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Abstract: This work continues the investigation of perfect locally finite minimal non-FC -groups in totally imprimitive

permutation p -groups. At present, the class of totally imprimitive permutation p -groups satisfying the cyclic-block

property is known to be the only class of p -groups having common properties with a hypothetical minimal non-FC -

group, because a totally imprimitive permutation p -group satisfying the cyclic-block property cannot be generated

by a subset of finite exponent and every non-FC -subgroup of it is transitive, which are the properties satisfied by a

minimal non-FC -group. Here a sufficient condition is given for the nonexistence of minimal non-FC -groups in this

class of permutation groups. In particular, it is shown that the totally imprimitive permutation p -group satisfying the

cyclic-block property that was constructed earlier and its commutator subgroup cannot be minimal non-FC -groups.

Furthermore, some properties of a maximal p -subgroup of the finitary symmetric group on N∗ are obtained.
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1. Introduction

Let Ω be a nonempty (infinite) set. A permutation g on Ω is called finitary if its support supp(g) is finite. The

set of all the finitary permutations on Ω forms a normal subgroup of the symmetric group Sym(Ω) and is called

the restricted symmetric group on Ω. It is denoted by FSym(Ω). A subgroup of FSym(Ω) is called a finitary

permutation group on Ω. Let G be a transitive finitary permutation group on Ω, where Ω is infinite. If G has

no proper blocks or has a maximal proper block, then G is called primitive or almost primitive, respectively,

and then G has a homomorphic image that is isomorphic to one of Alt(Ω) or Fsym(Ω) by [10, p.261] (see

also [9, Corollary 6.9]). Note that if ∆ is a proper block for G , then there exists a g ∈ G with g(∆) ∩∆ = ∅
since two blocks are either equal or disjoint and then ∆ must be finite since supp(g) is finite. In the remaining

case G is called totally imprimitive. In this case, G has an infinite ascending chain of proper blocks and their

union is an infinite block for G , which must be equal to Ω since G is transitive. Thus, Ω and G are countably

infinite. It is well known that a finitary permutation group G has only finite orbits if and only if one of the

following holds:

G is solvable, hypercentral, an FC -group, or residually finite by [23, Theorems 1,2] or [10, Lemma 8.3D].

If G is locally solvable, then G is totally imprimitive and hyperabelian of height at most ω by [18, Theorem

2].

Let G be a totally imprimitive subgroup of FSym(Ω), where Ω is infinite. It is well known that set-wise

stabilizers of finite sets are FC -groups and they are hypercentral when G is a p -group by [23, Theorem 1] or
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[10, Lemma 8.3D]. Subgroups having infinite orbits of G are non-FC -subgroups (NFC -subgroups for short).

In general an NFC -group is called a minimal NFC -group (MNFC -group for short) if every proper subgroup

of this group is an FC -group.

The structure of an imperfect MNFC -group was determined in [6, 7] (see also [22, Theorem 8.13]). In

this group the commutator subgroup is a divisible abelian q -group of finite rank (Chernikov q -group) and the

commutator quotient is a finite p -group, where p, q are primes. On the other hand, it is still unknown whether

or not a perfect MNFC -group exists. If a perfect MNF -group exists, then it is a p-group for a prime p by [7,

Theorem 2] and [14, Theorem], and it has a nontrivial representation in the group of finitary permutations on

some infinite set by the characterizations given in [8, 15]. (Some partial results in this direction are contained

in [1–5].)

Let G be a totally imprimitive p -subgroup of FSym(Ω), where Ω is infinite. An element g of G is said

to satisfy the cyclic-block property if the support of each cycle in the cycle decomposition of g is a block for

G , and a subset Y of G satisfies the cyclic-block property if every element of Y satisfies this property. Now

suppose in addition that G satisfies the cyclic-block property. By [4, Lemma 2.2] two blocks for G are either

disjoint or one is contained in the other one. This implies that G must be a p-group for a prime p . Furthermore,

every NFC -subgroup of G is transitive and a subset of finite exponent of G generates a subgroup of finite

exponent and so cannot be equal to G (see Lemma 3.1(b) below). These are properties satisfied by a perfect

MNFC -group. (A perfect MNFC -group cannot be generated by a subset of finite exponent (see [1, Remark

