tübitak

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2017) 41: $983-997$
(c) TÜBİTAK
doi:10.3906/mat-1508-66

Permutation groups with cyclic-block property and MNFC-groups

Ali Osman ASAR*
Yargıç Sokak 11/6 Cebeci, Ankara, Turkey

Received: 20.08.2015 • Accepted/Published Online: 07.10.2016 \quad - Final Version: 25.07.2017

Abstract

This work continues the investigation of perfect locally finite minimal non- $F C$-groups in totally imprimitive permutation p-groups. At present, the class of totally imprimitive permutation p-groups satisfying the cyclic-block property is known to be the only class of p-groups having common properties with a hypothetical minimal non- $F C$ group, because a totally imprimitive permutation p-group satisfying the cyclic-block property cannot be generated by a subset of finite exponent and every non- $F C$-subgroup of it is transitive, which are the properties satisfied by a minimal non- $F C$-group. Here a sufficient condition is given for the nonexistence of minimal non- $F C$-groups in this class of permutation groups. In particular, it is shown that the totally imprimitive permutation p-group satisfying the cyclic-block property that was constructed earlier and its commutator subgroup cannot be minimal non- $F C$-groups. Furthermore, some properties of a maximal p-subgroup of the finitary symmetric group on \mathbb{N}^{*} are obtained.

Key words: Finitary permutation, totally imprimitive, cyclic-block property, homogeneous permutation, FC-group

1. Introduction

Let Ω be a nonempty (infinite) set. A permutation g on Ω is called finitary if its support $\operatorname{supp}(g)$ is finite. The set of all the finitary permutations on Ω forms a normal subgroup of the symmetric group $\operatorname{Sym}(\Omega)$ and is called the restricted symmetric group on Ω. It is denoted by $\operatorname{FSym}(\Omega)$. A subgroup of $F \operatorname{Sym}(\Omega)$ is called a finitary permutation group on Ω. Let G be a transitive finitary permutation group on Ω, where Ω is infinite. If G has no proper blocks or has a maximal proper block, then G is called primitive or almost primitive, respectively, and then G has a homomorphic image that is isomorphic to one of $\operatorname{Alt}(\Omega)$ or $\operatorname{Fsym}(\Omega)$ by [10, p.261] (see also [9, Corollary 6.9]). Note that if Δ is a proper block for G, then there exists a $g \in G$ with $g(\Delta) \cap \Delta=\emptyset$ since two blocks are either equal or disjoint and then Δ must be finite since $\operatorname{supp}(g)$ is finite. In the remaining case G is called totally imprimitive. In this case, G has an infinite ascending chain of proper blocks and their union is an infinite block for G, which must be equal to Ω since G is transitive. Thus, Ω and G are countably infinite. It is well known that a finitary permutation group G has only finite orbits if and only if one of the following holds:
G is solvable, hypercentral, an $F C$-group, or residually finite by [23, Theorems 1,2] or [10, Lemma 8.3D]. If G is locally solvable, then G is totally imprimitive and hyperabelian of height at most ω by [18, Theorem $2]$.

Let G be a totally imprimitive subgroup of $\operatorname{FSym}(\Omega)$, where Ω is infinite. It is well known that set-wise stabilizers of finite sets are $F C$-groups and they are hypercentral when G is a p-group by [23, Theorem 1] or

[^0][10, Lemma 8.3D]. Subgroups having infinite orbits of G are non- $F C$-subgroups ($N F C$-subgroups for short). In general an $N F C$-group is called a minimal $N F C$-group ($M N F C$-group for short) if every proper subgroup of this group is an $F C$-group.

The structure of an imperfect $M N F C$-group was determined in [6, 7] (see also [22, Theorem 8.13]). In this group the commutator subgroup is a divisible abelian q-group of finite rank (Chernikov q-group) and the commutator quotient is a finite p-group, where p, q are primes. On the other hand, it is still unknown whether or not a perfect $M N F C$-group exists. If a perfect $M N F$-group exists, then it is a p-group for a prime p by [7, Theorem 2] and [14, Theorem], and it has a nontrivial representation in the group of finitary permutations on some infinite set by the characterizations given in $[8,15]$. (Some partial results in this direction are contained in $[1-5]$.)

Let G be a totally imprimitive p-subgroup of $\operatorname{FSym}(\Omega)$, where Ω is infinite. An element g of G is said to satisfy the cyclic-block property if the support of each cycle in the cycle decomposition of g is a block for G, and a subset Y of G satisfies the cyclic-block property if every element of Y satisfies this property. Now suppose in addition that G satisfies the cyclic-block property. By [4, Lemma 2.2] two blocks for G are either disjoint or one is contained in the other one. This implies that G must be a p-group for a prime p. Furthermore, every $N F C$-subgroup of G is transitive and a subset of finite exponent of G generates a subgroup of finite exponent and so cannot be equal to G (see Lemma 3.1(b) below). These are properties satisfied by a perfect $M N F C$-group. (A perfect $M N F C$-group cannot be generated by a subset of finite exponent (see [1, Remark 1.10]).) There are no known other types of p-groups that share common properties with a perfect $M N F C$ - p group. For this reason it is a rather crucial step to settle the existence problem of $M N F C$-groups in the class of permutation groups satisfying the cyclic-block property. In this work a new result (Theorem 1.1) is obtained in this direction. This result is a considerable generalization of [1, Theorem 1.5] (see below). In particular, if a group in this class is generated by homogeneous elements and satisfies $(*)$ (see below), then the group cannot be MNFC (Corollary 1.2). Furthermore, Theorem 1.1 provides a short proof for [4, Theorem 1.2] (Corollary 1.3). (Another proof of [4, Theorem 1.2] is contained in [5, Theorem 1.6].) The group given in [4, Theorem 1.1] satisfies the cyclic-block property, it has an easily defined generating set, and all of its blocks of p-power size are easily described, but it is not known whether or not it contains an $M N F C$-subgroup. (This group satisfying the cyclic-block property is a transitive subgroup of the maximal p-subgroup, denoted by W here, of $F \operatorname{Sym}\left(\mathbb{N}^{*}\right)$ constructed in [22]; see Proposition 2.1 for some properties of W.) [5] contains new properties of $N F C$-subgroups of a perfect totally imprimitive p-subgroup of $F \operatorname{Sym}(\Omega)$. Among other things it is shown there that the normalizer of an $N F C$-subgroup is self-normalizing and a self-normalizing subgroup is closed in the topology of point-wise convergence (see also [15]). It follows from [5] that a group of finitary permutations contains an $M N F C$-subgroup if and only if the set of self-normalizing subgroups contains minimal elements.

Let G be a subgroup of $F \operatorname{Sym}(\Omega)$ and let $g \in G$. The minimum of the lengths of the cycles in the cycle decomposition of g is denoted by $m(g) . g$ is called homogeneous if every cycle of g has equal length. An infinite subset Y of G is called ascending if Y has an infinite exponent and is not contained in a set stabilizer of a finite set. We say that Y satisfies the property $(*)$ if for every $y, z \in Y$, and for all cycles c_{y}, c_{z} in the cycle decompositions of y and z, respectively, the following holds. Put $\operatorname{supp}\left(c_{y}\right)=\Delta$ and suppose that $\Delta \subseteq \operatorname{supp}\left(c_{z}\right)$. Then
(*)

$$
\left[\left.c_{z}^{s\left(c_{z}, \Delta\right)}\right|_{\Delta}, c_{y}\right]=1
$$

where $s\left(c_{z}, \Delta\right)$ is the smallest positive integer such that $c_{z}^{s\left(c_{z}, \Delta\right)} \in G_{\{\Delta\}}$.
It is well known that this condition is equivalent to

$$
\left.c_{z}^{s\left(c_{z}, \Delta\right)}\right|_{\Delta}=c_{y}^{k}
$$

for a $k \geq 1$ by [13, Lemma 1]. (The centralizer of a cycle is generated by the cycle itself and permutations disjoint with it.)

Let Δ be a block for G and put $\Sigma=\{x(\Delta): x \in G\}$. Then the kernel of the natural permutation representation of G into $\operatorname{Sym}(\Sigma)$ is denoted by $\operatorname{Ker}_{G}(\Delta)$ and is called the kernel subgroup of G with respect to Δ. Since $\operatorname{Ker}_{G}(\Delta)$ fixes $x(\Delta)$ for every $x \in G$ it follows that $\operatorname{Ker}_{G}(\Delta)$ is isomorphic to a subgroup of the direct product of copies of a finite group, and so $\operatorname{Ker}_{G}(\Delta)$ is an $F C$-group of finite exponent.

For a nonempty subset X of $G, \exp (X)$ denotes the maximum of the set $\{|x|: x \in X\}$ if it exists; otherwise, it is equal to ∞.

Theorem 1.1 Let G be a perfect totally imprimitive p-subgroup of $\operatorname{FSym}(\Omega)$, where Ω is infinite. Suppose that G contains an ascending subset X satisfying the cyclic-block property such that the following properties hold.
(a) X satisfies $(*)$. Thus for all $x, y \in X$ and for all cycles c_{x}, c_{y} in the cycle decompositions of x and y, respectively, the following holds. If $\operatorname{supp}\left(c_{x}\right) \subseteq \operatorname{supp}\left(c_{y}\right)$, then

$$
\left[\left.c_{y}^{s\left(c_{y}, \operatorname{supp}\left(c_{x}\right)\right)}\right|_{\operatorname{supp}\left(c_{x}\right)}, c_{x}\right]=1
$$

where $\operatorname{supp}\left(c_{x}\right)$ and supp $\left(c_{y}\right)$ are blocks for G, which is equivalent to

$$
\left.c_{y}^{s\left(c_{y}, \operatorname{supp}\left(c_{x}\right)\right)}\right|_{\operatorname{supp}\left(c_{x}\right)}=c_{x}^{q\left(c_{x}\right)}
$$

for a $q\left(c_{x}\right) \geq 1$.
(b) For every $x \in X$ there exists a $y \in X$ so that $m(x)<m(y)$.

