. In particular, (b) of Theorem 1.1 is satisfied.

Finally, let 1 <k+1 < s. Then

—1 s - — —1 —1 s
(gk+191€+1)p|Ak = gkf1|Ak = ukf1|Ak = Ok la, = 9 X 9;% Ap

and so (a) of Theorem 1.1 is satisfied. Therefore, G’ cannot be MNFC by Theorem 1.1. (A different proof of
this result is given in [5,Theorem 1.6].) O
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