1.10]).) There are no known other types of p -groups that share common properties with a perfect MNFC -p -

group. For this reason it is a rather crucial step to settle the existence problem of MNFC -groups in the class

of permutation groups satisfying the cyclic-block property. In this work a new result (Theorem 1.1) is obtained

in this direction. This result is a considerable generalization of [1, Theorem 1.5] (see below). In particular, if a

group in this class is generated by homogeneous elements and satisfies (∗) (see below), then the group cannot

be MNFC (Corollary 1.2). Furthermore, Theorem 1.1 provides a short proof for [4, Theorem 1.2] (Corollary

1.3). (Another proof of [4, Theorem 1.2] is contained in [5, Theorem 1.6].) The group given in [4, Theorem

1.1] satisfies the cyclic-block property, it has an easily defined generating set, and all of its blocks of p -power

size are easily described, but it is not known whether or not it contains an MNFC -subgroup. (This group

satisfying the cyclic-block property is a transitive subgroup of the maximal p -subgroup, denoted by W here,

of FSym(N∗) constructed in [22]; see Proposition 2.1 for some properties of W .) [5] contains new properties

of NFC -subgroups of a perfect totally imprimitive p -subgroup of FSym(Ω). Among other things it is shown

there that the normalizer of an NFC -subgroup is self-normalizing and a self-normalizing subgroup is closed in

the topology of point-wise convergence (see also [15]). It follows from [5] that a group of finitary permutations

contains an MNFC -subgroup if and only if the set of self-normalizing subgroups contains minimal elements.

Let G be a subgroup of FSym(Ω) and let g ∈ G . The minimum of the lengths of the cycles in the

cycle decomposition of g is denoted by m(g). g is called homogeneous if every cycle of g has equal length. An

infinite subset Y of G is called ascending if Y has an infinite exponent and is not contained in a set stabilizer

of a finite set. We say that Y satisfies the property (∗) if for every y, z ∈ Y , and for all cycles cy, cz in

the cycle decompositions of y and z , respectively, the following holds. Put supp(cy) = ∆ and suppose that

∆ ⊆ supp(cz). Then
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(*)

[cs(cz,∆)
z |∆, cy] = 1

where s(cz,∆) is the smallest positive integer such that c
s(cz,∆)
z ∈ G{∆} .

It is well known that this condition is equivalent to

cs(cz,∆)
z |∆ = cky

for a k ≥ 1 by [13, Lemma 1]. (The centralizer of a cycle is generated by the cycle itself and permutations

disjoint with it.)

Let ∆ be a block for G and put Σ = {x(∆) : x ∈ G} . Then the kernel of the natural permutation

representation of G into Sym(Σ) is denoted by KerG(∆) and is called the kernel subgroup of G with respect

to ∆. Since KerG(∆) fixes x(∆) for every x ∈ G it follows that KerG(∆) is isomorphic to a subgroup of the

direct product of copies of a finite group, and so KerG(∆) is an FC -group of finite exponent.

For a nonempty subset X of G , exp(X) denotes the maximum of the set {|x| : x ∈ X} if it exists;

otherwise, it is equal to ∞ .

Theorem 1.1 Let G be a perfect totally imprimitive p-subgroup of FSym(Ω) , where Ω is infinite. Suppose

that G contains an ascending subset X satisfying the cyclic-block property such that the following properties

hold.

(a) X satisfies (∗) . Thus for all x, y ∈ X and for all cycles cx, cy in the cycle decompositions of x and y ,

respectively, the following holds. If supp(cx) ⊆ supp(cy) , then

[cs(cy,supp(cx))y |supp(cx), cx] = 1,

where supp(cx) and supp(cy) are blocks for G , which is equivalent to

cs(cy,supp(cx))y |supp(cx) = cq(cx)x

for a q(cx) ≥ 1 .

(b) For every x ∈ X there exists a y ∈ X so that m(x) < m(y) .

Then G cannot be an MNFC -group.

Theorem 1.1 is a considerable generalization of [1, Theorem 1.5]. In [1, Theorem 1.5] if F is a finite

subgroup of G and supp(F ) ⊆ ∆ for a finite block ∆, then there exists y ∈ G\G{∆} so that ys(y,∆) ∈ CG(F ).