Then G cannot be an MNFC-group.
Theorem 1.1 is a considerable generalization of [1, Theorem 1.5]. In [1, Theorem 1.5] if F is a finite subgroup of G and $\operatorname{supp}(F) \subseteq \Delta$ for a finite block Δ, then there exists $y \in G \backslash G_{\{\Delta\}}$ so that $y^{s(y, \Delta)} \in C_{G}(F)$. In particular $\left[F^{y}, F\right]=1$ since $\operatorname{supp}\left(F^{y}\right) \cap \Delta=1$. This leads to the existence of an ascending subgroup H of G for a given $a \in G$ with $\left\langle a^{G}\right\rangle$ nonabelian so that $\left\langle a^{H}\right\rangle$ is abelian, which gives a contradiction. On the other hand, in Theorem 1.1, there is information only about the centralizer of a cycle, namely c_{x} of $x \in X$, but X is required to satisfy the additional property called the cyclic-block property. (Also in the proof of Theorem 1.1 $\left\langle c_{x}^{G}\right\rangle$ is not abelian, but there will exist an ascending subgroup, say X^{*} of G, so that $\left\langle c_{x}^{X^{*}}\right\rangle$ is abelian, which gives a contradiction.) It is not known yet whether condition (b) of Theorem 1.1 is indispensable.

Corollary 1.2 Let G be a perfect totally imprimitive p-subgroup of $\operatorname{FSym}(\Omega)$, where Ω is infinite. Suppose that G contains an ascending subset X of homogeneous elements satisfying the cyclic-block property and the (*) condition. Then G cannot be an MNFC-group.

Corollary 1.3 The totally imprimitive p-subgroup of $\operatorname{FSym}\left(\mathbb{N}^{*}\right)$ given in [4, Theorem 1.1] and its commutator subgroup cannot be MNFC-groups.

For definitions, notations, and basic properties the reader is referred to [9, 10, 21, 22].
Question. Let G be a totally imprimitive p-subgroup of $F \operatorname{Sym}(\Omega)$ satisfying the cyclic-block property where Ω is infinite. Does G contain a minimal non- $F C$ subgroup?

2. A finitary permutation group with cyclic-block property

In this section the finitary permutation p-group given in [4] and satisfying the cyclic-block property is described briefly for the convenience of the reader. This group is a subgroup of the example given in [23] by Wiegold.

For each $k, n \geq 1$ define

$$
x_{k, n}=\prod_{i=1}^{p^{k-1}}\left(i+(n-1) p^{k}, i+(n-1) p^{k}+p^{k-1}, \ldots, i+(n-1) p^{k}+(p-1) p^{k-1}\right)
$$

Each $x_{k, n}$ is a disjoint product of p^{k-1} cycles, each of which has length p.
For each $k \geq 1$ define

$$
T_{k}=\left\{x_{k, n} ; n \geq 1\right\} \text { and } T_{k}^{*}=\left\langle T_{i}: 1 \leq i \leq k\right\rangle
$$

Wiegold's group, denoted here by W, is defined as $W=\left\langle T_{k}: k \geq 1\right\rangle . T_{k}$ is a set of pairwise disjoint permutations of order p and it is easy to check that $T_{k}^{*} \triangleleft W$ and T_{k+1}^{*} / T_{k}^{*} is elementary abelian for every $k \geq 0$, where $T_{0}=1$. W is a totally imprimitive p-subgroup of $\operatorname{FSym}\left(\mathbb{N}^{*}\right)$ since every element of every T_{k}^{*} has finite support.

For $p=2$,

$$
\begin{gathered}
T_{1}=\{(1,2),(3,4),(5,6), \ldots\}, T_{2}=\{(1,3)(2,4),(5,7)(6,8),(9,11)(10,12), \ldots\} \\
T_{3}=\{(1,5)(2,6)(3,7)(4,8),(9,13)(10,14)(11,15)(12,16), \ldots\}
\end{gathered}
$$

For all $k, n \geq 1$ the sets

$$
\Delta_{k, n}=\left\{1+(n-1) p^{k}, 2+(n-1) p^{k}, \ldots, p^{k}+(n-1) p^{k}\right\}
$$

are blocks for W and $\left|\Delta_{k, n}\right|=p^{k}$. We may show that each $\Delta_{k, 1}$ is a block. We may put $\Delta_{k}=\Delta_{k, 1}$ when no confusion arises. Thus, $\Delta_{k}=\left\{1,2, \ldots, p^{k}\right\}$ for $k \geq 1$. It suffices to show that $T_{k}^{*}(1)=\Delta_{k}$ for all $k \geq 1$ by [10, Theorem 1.6A(i)]. For $k=1 T_{1}(1)=\{1,2, \ldots, p\}=\Delta_{1}$. Assume that $T_{k}^{*}(1)=\Delta_{k}$. Now

$$
\begin{gathered}
x_{k+1,1}=\left(1,1+p^{k}, 1+2 p^{k}, \ldots, 1+(p-1) p^{k}\right) \cdots\left(p^{k}, p^{k}+p^{k}, p^{k}+2 p^{k}, \ldots, p^{k}+(p-1) p^{k}\right) \\
=\left(1,1+p^{k}, 1+2 p^{k}, \ldots, 1+(p-1) p^{k}\right) \cdots\left(p^{k}, 2 p^{k}, 3 p^{k}, \ldots, p^{k+1}\right)
\end{gathered}
$$

Hence, it is easy to see that

$$
\begin{gathered}
\left\langle x_{k+1,1}\right\rangle\left(\Delta_{k}\right)=\left\{1,2, \ldots, p^{k}\right\} \cup\left\{1+p^{k}, 2+p^{k}, \ldots, 2 p^{k}\right\} \cup \cdots \cup\left\{1+(p-1) p^{k}, 2+(p-1) p^{k}, \ldots, p^{k+1}\right\} \\
=\Delta_{k+1}
\end{gathered}
$$

since the sets in the union are pairwise disjoint and are contained in Δ_{k+1}. In particular, it is easy to see that $x_{k+1,1}$ permutes the sets

$$
\left\{1,2, \ldots, p^{k}\right\},\left\{1+p^{k}, 2+p^{k}, \ldots, 2 p^{k}\right\}, \ldots,\left\{1+(p-1) p^{k}, 2+(p-1) p^{k}, \ldots, p^{k+1}\right\}
$$

among themselves. Since $\left\langle x_{k+1,1}\right\rangle\left(\Delta_{k}\right)=\left\langle x_{k+1,1}\right\rangle\left(T_{k}^{*}(1)\right)=\left(\left\langle x_{k+1,1}\right\rangle T_{k}^{*}\right)(1)=T_{k+1}^{*}(1)$ it follows that $T_{k+1}^{*}(1)=\Delta_{k+1}$, which was to be shown. It can be shown that the finite blocks of p-power size for W consist of

$$
\Delta_{k, n}=\left\{1+(n-1) p^{k}, 2+(n-1) p^{k}, \ldots, p^{k}+(n-1) p^{k}\right\}
$$

for $k, n \geq 1$.
Define

$$
u_{k}=x_{k, 1} x_{k-1,1} \cdots x_{1,1}
$$

for all $k \geq 1$. Then $u_{k} \in T_{k}^{*}$ and $u_{k}=\left(a_{1}, a_{2}, \ldots, a_{p^{k}}\right)$, where $1 \leq a_{i} \leq p^{k}$ by [4, Lemma $\left.3.2(\mathrm{a})\right]$. Next define

$$
v_{k}=u_{k}^{x_{k+1,1}} \cdots u_{k}^{x_{k+1,1}^{p-1}}
$$

Then $v_{k}=u_{k}^{x_{k+1,1}} \times \cdots \times u_{k}^{x_{k+1,1}^{p-1}}$, i.e. a product of disjoint cycles since $\operatorname{supp}\left(u_{k}\right)=\Delta_{k}$ and $x_{k+1,1}$ sends each $1 \leq i \leq p^{k+1}$ to $i+p^{k} \bmod \left(p^{k+1}\right)$. (Always $c=a \times b$ means that a, b are disjoint permutations.) Put $g_{k}=u_{k} \times v_{k}$ for every $k \geq 1$ and define $G=\left\langle g_{k}: k \geq 1\right\rangle$. Then G satisfies the cyclic-block property by [4, Theorem 1.1]. We see from the definitions that $\left\{g_{k}: k \geq 1\right\}$ is an ascending set of homogeneous elements of G. Furthermore, it follows from the definition that

$$
u_{k+1}^{p}=\left(x_{k+1,1} u_{k}\right)^{p}=x_{k+1,1}^{p} u_{k}^{x_{k+1,1}^{p-1}} \cdots u_{k}^{x_{k+1,1}} u_{k}=u_{k} \times u_{k}^{x_{k+1,1}} \times \cdots \times u_{k}^{x_{k+1,1}^{p-1}}=g_{k}
$$

for every $k \geq 1$. Hence, it follows that the g_{k} satisfy $(*)$ as can be seen from the proof of Corollary 1.2. It can also be shown easily that $G \leq W^{\prime}$. Indeed,

$$
g_{1}=x_{1,1} x_{1,1}^{x_{2,1}} \cdots x_{1,1}^{x_{2,1}^{p-1}}=x_{1,1}^{p}\left[x_{1,1}, x_{2,1}\right] \cdots\left[x_{1,1}, x_{2,1}^{p-1}\right] \in W^{\prime}
$$

since $x_{1,1}^{p}=1$. Assume that $g_{k} \in W^{\prime}$ for a $k \geq 1$. Now

$$
g_{k+1}=u_{k} u_{k}^{x_{k+1,1}} \cdots u_{k}^{x_{k+1,1}^{p-1}}=u_{k}^{p}\left[u_{k}, x_{k+1,1}\right] \cdots\left[u_{k}, x_{2,1}^{p-1}\right] .
$$