In particular [F y, F ] = 1 since supp(F y) ∩∆ = 1. This leads to the existence of an ascending subgroup H of

G for a given a ∈ G with ⟨aG⟩ nonabelian so that ⟨aH⟩ is abelian, which gives a contradiction. On the other

hand, in Theorem 1.1, there is information only about the centralizer of a cycle, namely cx of x ∈ X , but X is

required to satisfy the additional property called the cyclic-block property. (Also in the proof of Theorem 1.1

⟨cGx ⟩ is not abelian, but there will exist an ascending subgroup, say X∗ of G , so that ⟨cX∗

x ⟩ is abelian, which

gives a contradiction.) It is not known yet whether condition (b) of Theorem 1.1 is indispensable.
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Corollary 1.2 Let G be a perfect totally imprimitive p-subgroup of FSym(Ω) , where Ω is infinite. Suppose

that G contains an ascending subset X of homogeneous elements satisfying the cyclic-block property and the

(∗) condition. Then G cannot be an MNFC -group.

Corollary 1.3 The totally imprimitive p-subgroup of FSym(N∗) given in [4, Theorem 1.1] and its commutator

subgroup cannot be MNFC -groups.

For definitions, notations, and basic properties the reader is referred to [9, 10, 21, 22].

Question. Let G be a totally imprimitive p -subgroup of FSym(Ω) satisfying the cyclic-block property where

Ω is infinite. Does G contain a minimal non-FC subgroup?

2. A finitary permutation group with cyclic-block property

In this section the finitary permutation p -group given in [4] and satisfying the cyclic-block property is described

briefly for the convenience of the reader. This group is a subgroup of the example given in [23] by Wiegold.

For each k, n ≥ 1 define

xk,n =

pk−1∏
i=1

(i+ (n− 1)pk, i+ (n− 1)pk + pk−1, . . . , i+ (n− 1)pk + (p− 1)pk−1).

Each xk,n is a disjoint product of pk−1 cycles, each of which has length p .

For each k ≥ 1 define

Tk = {xk,n;n ≥ 1} and T ∗
k = ⟨Ti : 1 ≤ i ≤ k⟩.

Wiegold’s group, denoted here by W , is defined as W = ⟨Tk : k ≥ 1⟩ . Tk is a set of pairwise disjoint

permutations of order p and it is easy to check that T ∗
k � W and T ∗

k+1/T
∗
k is elementary abelian for every

k ≥ 0, where T0 = 1. W is a totally imprimitive p -subgroup of FSym(N∗) since every element of every T ∗
k

has finite support.

For p = 2,

T1 = {(1, 2), (3, 4), (5, 6), . . . }, T2 = {(1, 3)(2, 4), (5, 7)(6, 8), (9, 11)(10, 12), . . . }

T3 = {(1, 5)(2, 6)(3, 7)(4, 8), (9, 13)(10, 14)(11, 15)(12, 16), . . . }.

For all k, n ≥ 1 the sets

∆k,n = {1 + (n− 1)pk, 2 + (n− 1)pk, . . . , pk + (n− 1)pk}

are blocks for W and |∆k,n| = pk . We may show that each ∆k,1 is a block. We may put ∆k = ∆k,1 when no

confusion arises. Thus, ∆k = {1, 2, . . . , pk} for k ≥ 1. It suffices to show that T ∗
k (1) = ∆k for all k ≥ 1 by [10,

Theorem 1.6A(i)]. For k = 1 T1(1) = {1, 2, . . . , p} = ∆1 . Assume that T ∗
k (1) = ∆k . Now

xk+1,1 = (1, 1 + pk, 1 + 2pk, . . . , 1 + (p− 1)pk) · · · (pk, pk + pk, pk + 2pk, . . . , pk + (p− 1)pk)

= (1, 1 + pk, 1 + 2pk, . . . , 1 + (p− 1)pk) · · · (pk, 2pk, 3pk, . . . , pk+1).

986



ASAR/Turk J Math

Hence, it is easy to see that

⟨xk+1,1⟩(∆k) = {1, 2, . . . , pk} ∪ {1 + pk, 2 + pk, . . . , 2pk} ∪ · · · ∪ {1 + (p− 1)pk, 2 + (p− 1)pk, . . . , pk+1}

= ∆k+1

since the sets in the union are pairwise disjoint and are contained in ∆k+1 . In particular, it is easy to see that

xk+1,1 permutes the sets

{1, 2, . . . , pk}, {1 + pk, 2 + pk, . . . , 2pk}, . . . , {1 + (p− 1)pk, 2 + (p− 1)pk, . . . , pk+1}

among themselves. Since ⟨xk+1,1⟩(∆k) = ⟨xk+1,1⟩(T ∗
k (1)) = (⟨xk+1,1⟩T ∗

k )(1) = T ∗
k+1(1) it follows that

T ∗
k+1(1) = ∆k+1 , which was to be shown. It can be shown that the finite blocks of p -power size for W

consist of

∆k,n = {1 + (n− 1)pk, 2 + (n− 1)pk, . . . , pk + (n− 1)pk}

for k, n ≥ 1.

Define
uk = xk,1xk−1,1 · · ·x1,1

for all k ≥ 1. Then uk ∈ T ∗
k and uk = (a1, a2, . . . , apk), where 1 ≤ ai ≤ pk by [4, Lemma 3.2(a)]. Next define

vk = u
xk+1,1

k · · ·u
xp−1
k+1,1

k .

Then vk = u
xk+1,1

k × · · · × u
xp−1
k+1,1

k , i.e. a product of disjoint cycles since supp(uk) = ∆k and xk+1,1 sends

each 1 ≤ i ≤ pk+1 to i + pk mod (pk+1). (Always c = a × b means that a ,b are disjoint permutations.) Put

gk = uk × vk for every k ≥ 1 and define G = ⟨gk : k ≥ 1⟩ . Then G satisfies the cyclic-block property by [4,

Theorem 1.1]. We see from the definitions that {gk : k ≥ 1} is an ascending set of homogeneous elements of

G . Furthermore, it follows from the definition that

up
k+1 = (xk+1,1uk)

p = xp
k+1,1u

xp−1
k+1,1

k · · ·uxk+1,1

k uk = uk × u
xk+1,1

k × · · · × u
xp−1
k+1,1

k = gk

for every k ≥ 1. Hence, it follows that the gk satisfy (∗) as can be seen from the proof of Corollary 1.2. It can

also be shown easily that G ≤ W ′ . Indeed,

g1 = x1,1x
x2,1

1,1 · · ·xxp−1
2,1

1,1 = xp
1,1[x1,1, x2,1] · · · [x1,1, x

p−1
2,1 ] ∈ W ′

since xp
1,1 = 1. Assume that gk ∈ W ′ for a k ≥ 1. Now

gk+1 = uku
xk+1,1

k · · ·u
xp−1
k+1,1

k = up
k[uk, xk+1,1] · · · [uk, x

p−1
2,1 ].

Since up
k = gk−1 ∈ W ′ it follows that gk+1 ∈ W ′ , which completes the induction, and so G ≤ W ′ .

As was indicated above, each uk is a cycle of length pk with supp(uk) = ∆k by [4, Lemma 3.2(a)].

Hence, supp(u
xi
k+1,1

k ) = x−i
k+1,1(∆k) for every i ≥ 1 and hence

supp(vk) =

pk−1∪
i=1

supp(u
xi
k+1,1

k ) = ∆k+1 \∆k.
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For p = 2

u1 = (1, 2);u2 = (1, 4, 2, 3);u3 = (1, 8, 4, 6, 2, 7, 3, 5)

and
u4 = (1, 16, 8, 12, 4, 14, 6, 10, 2, 15, 7, 11, 3, 13, 5, 9).

Hence,

g1 = (1, 2)(3, 4); g2 = (1, 4, 2, 3)(5, 8, 6, 7); g3 = (1, 8, 4, 6, 2, 7, 3, 5)(9, 16, 12, 14, 10, 15, 11, 13).

Finally, it follows from [4, Theorem 1.1, Lemmas 2.2 and 3.4] that G satisfies the cyclic-block property,

any two blocks for G are either disjoint or one is contained in the other one, and the blocks for G are the blocks

for W . Thus, the set of the blocks of the same p -power size for G form a block system for G and hence also

for W .

We end this section with a characterization of W .

Proposition 2.1 W is a transitive maximal p-subgroup of FSym(N∗) , Z(W ) = 1 , self-normalizing, and

W/W ′ is infinite elementary abelian.

Proof Put Wk = ⟨x1,1, x2,1, . . . , xk,1⟩ for every k ≥ 1. Then W =
∪∞

k=1 Wk and also N∗ =
∪∞

k=1 ∆k , where

∆k = {1, 2, . . . , pk} for every k ≥ 1. It is easy to see that each Wk is transitive on ∆k , which implies that W

is transitive on Ω, and then Z(W ) = 1 by [10, Lemma 8.3C(ii)].

First we show that Wk is a Sylow p -subgroup of Sym(∆k) for every k ≥ 1. Note that supp(Wk) = ∆k .