Since $u_{k}^{p}=g_{k-1} \in W^{\prime}$ it follows that $g_{k+1} \in W^{\prime}$, which completes the induction, and so $G \leq W^{\prime}$.
As was indicated above, each u_{k} is a cycle of length p^{k} with $\operatorname{supp}\left(u_{k}\right)=\Delta_{k}$ by [4, Lemma 3.2(a)]. Hence, $\operatorname{supp}\left(u_{k}^{x_{k+1,1}^{i}}\right)=x_{k+1,1}^{-i}\left(\Delta_{k}\right)$ for every $i \geq 1$ and hence

$$
\operatorname{supp}\left(v_{k}\right)=\bigcup_{i=1}^{p^{k-1}} \operatorname{supp}\left(u_{k}^{x_{k+1,1}^{i}}\right)=\Delta_{k+1} \backslash \Delta_{k}
$$

For $p=2$

$$
u_{1}=(1,2) ; u_{2}=(1,4,2,3) ; u_{3}=(1,8,4,6,2,7,3,5)
$$

and

$$
u_{4}=(1,16,8,12,4,14,6,10,2,15,7,11,3,13,5,9) .
$$

Hence,

$$
g_{1}=(1,2)(3,4) ; g_{2}=(1,4,2,3)(5,8,6,7) ; g_{3}=(1,8,4,6,2,7,3,5)(9,16,12,14,10,15,11,13) .
$$

Finally, it follows from [4, Theorem 1.1, Lemmas 2.2 and 3.4] that G satisfies the cyclic-block property, any two blocks for G are either disjoint or one is contained in the other one, and the blocks for G are the blocks for W. Thus, the set of the blocks of the same p-power size for G form a block system for G and hence also for W.

We end this section with a characterization of W.
Proposition 2.1 W is a transitive maximal p-subgroup of $\operatorname{FSym}\left(\mathbb{N}^{*}\right), Z(W)=1$, self-normalizing, and W / W^{\prime} is infinite elementary abelian.
Proof Put $W_{k}=\left\langle x_{1,1}, x_{2,1}, \ldots, x_{k, 1}\right\rangle$ for every $k \geq 1$. Then $W=\bigcup_{k=1}^{\infty} W_{k}$ and also $\mathbb{N}^{*}=\bigcup_{k=1}^{\infty} \Delta_{k}$, where $\Delta_{k}=\left\{1,2, \ldots, p^{k}\right\}$ for every $k \geq 1$. It is easy to see that each W_{k} is transitive on Δ_{k}, which implies that W is transitive on Ω, and then $Z(W)=1$ by [10, Lemma 8.3C(ii)].

First we show that W_{k} is a Sylow p-subgroup of $\operatorname{Sym}\left(\Delta_{k}\right)$ for every $k \geq 1$. Note that $\operatorname{supp}\left(W_{k}\right)=\Delta_{k}$. Put

$$
P_{k}=\left(\ldots \left(\left\langle x_{1,1}\right\rangle\left\langle\left\langle x_{2,1}\right\rangle\right)\left\langle\cdots \zeta\left\langle x_{k, 1}\right\rangle\right) .\right.\right.
$$

Then P_{k} is isomorphic to a Sylow p-subgroup of $\operatorname{Sym}\left(\Delta_{k}\right)$ by [11, Proposition 19.10] since each $\left\langle x_{k, i}\right\rangle$ has order p. It will suffice to show that $W_{k} \cong P_{k}$. For $k=1$ the assertion holds since $\left\langle x_{1,1}\right\rangle=\langle(1,2, \ldots, p)\rangle$ is a Sylow p subgroup of $\operatorname{Sym}(\{1,2, \ldots, p\})$. Suppose that the assertion holds for $k \geq 1$. Then $\left.W_{k} \cong\left\langle x_{1,1}\right\rangle\left\langle\left\langle x_{2,1}\right\rangle\right\rangle \cdots\right\rangle\left\langle x_{k, 1}\right\rangle$, and by identifying these two groups, W_{k} becomes a Sylow p-subgroup of $\operatorname{Sym}\left(\Delta_{k}\right)$. Thus, we get $P_{k+1} \cong$ $W_{k} \imath\left\langle x_{k+1,1}\right\rangle$. Let B_{k} be the base subgroup; that is, $B_{k}=\prod_{b \in\left\langle x_{k+1,1}\right\rangle}\left(W_{k}\right)_{b}$, where each $\left(W_{k}\right)_{b}$ is equal to W_{k}. Then P_{k+1} is isomorphic to $B_{k}\left\langle x_{k+1,1}\right\rangle$ and so $\left|P_{k+1}\right|=p\left|B_{k}\right|=p\left|W_{k}\right|^{p}$. However, we have seen above that $x_{k+1,1}$ permutes the sets $\left\{1,2, \ldots, p^{k}\right\},\left\{1+p^{k}, 2+p^{k}, \ldots, 2 p^{k}\right\}, \ldots,\left\{1+(p-1) p^{k}, 2+(p-1) p^{k}, \ldots, p^{k+1}\right\}$ among themselves and induces a cycle of length p on them. Also, W_{k} is a Sylow p-subgroup of $\operatorname{Sym}\left(\Delta_{k}\right)$. Clearly then $x_{k+1,1}^{-i} W_{k} x_{k+1}^{i}$ are Sylow p-subgroups on the corresponding sets $x_{k+1,1}^{-i}\left(\Delta_{k}\right)$ for $i=1, \ldots, p$. Thus, $x_{k+1,1}^{-i} W_{k} x_{k+1}^{i}$ and $x_{k+1,1}^{-j} W_{k} x_{k+1}^{j}$ have disjoint supports for $i \neq j$ and so they commute. Therefore, we get

$$
W_{k+1}=\left(W_{k} \times x_{k+1,1}^{-1} W_{k} x_{k+1} \times \cdots \times x_{k+1,1}^{-(p-1)} W_{k} x_{k+1}^{p-1}\right)\left\langle x_{k+1,1}\right\rangle .
$$

This gives $\left|W_{k+1}\right|=\left|W_{k}\right|^{p}\left|x_{k+1,1}\right|=p\left|W_{k}\right|^{p}$ and hence $\left|W_{k+1}\right|=\left|P_{k+1}\right|$. This implies that W_{k+1} is a Sylow p-subgroup of $\operatorname{Sym}\left(\Delta_{k+1}\right)$ since $W_{k+1} \leq \operatorname{Sym}\left(\Delta_{k+1}\right)$, which completes the induction. Clearly it follows from this that W is a Sylow p-subgroup of $F \operatorname{Sym}\left(\mathbb{N}^{*}\right)$ since $\operatorname{FSym}(\mathbb{N})=\bigcup_{k=1}^{\infty} \operatorname{Sym}\left(\Delta_{k}\right)$.

Next we show that W is self-normalizing. Assume not. Then there exists a subgroup Y of $F \operatorname{Sym}\left(\mathbb{N}^{*}\right)$ with $W<Y$ and Y / W is abelian. Also, Y is transitive since W is. Moreover, $Y^{\prime} \leq W$ and so Y^{\prime} is a p-group, but then Y is a p-group by [20, Lemma 2.1], which is a contradiction.

Finally, we show that $W / W^{\prime}=\prod_{k=1}^{\infty}\left\langle x_{k, 1} W^{\prime}\right\rangle$, as a direct product. This will be the case if we can show that $W_{k} / W_{k}^{\prime}=\prod_{i=1}^{k}\left\langle x_{i, 1} W_{k}^{\prime}\right\rangle$, as a direct product, for every $k \geq 1$. For $k=1$ this is trivial. Suppose that the assertion holds for $k \geq 1$. We have seen above that

$$
W_{k+1} \cong W_{k} \imath\left\langle x_{k+1,1}\right\rangle=\left(\prod_{b \in\left\langle x_{k+1,1}\right\rangle}\left(W_{k}\right)_{b}\right)\left\langle x_{k+1,1}\right\rangle=B_{k}\left\langle x_{k+1,1}\right\rangle
$$

which implies that $W_{k+1} / W_{k+1}^{\prime} \cong B_{k}\left\langle x_{k+1,1}\right\rangle /\left(B_{k}\left\langle x_{k+1,1}\right\rangle\right)^{\prime}$. We can now apply [17, Corollary 4.5] to $B_{k}\left\langle x_{k+1,1}\right\rangle$. This gives

$$
\left(B_{k}\left\langle x_{k+1,1}\right\rangle\right)^{\prime}=M
$$

where $M=\left\{f \in B_{k}: \pi(f) \in W_{k}^{\prime}\right\}$ and $\pi(f)=\prod_{b \in\left\langle x_{k+1,1}\right\rangle} f(b)$. Next define $x_{i, 1}^{*}(1)=x_{i, 1}$ and $x_{i, 1}^{*}(b)=1$ for $b \neq 1$ for $1 \leq i \leq k$. Each $\left.x_{i, 1}^{*} \in B_{k}=\prod_{b \in\left\langle x_{k+1,1}\right\rangle}\left(W_{k}\right)_{b}\right)$. We claim that $x_{1,1}^{*} M, \ldots, x_{k, 1}^{*} M$ are linearly independent over \mathbb{Z}_{p}, the field of p elements. Assume if possible that there exists an $f=\left(x_{1,1}^{*}\right)^{s_{1}} \cdots\left(x_{r, 1}^{*}\right)^{s_{r}}$, where $1 \leq r \leq k$ and $1 \leq s_{i}<p$ so that $f \in M$. Then $f=\left(x_{1,1}^{s_{1}} \cdots x_{r, 1}^{s_{r}}, 1, \ldots, 1\right)$ and $\pi(f)=x_{1,1}^{s_{1}} \cdots x_{r, 1}^{s_{r}} \in W_{k}^{\prime}$, but since $W_{k} / W_{k}^{\prime}=\left\langle x_{1,1} W_{k}^{\prime}\right\rangle \times \cdots \times\left\langle x_{k, 1} W_{k}^{\prime}\right\rangle$ by the induction hypothesis it follows that $x_{1,1}^{s_{1}} W_{k}^{\prime}=\cdots=$ $x_{r, 1}^{s_{r}} W_{k}^{\prime}=1$, which means that $x_{i, 1}^{s_{i}} \in W_{k}^{\prime}$ and then $p \mid s_{i}$ since $\left|x_{i, 1}\right|=p$, which is impossible since $1 \leq s_{i}<p$ for every $i \geq 1$. Consequently it follows that $x_{1,1}^{*} M, \ldots, x_{k, 1}^{*} M$ are linearly independent in $B_{k}\left\langle x_{k+1,1} / M\right.$. Then also $x_{1,1}^{*} M, \ldots, x_{k, 1}^{*} M, x_{k+1,1}^{*} M$ are linearly independent in $B_{k}\left\langle x_{k+1,1} / M\right.$ since $\left\langle x_{k+1,1}^{*}\right\rangle \cap B_{k}=1$. Therefore,

$$
B_{k}\left\langle x_{k+1,1}\right\rangle / M=\left\langle x_{1,1}^{*} M\right\rangle \times \cdots \times\left\langle x_{k+1,1}^{*} M\right\rangle
$$

Hence, using the above isomorphism, we get

$$
W_{k+1} / W_{k+1}^{\prime}=\left\langle x_{1,1} W_{k+1}^{\prime}\right\rangle \times \cdots \times\left\langle x_{k+1,1} W_{k+1}^{\prime}\right\rangle
$$

which completes the induction. Now since $W=\bigcup_{k=1}^{\infty} W_{k}$ it follows easily that

$$
W / W^{\prime}=\prod_{k=1}^{\infty}\left\langle x_{k, 1} W^{\prime}\right\rangle
$$

as a direct product. Suppose that $\left\langle x_{t, 1} W^{\prime}\right\rangle \cap\left\langle x_{k, 1} W^{\prime}: k \geq 1, k \neq t\right\rangle \neq 1$ for a $t \geq 1$. Then $\left\langle x_{t, 1} W^{\prime}\right\rangle \leq$ $\left\langle x_{k, 1} W^{\prime}: k \geq 1, k \neq t\right\rangle$ since $\left|x_{t, 1}\right|=p$. Hence, $x_{t, 1}$ is a finite product of elements of certain cosets of the right side. Also, $W^{\prime}=\bigcup_{k=1}^{\infty} W_{k}^{\prime}$. Clearly then there exists an $n>t$ so that $x_{t, 1} \in\left\langle x_{k, 1} W_{n}^{\prime}: 1 \leq k \leq n, k \neq t\right\rangle$, but since $W_{n} / W_{n}^{\prime}=\left\langle x_{1,1} W_{n}^{\prime}\right\rangle \times \cdots \times\left\langle x_{n, 1} W_{n}^{\prime}\right\rangle$, as was shown above, this is impossible. Therefore, the assumption is false and so W / W^{\prime} is a direct product of the $\left\langle x_{k, 1} W^{\prime}\right\rangle$ as k ranges over the positive integers.

Remark. The commutator subgroup W^{\prime} of W is perfect and transitive by [19, Theorem 1]. Also, W does not satisfy the normalizer condition by $[1$, Theorem $1.2(\mathrm{~b})]$ since $G \leq W$ and G^{\prime} is not an $M N F C$-group by Corollary 1.3. The reader may observe that W is exactly the same group that is constructed in [12, 18.2.2 Example], where it is shown also that this group does not satisfy the normalizer condition.

3. Proof of Theorem 1.1

We begin with a known result on the cyclic-block property for the convenience of the reader. (See also [5, Proposition 1.7].)

Lemma 3.1 3.1 Let G be a totally imprimitive p-subgroup of $\operatorname{FSym}(\Omega)$ satisfying the cyclic-block property, where Ω is infinite. Then the following hold:
(a) Let Δ be a finite block for G and let $\alpha \in \Delta$. Then for every $y \in G \backslash G_{\{\Delta\}},\left\langle y^{s(y, \Delta)}\right\rangle(\alpha)=\Delta$.
(b) Let Δ be a finite block for G. Then

$$
\operatorname{Ker}_{G}(\Delta)=\{g \in G:|g| \leq|\Delta|\}
$$

Furthermore, $\exp \left(G_{\{\Delta\}}\right)$ is infinite.
(c) Any NFC-subgroup of G is transitive on Ω.

Proof (a) (See [4, Lemma 2.1].) Put $H=G_{\{\Delta\}}$ and let $y \in G \backslash H$. Put $t=s(y, \Delta)$. Then t is the smallest number such that $y^{t} \in H$. Also, $t=p^{r}$ for an $r \geq 1$. Next put $\langle y\rangle(\alpha)=\Gamma$ and $\left\langle y^{t}\right\rangle(\alpha)=\Lambda$. Then Γ and Λ are blocks for G by the cyclic-block property. Also, $\Delta \subset \Gamma$ and $\Lambda \subseteq \Delta$ by [4, Lemma 2.2] since $y \notin H$ but $y^{t} \in H$. Clearly $|\Gamma|=p^{r}|\Lambda|$. Assume if possible that there exists a $y^{j}(\alpha) \in \Delta \backslash \Lambda$. Then $j \nmid p^{r}$ and so $j<p^{r}$, but since $\alpha \in \Delta \cap y^{-j}(\Delta)$ and since Δ is a block, it follows that $y^{j}(\Delta)=\Delta$, which is a contradiction since $t=p^{r}$ is the smallest number with the property that $y^{t}(\Delta)=\Delta$. Therefore, the assumption is false and so $\left\langle y^{t}\right\rangle(\alpha)=\Delta$.
(b) Put $M=\operatorname{Ker}_{G}(\Delta)$. Then $M<H$ since $H \neq G$ due to the fact that Ω is infinite and G is transitive. Let $y \in G$ and put $|y|=t$. First suppose that $t \leq|\Delta|$. Then we claim that $y \in H$. This is trivial if $\operatorname{supp}(y) \cap \Delta=\emptyset$ since then $y(\Delta)=\Delta$. Suppose that $y(\alpha) \neq \alpha$ for an $\alpha \in \Delta$. Put $\Gamma=\langle y\rangle(\alpha)$. Then Γ is a block for G by the hypothesis and $|\Gamma| \leq t \leq|\Delta|$. Also, since $\alpha \in \Gamma \cap \Delta$ applying [4, Lemma 2.2], we get $\Gamma \subseteq \Delta$, which implies that $y \in H$. Thus, $\{g \in G:|g| \leq|\Delta|\} \subseteq M$. Next suppose that $t>|\Delta|$. There exists a $\beta \in \Omega$ so that $t=|\langle y\rangle(\beta)|$. Also, there exists a $g \in G$ so that $g(\beta)=\alpha$. Since $\langle y\rangle(\beta)=\left\{\beta, y(\beta), \ldots, y^{t-1}(\beta)\right\}$, it follows that $\left\langle g y g^{-1}\right\rangle(\alpha)=\left\{g y(\beta), \ldots, g y^{t-1}(\beta), g(\beta)\right\}$. Now if $y \in M$ then also $g y g^{-1} \in M$, but since $\left\langle g y g^{-1}\right\rangle(\alpha)$ is a block containing α and has size greater than $|\Delta|$, this is a contradiction. Therefore, $M=\{g \in G:|g| \leq|\Delta|\}$. In particular it follows that any subgroup of finite exponent of G is contained in a kernel subgroup which is nilpotent of finite exponent. It is well-known that a transitive subgroup of $\operatorname{FSym}(\Omega)$ has infinite exponent if Ω is infinite by [18, Lemma 3.1] or [10, Theorem 8.3 A$]$). Let $\alpha \in \Omega$. We show that G_{α} contains a conjugate of every element of G. Let $g \in G$. There exists a $\beta \in \Omega$ so that $g(\beta)=\beta$ and so $g \in G_{\beta}$. Also, $\beta=x(\alpha)$ for an $x \in G$. Hence, $g \in G_{x(\alpha)}=x G_{\alpha} x^{-1}$ and so $g^{x} \in G_{\alpha}$, which completes the proof of (b).
(c) Let X be a proper $N F C$ - subgroup of G. Then X cannot be contained in the set-wise stabilizer of a finite block for G since X is not an $F C$-group. However, if $\exp (X) \leq|\Delta|$ for a finite block Δ, then $X \leq \operatorname{Ker}(\Delta) \leq G_{\{\Delta\}}$ by (b), which is impossible. Therefore, $\exp (X)=\infty$. Let $\alpha, \beta \in \Omega$ and let Δ be a finite block for G containing both of them. Then there exists a $g \in X \backslash X_{\{\Delta\}}$ so that $\left\langle g^{p}\right\rangle(\alpha)=\Delta$ by (a), which implies that $\beta=\left(g^{p}\right)^{j}(\alpha)$ for a $j \geq 1$, and so X is transitive.