Put
Pk = (. . . (⟨x1,1⟩ ≀ ⟨x2,1⟩) ≀ · · · ≀ ⟨xk,1⟩).

Then Pk is isomorphic to a Sylow p -subgroup of Sym(∆k) by [11, Proposition 19.10] since each ⟨xk,i⟩ has order
p . It will suffice to show that Wk

∼= Pk . For k = 1 the assertion holds since ⟨x1,1⟩ = ⟨(1, 2, . . . , p)⟩ is a Sylow p -

subgroup of Sym({1, 2, . . . , p}). Suppose that the assertion holds for k ≥ 1. Then Wk
∼= ⟨x1,1⟩≀⟨x2,1⟩≀· · ·≀⟨xk,1⟩ ,

and by identifying these two groups, Wk becomes a Sylow p -subgroup of Sym(∆k). Thus, we get Pk+1
∼=

Wk ≀ ⟨xk+1,1⟩ . Let Bk be the base subgroup; that is, Bk =
∏

b∈⟨xk+1,1⟩(Wk)b , where each (Wk)b is equal to

Wk . Then Pk+1 is isomorphic to Bk⟨xk+1,1⟩ and so |Pk+1| = p|Bk| = p|Wk|p . However, we have seen above

that xk+1,1 permutes the sets {1, 2, . . . , pk}, {1+pk, 2+pk, . . . , 2pk}, . . . , {1+(p−1)pk, 2+(p−1)pk, . . . , pk+1}
among themselves and induces a cycle of length p on them. Also, Wk is a Sylow p -subgroup of Sym(∆k).

Clearly then x−i
k+1,1Wkx

i
k+1 are Sylow p -subgroups on the corresponding sets x−i

k+1,1(∆k) for i = 1, . . . , p .

Thus, x−i
k+1,1Wkx

i
k+1 and x−j

k+1,1Wkx
j
k+1 have disjoint supports for i ̸= j and so they commute. Therefore, we

get

Wk+1 = (Wk × x−1
k+1,1Wkxk+1 × · · · × x

−(p−1)
k+1,1 Wkx

p−1
k+1)⟨xk+1,1⟩.

This gives |Wk+1| = |Wk|p|xk+1,1| = p|Wk|p and hence |Wk+1| = |Pk+1| . This implies that Wk+1 is a Sylow

p -subgroup of Sym(∆k+1) since Wk+1 ≤ Sym(∆k+1), which completes the induction. Clearly it follows from

this that W is a Sylow p -subgroup of FSym(N∗) since FSym(N) =
∪∞

k=1 Sym(∆k).

Next we show that W is self-normalizing. Assume not. Then there exists a subgroup Y of FSym(N∗)

with W < Y and Y/W is abelian. Also, Y is transitive since W is. Moreover, Y ′ ≤ W and so Y ′ is a

p -group, but then Y is a p -group by [20, Lemma 2.1], which is a contradiction.
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Finally, we show that W/W ′ =
∏∞

k=1⟨xk,1W
′⟩ , as a direct product. This will be the case if we can show

that Wk/W
′
k =

∏k
i=1⟨xi,1W

′
k⟩ , as a direct product, for every k ≥ 1. For k = 1 this is trivial. Suppose that the

assertion holds for k ≥ 1. We have seen above that

Wk+1
∼= Wk ≀ ⟨xk+1,1⟩ = (

∏
b∈⟨xk+1,1⟩

(Wk)b)⟨xk+1,1⟩ = Bk⟨xk+1,1⟩,

which implies that Wk+1/W
′
k+1

∼= Bk⟨xk+1,1⟩/(Bk⟨xk+1,1⟩)′ . We can now apply [17, Corollary 4.5] to

Bk⟨xk+1,1⟩ . This gives
(Bk⟨xk+1,1⟩)′ = M

where M = {f ∈ Bk : π(f) ∈ W ′
k} and π(f) =

∏
b∈⟨xk+1,1⟩ f(b). Next define x∗

i,1(1) = xi,1 and x∗
i,1(b) = 1

for b ̸= 1 for 1 ≤ i ≤ k . Each x∗
i,1 ∈ Bk =

∏
b∈⟨xk+1,1⟩(Wk)b). We claim that x∗

1,1M, . . . , x∗
k,1M are linearly

independent over Zp , the field of p elements. Assume if possible that there exists an f = (x∗
1,1)

s1 · · · (x∗
r,1)