Lemma 3.2 Let G be a totally imprimitive p-subgroup of $\operatorname{FSym}(\Omega)$ and let c, d be two cycles in G such that $\operatorname{supp}(c), \operatorname{supp}(d)$ are blocks for G and $\operatorname{supp}(c) \subseteq \operatorname{supp}(d)$. Let $|c|=p^{a},|d|=p^{b}$ and put $t=s(d, \operatorname{supp}(c))$.

Then $t=p^{b-a}$. If $\left.d^{p^{b-a}}\right|_{\text {supp }(c)}=c^{k}$, then $(p, k)=1$ and

$$
d^{d^{b-a}}=c^{k} \times\left(c^{k}\right)^{d} \times \cdots \times\left(c^{k}\right)^{d^{p^{b-a}-1}} .
$$

Proof Put $\Delta=\operatorname{supp}(c), \Gamma=\operatorname{supp}(d)$. Then $|\Delta|=p^{a}$ and $|\Gamma|=p^{b}$. Let $\alpha \in \Delta$. Now $\Delta \subseteq \Gamma$. Clearly $\Gamma=\Delta \cup d(\Delta) \cup \cdots \cup d^{t-1}(\Delta)$ as a disjoint union since Δ is a block and d is a cycle. Hence, $p^{b}=t p^{a}$ and hence $t=p^{b-a}$.

Put $H=G_{\{\Delta\}}$. Then t is the smallest number with $d^{t} \in H$. Hence, $\left\langle d^{p^{b-a}}\right\rangle(\alpha) \subseteq \Delta$ and $\left|d^{p^{b-a}}\right|=$ $\left|\left\langle d^{p^{b-a}}\right\rangle(\alpha)\right|$ since d is a cycle, which implies that $\left|\left\langle d^{p^{b-a}}\right\rangle(\alpha)\right|=p^{a}$. Now suppose that $\left.d^{p^{b-a}}\right|_{\Delta}=c^{k}$. Then $p \nmid k$ since $|c|$ is a cycle of length p^{a}. Thus, $(p, k)=1$ and c^{k} is a cycle.

Now $\left.d^{p^{b-a}}\right|_{d^{i}(\Delta)}=d^{i} c^{k} d^{-i}$ for every $1 \leq i \leq p^{b-a}$ and $\Gamma=\Delta \cup d(\Delta) \cup \cdots \cup d^{p^{b-a}-1}(\Delta)$. Obviously then

$$
d^{p^{b-a}}=\left.d^{p^{b-a}}\right|_{\Gamma}=c^{k} \times\left(c^{k}\right)^{d} \times \cdots \times\left(c^{k}\right)^{p^{b-a}-1}
$$

Lemma 3.3 Let G be a totally imprimitive p-subgroup of $\operatorname{FSym}(\Omega)$. Let X be an ascending subset of G satisfying the cyclic-block property. Suppose also that X satisfies (*). Then X contains an ascending subset $Y=\left\{y_{i}: i \geq 1\right\}$ of G such that the following holds. Each y_{i} can be expressed as a direct product of cycles as

$$
y_{i}=c_{i, 1} \times \cdots \times c_{i, r(i)}
$$

so that $\operatorname{supp}\left(y_{i}\right) \subset \operatorname{supp}\left(c_{i+1,1}\right), m\left(y_{i}\right) \leq m\left(y_{i+1}\right)$, and the following hold. Let $1 \leq j \leq r(i)$ and $k \geq i$. Put $\left|c_{i, j}\right|=p^{a}$ and $\left|c_{k, 1}\right|=p^{b}$. Then

$$
\left[\left.c_{k, 1}^{p^{p-a}}\right|_{\text {supp }\left(c_{i, j}\right)}, c_{i, j}\right]=1 .
$$

Proof Choose a $y_{1} \neq 1$ in X so that $m\left(y_{1}\right) \leq m(x)$ for every $x \in X$ and let

$$
y_{1}=c_{1,1} \times \cdots \times c_{1, r(1)}
$$

be the cycle decomposition of y_{1}. Let Γ_{1} be the smallest block containing $\operatorname{supp}\left(y_{1}\right)$. Next choose a y_{2} in $X \backslash G_{\left\{\Gamma_{1}\right\}}$ so that $m\left(y_{2}\right) \leq m(x)$ for every $x \in X \backslash G_{\left\{\Gamma_{1}\right\}}$. Now $\left\langle y_{2}\right\rangle(\alpha)$ is a block by the cyclic-block property and $\Gamma_{1} \subset \operatorname{supp}\left(\left\langle y_{2}\right\rangle(\alpha)\right)$ by $\left[4\right.$, Lemma 2.2] since $y_{2} \notin G_{\left\{\Gamma_{1}\right\}}$. Also, $m\left(y_{1}\right) \leq m\left(y_{2}\right)$. Put $c_{2,1}=\left(\alpha, \ldots, y_{2}^{t_{2}-1}(\alpha)\right)$, where t_{2} is the smallest number such that $y_{2}^{t_{2}}(\alpha)=\alpha$. Thus, $\Gamma_{1} \subset \operatorname{supp}\left(c_{2,1}\right)$. Continuing in this way we obtain an infinite subset $Y=\left\{y_{i}: i \geq 1\right\}$ of X such that $m\left(y_{i}\right) \leq m\left(y_{i+1}\right)$ and $\operatorname{supp}\left(y_{i}\right) \subset \operatorname{supp}\left(c_{i+1,1}\right)$ for every $i \geq 1$, where

$$
y_{i}=c_{i, 1} \times \cdots \times c_{i, r(i)}
$$

is the cycle decomposition of y_{i}. Let $1 \leq i<k$ and let $1 \leq j \leq r(i)$. Then $\operatorname{supp}\left(c_{i, j}\right) \subset \operatorname{supp}\left(c_{k, 1}\right)$. Also, Y satisfies (*) since Y is a subset of X. Therefore,

$$
\left[\left.c_{k, 1}^{s\left(c_{k, 1}, \operatorname{supp}\left(c_{i, j}\right)\right)}\right|_{\operatorname{supp}\left(c_{i, j}\right)}, c_{i, j}\right]=1
$$

Let $\left|c_{i, j}\right|=p^{a}$ and $\left|c_{k, 1}\right|=p^{b}$. Then since $s\left(c_{k, 1}, \operatorname{supp}\left(c_{i, j}\right)\right)=p^{b-a}$ by Lemma 3.2, substituting this value above the desired equality is obtained. Furthermore, Y is ascending since $\operatorname{supp}\left(c_{i, 1}\right)$ is a block and $\operatorname{supp}\left(c_{i, 1}\right) \subset \operatorname{supp}\left(c_{i+1,1}\right)$ for every $i \geq 1$.

Lemma 3.4 Let G be a totally imprimitive p-subgroup of $\operatorname{FSym}(\Omega)$. Let X be an ascending subset of G satisfying the cyclic-block property and $(*)$. Let $Y=\left\{y_{i}: i \geq 1\right\}$ be the subset of X obtained in Lemma 3.3. Thus, for each $i \geq 1$, the cycle decomposition of y_{i} can be written as

$$
y_{i}=c_{i, 1} \times \cdots \times c_{i, r(i)}
$$

such that $\operatorname{supp}\left(y_{i}\right) \subset \operatorname{supp}\left(c_{i+1,1}\right)$ and $m_{1}\left(y_{i}\right) \leq m_{1}\left(y_{i+1}\right)$ for every $i \geq 1$. Moreover, if we put $\left|c_{i, j}\right|=p^{a(i, j)}$, for every $i \geq 1$ and $1 \leq j \leq r(i)$, then for $1 \leq i \leq k$ the equality

$$
\begin{equation*}
\left.c_{k, 1}^{p^{a(k, 1)-a(i, j)}}\right|_{\operatorname{supp}\left(c_{i, j}\right)}=c_{i, j}^{q(i, j)} \tag{1}
\end{equation*}
$$

holds for a $q(i, j) \geq 1$ with $(p, q(i, j))=1$ by Lemma 3.3.
Now let $j, k, t \geq 1$ be integers with $j \leq k, t$ and suppose that $\left|y_{j}\right| \leq \min \left\{m\left(y_{k}\right), m\left(y_{t}\right)\right\}$. Let $m, n \geq 1$. Then

$$
c_{j, 1}^{y_{k}^{m} y_{t}^{n}}=c_{j, 1}^{y_{r}^{s}}
$$

for an $r \in\{k, t\}$ and $s \geq 1$.
Proof Put $c_{i}=c_{i, 1}$ and let $\left|\operatorname{supp}\left(c_{i}\right)\right|=p^{a(i)}$ for $i=j, k, t$. Then c_{i} is a factor of the cycle decomposition of y_{i} for $i=j, k, t$ and $\operatorname{supp}\left(y_{u}\right) \subset \operatorname{supp}\left(c_{v}\right)$ for every $1 \leq u<v$. We may suppose that $j<k, t$.

Case $1 j<k<t$. Now

$$
\begin{equation*}
c_{j}^{y_{k}^{m} y_{t}^{n}}=c_{j}^{c_{k}^{m} y_{t}^{n}} \tag{2}
\end{equation*}
$$

since $\operatorname{supp}\left(c_{j}\right) \subseteq \operatorname{supp}\left(c_{k}\right)$. On the other hand,

$$
c_{t}^{p^{a(t)-a(k)}}=c_{k}^{q(k, 1)} \times \cdots \times\left(c_{k}^{q(k, 1)}\right)^{c_{t}^{p^{a(t)-a(k)}-1}}=c_{k}^{q(k, 1)} \times v_{k}
$$

by (1) and Lemma 3.2, where $\operatorname{supp}\left(v_{k}\right) \cap \operatorname{supp}\left(c_{k}\right)=\emptyset$. Also, $b q(k, 1) \equiv 1 \bmod \left(p^{a(k)}\right)$ for an integer b since $(q(k, 1), p)=1$ by Lemma 3.2. Using this above gives

$$
c_{t}^{b p^{a(t)-a(k)}}=c_{k} \times \cdots \times c_{k}^{b c_{t}^{p^{a(t)-a(k)}-1}}=c_{k} \times v_{k}^{b}
$$

Hence, $c_{k}^{m}=c_{t}^{m b p^{a(t)-a(k)}} v_{k}^{-b m}$. Substituting this in (2) gives

$$
c_{j}^{c_{k}^{m} y_{t}^{n}}=c_{j}^{v_{k}^{-b m}} c_{t}^{m b p^{b-a}} y_{t}^{n}=c_{j}^{c_{t}^{m b p^{a(t)-a(k)}} y_{t}^{n}}=c_{j}^{c_{t}^{m b p^{a(t)-a(k)}+n}}=c_{j}^{y_{t}^{m b p^{b-a}+n}}
$$

since $\operatorname{supp}\left(c_{j}\right) \subset \operatorname{supp}\left(c_{k}\right)$.
Case $2 k>t>j$. We may suppose that $\operatorname{supp}\left(c_{j}^{c_{k}^{m}}\right) \cap \operatorname{supp}\left(y_{t}^{n}\right) \neq \emptyset$; otherwise, $c_{j}^{c_{k}^{m} y_{t}^{n}}=c_{j}^{c_{k}^{m}}$ and we are done. Then there exists a cycle $c_{t, r}$ in the cycle decomposition of y_{t} so that $\operatorname{supp}\left(c_{j}^{c_{k}^{m}}\right) \subseteq \operatorname{supp}\left(c_{t, r}\right)$ by
the cyclic-block property since $\left|y_{j}\right|<m\left(y_{t}\right)$ by the hypothesis. For simplicity, put $u_{t}=c_{t, r}$ and $q(t)=q(t, r)$. Clearly now $c_{j}^{c_{k}^{m} y_{t}^{n}}=c_{j}^{c_{k}^{m} u_{t}^{n}}$. Let $\left|u_{t}\right|=p^{z}$. Then

$$
c_{k}^{p^{a(k)-z}}=u_{t}^{q(t)} \times \cdots \times\left(u_{t}^{q(t)}\right)^{c_{k}^{p^{a(k)-z}-1}}=u_{t}^{q(t)} \times v_{t}
$$

where $(q(t), p)=1$ by (1). Then, as in Case 1 , there exists an integer b so that

$$
c_{k}^{b p^{a(k)-z}}=u_{t} \times v_{t}^{b}
$$

where $\operatorname{supp}\left(u_{t}\right) \cap \operatorname{supp}\left(v_{t}\right)=\emptyset$. Hence $u_{t}^{n}=v_{t}^{-b n} c_{k}^{n b p^{a(k)-z}}$. Substituting this above gives

$$
\begin{aligned}
& c_{j}^{c_{k}^{m} u_{t}^{n}}=c_{j}^{c_{k}^{m}} v_{t}^{-b n} c_{k}^{n p^{a(k)-z}}=c_{j}^{c_{k}^{m} c_{k}^{n b p^{a(k)-z}}} \\
& \quad=c_{j}^{c_{k}^{m+n b_{p} a(k)-z}}=c_{j}^{y_{k}^{m+n b p^{a(k)-z}}}
\end{aligned}
$$

since $\operatorname{supp}\left(c_{j}^{c_{k}^{m}}\right) \subseteq \operatorname{supp}\left(u_{t}\right)$ and $\operatorname{supp}\left(u_{t}\right) \cap \operatorname{supp}\left(v_{t}\right)=\emptyset$, which completes the proof of the lemma.

Lemma 3.5 Let G be a totally imprimitive p-subgroup of $\operatorname{FSym}(\Omega)$. Let X be an ascending subset of G satisfying the cyclic-block property and (*). Let $Y=\left\{y_{i}: i \geq 1\right\}$ be the subset of X obtained in Lemma 3.3 and suppose that $\left|y_{i}\right|<m\left(y_{i+1}\right)$ for every $i \geq 1$. Let $j \geq 1$ and put $Y_{j}^{*}=\left\langle y_{i}: i \geq j\right\rangle$. Let $y=y_{k_{1}}^{m_{1}} \cdots y_{k_{r}}^{m_{q}} \in Y_{j}^{*}$, where $k_{i} \geq j, r \geq 1, m_{i} \geq 1$, and $k_{u} \neq k_{u+1}$. Then $c_{j, 1}^{y}=c_{j, 1}^{y_{u}^{s}}$ for $a \operatorname{an}\left\{k_{1}, \ldots, k_{r}\right\}$ and $s \geq 1$.
Proof We may use induction on $r \geq 1$. For $r=1$ the assertion is obvious. Suppose that $r>1$ and the assertion holds for numbers less than r. Note that $\left|y_{j}\right|<m\left(y_{k_{i}}\right)$ for $i=1, \ldots, q$ by the hypothesis. Hence, applying
 hypothesis applies to the right side of the preceding equality. Therefore, there exist a $u \in\left\{k, k_{3}, \ldots, k_{r}\right\}$ and an $s \geq 1$ so that $c_{j, 1}^{y_{k}^{m} y_{k_{3}}^{m_{3} \ldots y_{k_{r}}}}=c_{j, 1}^{y_{u}^{s}}$. Then since $c_{j, 1}^{y}=c_{j, 1}^{y_{u}^{s}}$ the induction and the proof of the lemma are complete.

Lemma 3.6 Let the hypothesis and the notation be as in Lemma 3.5. Let $j \geq 1$. Then $\left[c_{j, 1}^{y}, c_{j, 1}\right]=1$ for every $y \in Y_{j}^{*}$.
Proof Put $c_{j}=c_{j, 1}$. Let $y \in Y_{j}^{*}$. We have $c_{j}^{y}=c_{j}^{y_{k}^{s}}$ for a $k \geq j$ and an $s \geq 1$ by Lemma 3.5. Let $\operatorname{supp}\left(c_{j}\right)=\Gamma_{j}$ and put $H=G_{\left\{\Gamma_{j}\right\}}$. If $y_{k}^{s} \notin H$, then $y_{k}^{s}\left(\Gamma_{j}\right) \cap \Gamma_{j}=\emptyset$ and since $\operatorname{supp}\left(c_{j}^{y_{k}^{s}}\right)=y_{k}^{-s}\left(\Gamma_{j}\right)$ it follows that $\left[c_{j}^{y_{k}^{s}}, c_{j}\right]=1$, and the assertion holds in this case since $c_{j}^{y}=c_{j}^{y_{k}^{s}}$.

Next suppose that $y_{k}^{s} \in H$. Let $c_{k, 1}=c_{k}, \operatorname{supp}\left(c_{k}\right)=\Gamma_{k},\left|\Gamma_{j}\right|=p^{a(j)}$, and $\left|\Gamma_{k}\right|=p^{a(k)}$. Then $p^{a(k)-a(j)} \mid s$ by Lemma 3.2 and hence $s=p^{a(k)-a(j)} t$ for a $t \geq 1$. Also, $\operatorname{supp}\left(y_{j}\right) \subseteq \Gamma_{k}$ and $c_{k}^{p^{a(k)-a(j)}}=c_{j}^{q(j)} \times v_{k}$ for a $v_{k} \in \operatorname{FSm}(\Omega)$ and $q(j) \geq 1$ by (1) in Lemma 3.4. Hence, $c_{k}^{s}=c_{j}^{t q(j)} v_{k}^{t}$, but also $y_{k}=c_{k} \times z_{k}$ for a
$z_{k} \in \operatorname{FSym}(\Omega)$. Combining these values we get $y_{k}^{s}=c_{j}^{t q(j)}\left(v_{k}^{t} z_{k}^{s}\right)$, where $\operatorname{supp}\left(v_{k} z_{k}\right) \cap \Gamma_{k}=\emptyset$. Using this last equality we get

$$
c_{j}^{y_{k}^{s}}=c_{j}^{c_{j}^{t} q(j)\left(v_{k}^{t} z_{k}^{s}\right)}=c_{j}^{v_{k}^{t} z_{k}^{s}}=c_{j}
$$

and hence

$$
\left[c_{j}^{y_{k}^{s}}, c_{j}\right]=\left[c_{j}, c_{j}\right]=1
$$

which was to be shown.