sr ,

where 1 ≤ r ≤ k and 1 ≤ si < p so that f ∈ M . Then f = (xs1
1,1 · · ·x

sr
r,1, 1, . . . , 1) and π(f) = xs1

1,1 · · ·x
sr
r,1 ∈ W ′

k ,

but since Wk/W
′
k = ⟨x1,1W

′
k⟩ × · · · × ⟨xk,1W

′
k⟩ by the induction hypothesis it follows that xs1

1,1W
′
k = · · · =

xsr
r,1W

′
k = 1, which means that xsi

i,1 ∈ W ′
k and then p|si since |xi,1| = p , which is impossible since 1 ≤ si < p

for every i ≥ 1. Consequently it follows that x∗
1,1M, . . . , x∗

k,1M are linearly independent in Bk⟨xk+1,1/M . Then

also x∗
1,1M, . . . , x∗

k,1M,x∗
k+1,1M are linearly independent in Bk⟨xk+1,1/M since ⟨x∗

k+1,1⟩ ∩Bk = 1. Therefore,

Bk⟨xk+1,1⟩/M = ⟨x∗
1,1M⟩ × · · · × ⟨x∗

k+1,1M⟩.

Hence, using the above isomorphism, we get

Wk+1/W
′
k+1 = ⟨x1,1W

′
k+1⟩ × · · · × ⟨xk+1,1W

′
k+1⟩,

which completes the induction. Now since W =
∪∞

k=1 Wk it follows easily that

W/W ′ =
∞∏
k=1

⟨xk,1W
′⟩

as a direct product. Suppose that ⟨xt,1W
′⟩ ∩ ⟨xk,1W

′ : k ≥ 1, k ̸= t⟩ ̸= 1 for a t ≥ 1. Then ⟨xt,1W
′⟩ ≤

⟨xk,1W
′ : k ≥ 1, k ̸= t⟩ since |xt,1| = p . Hence, xt,1 is a finite product of elements of certain cosets of the right

side. Also, W ′ =
∪∞

k=1 W
′
k . Clearly then there exists an n > t so that xt,1 ∈ ⟨xk,1W

′
n : 1 ≤ k ≤ n, k ̸= t⟩ , but

since Wn/W
′
n = ⟨x1,1W

′
n⟩ × · · · × ⟨xn,1W

′
n⟩ , as was shown above, this is impossible. Therefore, the assumption

is false and so W/W ′ is a direct product of the ⟨xk,1W
′⟩ as k ranges over the positive integers. 2

Remark.The commutator subgroup W ′ of W is perfect and transitive by [19, Theorem 1]. Also, W

does not satisfy the normalizer condition by [1, Theorem 1.2(b)] since G ≤ W and G′ is not an MNFC -group

by Corollary 1.3. The reader may observe that W is exactly the same group that is constructed in [12, 18.2.2

Example], where it is shown also that this group does not satisfy the normalizer condition.

3. Proof of Theorem 1.1

We begin with a known result on the cyclic-block property for the convenience of the reader. (See also [5,

Proposition 1.7].)
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Lemma 3.1 3.1 Let G be a totally imprimitive p-subgroup of FSym(Ω) satisfying the cyclic-block property,

where Ω is infinite. Then the following hold:

(a) Let ∆ be a finite block for G and let α ∈ ∆ . Then for every y ∈ G \G{∆} , ⟨ys(y,∆)⟩(α) = ∆ .

(b) Let ∆ be a finite block for G . Then

KerG(∆) = {g ∈ G : |g| ≤ |∆|}.

Furthermore, exp(G{∆}) is infinite.

(c) Any NFC -subgroup of G is transitive on Ω .

Proof (a) (See [4, Lemma 2.1].) Put H = G{∆} and let y ∈ G \H . Put t = s(y,∆). Then t is the smallest

number such that yt ∈ H . Also, t = pr for an r ≥ 1. Next put ⟨y⟩(α) = Γ and ⟨yt⟩(α) = Λ. Then Γ and Λ

are blocks for G by the cyclic-block property. Also, ∆ ⊂ Γ and Λ ⊆ ∆ by [4, Lemma 2.2] since y /∈ H but

yt ∈ H . Clearly |Γ| = pr|Λ| . Assume if possible that there exists a yj(α) ∈ ∆ \ Λ. Then j ∤ pr and so j < pr ,

but since α ∈ ∆ ∩ y−j(∆) and since ∆ is a block, it follows that yj(∆) = ∆, which is a contradiction since

t = pr is the smallest number with the property that yt(∆) = ∆. Therefore, the assumption is false and so

⟨yt⟩(α) = ∆.