Lemma 3.7 Let G be a totally imprimitive p-subgroup of $\operatorname{FSym}(\Omega)$, where Ω is infinite. Let $y \in G$ and let $j>1$ so that $\alpha \in \operatorname{supp}(y) \subset\left\langle c_{j, 1}^{p^{2}}\right\rangle(\alpha)$ and $\left|c_{j, 1}\right|=p^{t}$ for a $t \geq 4$. Then $\left[c_{j, 1}^{y}, c_{j, 1}\right] \neq 1$.

Proof Put $c=c_{j, 1}$. Then $\operatorname{supp}(y) \subseteq\left\{\alpha, c^{p^{2}}(\alpha), \ldots,\left(c^{p^{2}}\right)^{p^{t-2}-1}(\alpha)\right\}$ by the hypothesis. This means that if y moves an element of Ω, then it must be of the form $\left(c^{p^{2}}\right)^{k}(\alpha)$ for a $0 \leq k \leq p^{t-2}-1$.

Assume if possible that $c^{y} c=c c^{y}$. Then

$$
\begin{equation*}
y c y^{-1} c(\alpha)=c y c y^{-1}(\alpha) . \tag{1}
\end{equation*}
$$

Now

$$
y c y^{-1} c(\alpha)=y c c(\alpha)=y\left(c^{2}(\alpha)\right)
$$

since y cannot move $c(\alpha)$ and

$$
c y c y^{-1}(\alpha)=\operatorname{cyc}\left(c^{k p^{2}}(\alpha)\right)=c y\left(c^{k p^{2}+1}(\alpha)\right)=c^{k p^{2}+2}(\alpha)
$$

since y cannot move $c^{k p^{2}+1}(\alpha)$, where $y^{-1}(\alpha)=\left(c^{p^{2}}\right)^{k}(\alpha)$ and $1 \leq k \leq p^{t-2}-1$ since $y(\alpha) \neq \alpha$. Thus the equality (1) takes the form

$$
y\left(c^{2}(\alpha)\right)=c^{k p^{2}+2}(\alpha)
$$

Now if $p>2$, then $y\left(c^{2}(\alpha)\right)=c^{2}(\alpha)$ since $c^{2}(\alpha)$ is not of the form $\left(c^{p^{2}}\right)^{k}(\alpha)$. Indeed, if $c^{2}(\alpha)=\left(c^{p^{2}}\right)^{k}(\alpha)$, then $c^{k p^{2}-2}(\alpha)=\alpha$, which implies that $p^{t} \mid k p^{2}-2$ since $|c|=p^{t}$, which is impossible. Therefore, $c^{2}(\alpha)=c^{k p^{2}+2}(\alpha)$ and hence $\alpha=c^{k p^{2}}(\alpha)$, which is a contradiction since $1 \leq k \leq p^{t-2}-1, c$ is a cycle, $|c|=p^{t}$, and $t \geq 4$. Next suppose that $p=2$. Again since y can move only elements of the form $\left(c^{p^{2}}\right)^{k}(\alpha)=c^{4 k}(\alpha)$ and since $c^{2}(\alpha)$ is not of this form, we get $y\left(c^{2}(\alpha)\right)=c^{2}(\alpha)$ and hence $c^{2}(\alpha)=c^{4 k+2}(\alpha)$. Hence, $c^{4 k}(\alpha)=\alpha$, which is another contradiction since $|c|=2^{t}, t \geq 4$, and $1 \leq k \leq 2^{t-2}-1$.

Lemma 3.8 Let G be a totally imprimitive p-subgroup of $\operatorname{FSym}(\Omega)$, where Ω is infinite. Let X be the ascending subset of G satisfying the cyclic-block property such that for every $x \in X$ there exists a $y \in X$ such that $m(x)<m(y)$. Then there exists an ascending subset $Z=\left\{z_{i}: i \geq 1\right\}$ of G so that $m\left(z_{i}\right)<m\left(z_{i+1}\right)$ for every $i \geq 1$.

Proof By the hypothesis we can obtain easily an infinite subset $X^{*}=\left\{x_{i}: i \geq 1\right\}$ of X so that $m\left(x_{i}\right)<m\left(x_{i+1}\right)$ for every $i \geq 1$. We may suppose that $x_{1} \neq 1$. Let d_{i} be a cycle of x_{i} of the smallest length, that is, of length $m\left(x_{i}\right)$ for every $i \geq 1$. Then $\left|d_{i}\right|<\left|d_{i+1}\right|$ for every $i \geq 1$. Choose an $\alpha \in \operatorname{supp}\left(d_{1}\right)$. By the transitivity of G for every $i \geq 1$ there exists an $a_{i} \in G$ so that $\alpha \in \operatorname{supp}\left(d_{i}^{a_{i}}\right)$. Then $\operatorname{supp}\left(d_{i}^{a_{i}}\right) \subset \operatorname{supp}\left(d_{i+1}^{a_{i+1}}\right)$ by [4, Lemma 2.2 since $\alpha \in \operatorname{supp}\left(d_{i}^{a_{i}}\right) \cap \operatorname{supp}\left(d_{i+1}^{a_{i+1}}\right)$ for every $i \geq 1$. Put $z_{i}=x_{i}^{a_{i}}$ for every $i \geq 1$ and define $Z=\left\{z_{i}: i \geq 1\right\}$. Since $\operatorname{supp}\left(d_{i}^{a_{i}}\right) \subset \operatorname{supp}\left(d_{i+1}^{a_{i+1}}\right)$ and since each $\operatorname{supp}\left(d_{i}^{a_{i}}\right)$ is a block for G it follows that $\bigcup_{i=1}^{\infty} \operatorname{supp}\left(d_{i}^{a_{i}}\right)=\Omega$ due to the fact that every proper block is finite by the transitivity of G on Ω. Hence, it follows that Z cannot be contained in the set stabilizer of a finite subset of G and also $\exp (Z)$ is infinite. Therefore, Z is an ascending subset of G.

Proof of Theorem 1.1 Let G be a totally imprimitive p-subgroup of $F \operatorname{Sym}(\Omega)$, where Ω is infinite. Let X be an ascending subset of G satisfying the cyclic-block property so that conditions (a) and (b) are satisfied. Then applying Lemma 3.8 we obtain an ascending subset $Z=\left\{z_{i}: i \geq 1\right\}$ of G so that $m\left(z_{i}\right)<m\left(z_{i+1}\right)$ for every $i \geq 1$. Next we can choose an infinite subset $U=\left\{u_{i}: i \geq 1\right\}$ of Z so that $\left|u_{i}\right|<m\left(u_{i+1}\right)$ for every $i \geq 1$ since the numbers $m\left(z_{i}\right)$ are increasing without bound. We now substitute U in place of X in Lemma 3.3. This gives an ascending subset $Y=\left\{y_{i}: i \geq 1\right\}$ of G so that the following hold. The cycle decomposition of each y_{i} can be expressed as

$$
y_{i}=c_{i, 1} \times \cdots \times c_{i, r(i)}
$$

so that $\operatorname{supp}\left(y_{i}\right) \subset \operatorname{supp}\left(c_{i+1,1}\right)$ and if $1 \leq j \leq r(i), k \geq i,\left|c_{i, j}\right|=p^{a},\left|c_{k, 1}\right|=p^{b}$, then

$$
\left.c_{k, 1}^{p^{b-a}}\right|_{\operatorname{supp}\left(c_{i, j}\right)}=c_{i, j}^{q(i, j)}
$$

for a $q(i, j) \geq 1$. Furthermore, for each $i \geq 1$, the inequality $\left|y_{i}\right|<m\left(y_{i+1}\right)$ is satisfied by definition of U. Thus, Lemmas 3.4, 3.5, and 3.6 can be applied to Y.

Next we may suppose that $y_{1} \neq 1$. Choose an $\alpha \in \operatorname{supp}\left(y_{1}\right)$. Let Δ be the smallest block such that $\operatorname{supp}\left(y_{1}\right) \subseteq \Delta$ and let $|\Delta| \leq p^{t}$, for a $t \geq 4$. There exists a $j>1$ so that $\left|c_{j, 1}\right| \geq p^{2 t}$ and $\Delta \subseteq \operatorname{supp}\left(c_{j, 1}\right)$. Put $c_{j}=c_{j, 1}$. Then $c_{j}=\left(\alpha, c_{j}(\alpha), \ldots, c_{j}^{\left|c_{j}\right|-1}(\alpha)\right)$. Now $c_{j}^{p^{2}}$ is a product of p^{2} cycles each of length $\geq p^{2 t-2}=p^{2(t-1)} \geq p^{t}$ since $t \geq 4$. Then it is easy to see that $\Delta \subseteq\left\langle c_{j}^{p^{2}}\right\rangle(\alpha)$ by the cyclic-block property since $\left\langle c_{j}^{p^{2}}\right\rangle(\alpha)$ is a block and $\alpha \in \Delta \cap\left\langle c_{j}^{p^{2}}\right\rangle(\alpha)$.

Put $Y_{j}^{*}=\left\langle y_{i}: i \geq j\right\rangle$. Then the application of Lemmas 3.4, 3.5, and 3.6 gives $\left[c_{j, 1}^{y}, c_{j, 1}\right]=1$ for every $y \in Y^{*}$, but application of Lemma 3.7 gives $\left[c_{j}^{y_{1}}, c_{j}\right] \neq 1$, which implies that $y_{1} \notin Y^{*}$ and so $Y^{*} \neq G$. However, since $\left\{y_{i}: i \geq j\right\}$ is ascending by definition of Y, the subgroup Y^{*} cannot be an $F C$-subgroup of G. Therefore, G cannot be an $M N F C$-group and so the proof of the theorem is complete.

Proof of Corollary 1.2 Let G be a totally imprimitive p-subgroup of $F \operatorname{Sym}(\Omega)$, where Ω is infinite. Let X be an ascending subset of homogeneous elements of G satisfying the cyclic-block property so that X satisfies the $(*)$ condition. Then condition (a) of Theorem 1.1 is satisfied. Therefore, we need only show that condition (b) of Theorem 1.1 is satisfied. Since X is ascending by the hypothesis, $\exp (X)$ is infinite and $\langle X\rangle$ is a non$F C$-subgroup of G. Also, since G is locally finite, it follows that for every $x \in X$ there exists a $y \in X$ so that
$|x|<|y|$. Now the homogeneity of the elements of X shows that (b) is satisfied by X. Therefore, G cannot be $M N F C$ by Theorem 1.1.

Proof of Corollary 1.3 Let G be the p-subgroup of $\operatorname{FSym}\left(\mathbb{N}^{*}\right)$ described in Section 2. Then G satisfies the cyclic-block property by $\left[4\right.$, Theorem 1.1]. We have $G=\left\langle g_{k}: k \geq 1\right\rangle$, where $g_{k}=u_{k} \times v_{k}, u_{k}=\left(a_{1}, \ldots, a_{p^{k}}\right)$, $v_{k}=u_{k} \times \cdots \times u_{k}^{x_{k+1,1}^{p-1}}, \operatorname{supp}\left(u_{k}\right)=\Delta_{k}$, and $\operatorname{supp}\left(v_{k}\right)=\Delta_{k+1} \backslash \Delta_{k}$. Hence, it follows that each g_{k} is homogeneous; that is, $\left|g_{k}\right|=m\left(g_{k}\right)=p^{k}$ for every $k \geq 1$. Furthermore,

$$
\left.g_{k+1}^{p}\right|_{\Delta_{k}}=g_{k}
$$

since $u_{k+1}^{p}=g_{k}$ as was shown in Section 2. Thus, G satisfies the hypothesis of Corollary 1.2 and therefore G cannot be an MNFC-group.

Next we show that G^{\prime} cannot be $M N F C$. For each $s \geq 2$ let $Y_{s}=\left\{g_{k}^{-1} g_{k}^{g_{s}}: 1 \leq k<s\right\}$ and put $Y=\bigcup_{s \geq 2} Y_{s}$. Then Y is an ascending subset of homogeneous elements of G^{\prime}. To see this let $1 \leq k<s$. Then $g_{k}^{-1} g_{k}^{g_{s}}=g_{k}^{-1} g_{k}^{u_{s}}$ since $\operatorname{supp}\left(g_{k}\right)=\Delta_{k+1}=\operatorname{supp}\left(u_{k+1}\right) \subseteq \operatorname{supp}\left(u_{s}\right)$. Also $u_{k+1}^{p}=g_{k}$ (see Section 2). Hence $g_{k}^{-1} g_{k}^{g_{k+1}}=g_{k}^{-1} g_{k}^{u_{k+1}}=1$. So suppose that $s>k+1$. Then $u_{s}\left(\Delta_{k+1}\right) \cap \Delta_{k+1}=\emptyset$. Also, $\operatorname{supp}\left(g_{k}^{u_{s}}\right)=u_{s}^{-1}\left(\operatorname{supp}\left(g_{k}\right)\right)=u_{s}^{-1}\left(\Delta_{k+1}\right)$. Clearly it follows from this that $g_{k}^{-1} g_{k}^{g_{s}}=g_{k}^{-1} \times g_{k}^{g_{s}}$ and so $g_{k}^{-1} g_{k}^{g_{s}}$ is homogeneous since g_{k} is homogeneous. Furthermore, $g_{k} \notin G_{\left\{\Delta_{k-1}\right\}}$ since $g_{k}=u_{k} \times v_{k}, \operatorname{supp}\left(u_{k}\right)=\Delta_{k}$ and $\Delta_{k-1} \subset \Delta_{k}$. Now suppose that $s>k+1$. Then also $g_{k}^{-1} g_{k}^{u_{s}} \notin G_{\left\{\Delta_{k-1}\right\}}$ since $\Delta_{k-1} \subset \operatorname{supp}\left(g_{k}\right)$ and $g_{k}^{u_{s}} \in G_{\Delta_{k-1}}$ due to the fact that $\operatorname{supp}\left(g_{k}\right) \cap \operatorname{supp}\left(g_{k}^{u_{s}}\right)=\emptyset$. Therefore, Y is an ascending subset of homogeneous elements of G^{\prime}. In particular, (b) of Theorem 1.1 is satisfied.

Finally, let $1 \leq k+1<s$. Then

$$
\left.\left(g_{k+1}^{-1} g_{k+1}^{g_{s}}\right)^{p}\right|_{\Delta_{k}}=\left.g_{k+1}^{-p}\right|_{\Delta_{k}}=\left.u_{k+1}^{-p}\right|_{\Delta_{k}}=\left.g_{k}^{-1}\right|_{\Delta_{k}}=g_{k}^{-1} \times\left. g_{k}^{g_{s}}\right|_{\Delta_{k}}
$$

and so (a) of Theorem 1.1 is satisfied. Therefore, G^{\prime} cannot be MNFC by Theorem 1.1. (A different proof of this result is given in [5,Theorem 1.6].)

Acknowledgment

The author is very grateful to the editor and the referee(s) for accepting this work for publication in Turkish Journal of Mathematics.

References

[1] Asar AO. On finitary permutation groups. Turk J Math 2006; 30: 101-116.
[2] Asar AO. Subgroups of finitary permutation groups. J Group Theory 2008; 11: 229-234.
[3] Asar AO. Corrigendum: Subgroups of finitary permutation groups. J Group Theory 2009; 12: 487-489.
[4] Asar AO. Totally imprimitive permutation groups with the cyclic-block property. J Group Theory 2011; 14: 127-141.
[5] Asar AO. Subgroups of totally imprimitive permutation groups. Comm Algebra 2017; 6: 2690-2707.
[6] Belyaev VV, Sesekin, NF. On infinite groups of Miller-Moreno type. Acta Math Acad Sci Hungar 1975; 26: 369-376.
[7] Belyaev VV. Minimal non- FC-groups. All Union Symposium Kiev 1980: 97-108.
[8] Belyaev VV. On the question of existence of minimal non-FC-groups. Siberian Math J 1998; 39: 1093-1095.
[9] Bhattacharjee, M, Machperson, DR, Möller, G, Neumann, PM. Notes on Infinite Permutation Groups. Lecture Notes in Mathematics, Vol. 1698. Berlin, Germany: Springer-Verlag, 1998.)
[10] Dixon JD, Moretimer, B. Permutation Groups. New York, NY, USA: Springer, 1996.
[11] Humphreys JH. A Course in Group Theory. Oxford, UK: Oxford University Press, 1996.
[12] Kargapolov MI, Merzljakov, JI. Fundamentals of the Theory of Groups. 2nd ed. Translated from the Russian by RG Burns. New York, NY, USA: Springer, 1979.
[13] Kezlan TP, Rhee NH. A characterization of the centralizer of a permutation. Missouri J Math Sci 1999; 11: 158-163.
[14] Kuzucuoglu M, Phillips R. Locally finite minimal non-FC-groups. Math Proc Cambridge 1989; 105: 417-420.
[15] Leinen F. A reduction theorem for perfect locally finite minimal non- FC-groups. Glasgow Math J 1999; 41: 81-83.
[16] Leinen F, Puglisi O. Finitary representations and images of transitive finitary permutation groups. J Algebra 1999; 222: 524-549.
[17] Neumann PM. On the structure of standard wreath products of groups. Math Z 1964; 84: 343-373.
[18] Neumann PM. The lawlessness of groups of finitary permutations. Arch Math 1975; 26: 561-566.
[19] Neumann PM. The structure of finitary permutation groups. Arch Math 1976; 27: 3-17.
[20] Pinnock CJE. Irreducible and transitive locally- nilpotent by abelian groups. Arch Math 2000; 74: 168-172.
[21] Robinson DJS. A Course in the Theory of Groups. New York, NY, USA: Springer, 1980.
[22] Tomkinson MJ. FC-Groups. Boston, MA, USA: Pitman Advanced Publishing Program, 1984.
[23] Wiegold J. Groups of finitary permutations. Arch Math 1974; 25: 466-469.

[^0]: *Correspondence: aliasar@gazi.edu.tr
 2010 AMS Mathematics Subject Classification: 20B 07 20B 35 20E 2520 F 15.