(b) Put M = KerG(∆). Then M < H since H ̸= G due to the fact that Ω is infinite and G is

transitive. Let y ∈ G and put |y| = t . First suppose that t ≤ |∆| . Then we claim that y ∈ H . This is trivial

if supp(y) ∩∆ = ∅ since then y(∆) = ∆. Suppose that y(α) ̸= α for an α ∈ ∆. Put Γ = ⟨y⟩(α). Then Γ is a

block for G by the hypothesis and |Γ| ≤ t ≤ |∆| . Also, since α ∈ Γ∩∆ applying [4, Lemma 2.2], we get Γ ⊆ ∆,

which implies that y ∈ H . Thus, {g ∈ G : |g| ≤ |∆|} ⊆ M . Next suppose that t > |∆| . There exists a β ∈ Ω so

that t = |⟨y⟩(β)| . Also, there exists a g ∈ G so that g(β) = α . Since ⟨y⟩(β) = {β, y(β), . . . , yt−1(β)} , it follows
that ⟨gyg−1⟩(α) = {gy(β), . . . , gyt−1(β), g(β)} . Now if y ∈ M then also gyg−1 ∈ M , but since ⟨gyg−1⟩(α) is a

block containing α and has size greater than |∆| , this is a contradiction. Therefore, M = {g ∈ G : |g| ≤ |∆|} .
In particular it follows that any subgroup of finite exponent of G is contained in a kernel subgroup which is

nilpotent of finite exponent. It is well-known that a transitive subgroup of FSym(Ω) has infinite exponent if

Ω is infinite by [18, Lemma 3.1] or [10, Theorem 8.3A]). Let α ∈ Ω. We show that Gα contains a conjugate of

every element of G . Let g ∈ G . There exists a β ∈ Ω so that g(β) = β and so g ∈ Gβ . Also, β = x(α) for an

x ∈ G . Hence, g ∈ Gx(α) = xGαx
−1 and so gx ∈ Gα , which completes the proof of (b).

(c) Let X be a proper NFC - subgroup of G . Then X cannot be contained in the set-wise stabilizer

of a finite block for G since X is not an FC -group. However, if exp(X) ≤ |∆| for a finite block ∆, then

X ≤ Ker(∆) ≤ G{∆} by (b), which is impossible. Therefore, exp(X) = ∞ . Let α, β ∈ Ω and let ∆ be a finite

block for G containing both of them. Then there exists a g ∈ X \ X{∆} so that ⟨gp⟩(α) = ∆ by (a), which

implies that β = (gp)j(α) for a j ≥ 1, and so X is transitive. 2

Lemma 3.2 Let G be a totally imprimitive p-subgroup of FSym(Ω) and let c, d be two cycles in G such that

supp(c), supp(d) are blocks for G and supp(c) ⊆ supp(d) . Let |c| = pa, |d| = pb and put t = s(d, supp(c)) .
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Then t = pb−a . If dp
b−a |supp(c) = ck , then (p, k) = 1 and

dp
b−a

= ck × (ck)d × · · · × (ck)d
pb−a−1

.

Proof Put ∆ = supp(c), Γ = supp(d). Then |∆| = pa and |Γ| = pb . Let α ∈ ∆. Now ∆ ⊆ Γ. Clearly

Γ = ∆ ∪ d(∆) ∪ · · · ∪ dt−1(∆) as a disjoint union since ∆ is a block and d is a cycle. Hence, pb = tpa and

hence t = pb−a .

Put H = G{∆} . Then t is the smallest number with dt ∈ H . Hence, ⟨dpb−a⟩(α) ⊆ ∆ and |dpb−a | =

|⟨dpb−a⟩(α)| since d is a cycle, which implies that |⟨dpb−a⟩(α)| = pa . Now suppose that dp
b−a |∆ = ck . Then

p ∤ k since |c| is a cycle of length pa . Thus, (p, k) = 1 and ck is a cycle.

Now dp
b−a |di(∆) = dickd−i for every 1 ≤ i ≤ pb−a and Γ = ∆∪ d(∆)∪ · · · ∪ dp

b−a−1(∆). Obviously then

dp
b−a

= dp
b−a

|Γ = ck × (ck)d × · · · × (ck)p
b−a−1.

2

Lemma 3.3 Let G be a totally imprimitive p-subgroup of FSym(Ω) . Let X be an ascending subset of G

satisfying the cyclic-block property. Suppose also that X satisfies (∗) . Then X contains an ascending subset

Y = {yi : i ≥ 1} of G such that the following holds. Each yi can be expressed as a direct product of cycles as

yi = ci,1 × · · · × ci,r(i)

so that supp(yi) ⊂ supp(ci+1,1) , m(yi) ≤ m(yi+1) , and the following hold. Let 1 ≤ j ≤ r(i) and k ≥ i . Put

|ci,j | = pa and |ck,1| = pb . Then

[cp
b−a

k,1 |supp(ci,j), ci,j ] = 1.

Proof Choose a y1 ̸= 1 in X so that m(y1) ≤ m(x) for every x ∈ X and let

y1 = c1,1 × · · · × c1,r(1)

be the cycle decomposition of y1 . Let Γ1 be the smallest block containing supp(y1). Next choose a y2 in

X\G{Γ1} so that m(y2) ≤ m(x) for every x ∈ X\G{Γ1} . Now ⟨y2⟩(α) is a block by the cyclic-block property and

Γ1 ⊂ supp(⟨y2⟩(α)) by [4, Lemma 2.2] since y2 /∈ G{Γ1} . Also, m(y1) ≤ m(y2). Put c2,1 = (α, . . . , yt2−1
2 (α)),

where t2 is the smallest number such that yt22 (α) = α . Thus, Γ1 ⊂ supp(c2,1). Continuing in this way we

obtain an infinite subset Y = {yi : i ≥ 1} of X such that m(yi) ≤ m(yi+1) and supp(yi) ⊂ supp(ci+1,1) for

every i ≥ 1, where

yi = ci,1 × · · · × ci,r(i)

is the cycle decomposition of yi . Let 1 ≤ i < k and let 1 ≤ j ≤ r(i). Then supp(ci,j) ⊂ supp(ck,1). Also, Y

satisfies (∗) since Y is a subset of X . Therefore,

[c
s(ck,1,supp(ci,j))
k,1 |supp(ci,j), ci,j ] = 1.
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Let |ci,j | = pa and |ck,1| = pb . Then since s(ck,1, supp(ci,j)) = pb−a by Lemma 3.2, substituting this

value above the desired equality is obtained. Furthermore, Y is ascending since supp(ci,1) is a block and

supp(ci,1) ⊂ supp(ci+1,1) for every i ≥ 1. 2

Lemma 3.4 Let G be a totally imprimitive p-subgroup of FSym(Ω) . Let X be an ascending subset of G

satisfying the cyclic-block property and (∗) . Let Y = {yi : i ≥ 1} be the subset of X obtained in Lemma 3.3.

Thus, for each i ≥ 1 , the cycle decomposition of yi can be written as

yi = ci,1 × · · · × ci,r(i)

such that supp(yi) ⊂ supp(ci+1,1) and m1(yi) ≤ m1(yi+1) for every i ≥ 1 . Moreover, if we put |ci,j | = pa(i,j) ,

for every i ≥ 1 and 1 ≤ j ≤ r(i) , then for 1 ≤ i ≤ k the equality

cp
a(k,1)−a(i,j)

k,1 |supp(ci,j) = c
q(i,j)
i,j (1)

holds for a q(i, j) ≥ 1 with (p, q(i, j)) = 1 by Lemma 3.3.

Now let j, k, t ≥ 1 be integers with j ≤ k, t and suppose that |yj | ≤ min{m(yk),m(yt)} . Let m,n ≥ 1 .

Then

c
ym
k yn

t
j,1 = c

ys
r

j,1

for an r ∈ {k, t} and s ≥ 1 .

Proof Put ci = ci,1 and let |supp(ci)| = pa(i) for i = j, k, t . Then ci is a factor of the cycle decomposition

of yi for i = j, k, t and supp(yu) ⊂ supp(cv) for every 1 ≤ u < v . We may suppose that j < k, t .

Case 1 j < k < t . Now

c
ym
k yn

t
j = c

cmk yn
t

j (2)

since supp(cj) ⊆ supp(ck). On the other hand,

cp
a(t)−a(k)

t = c
q(k,1)
k × · · · × (c

q(k,1)
k )c

pa(t)−a(k)−1
t = c

q(k,1)
k × vk

by (1) and Lemma 3.2, where supp(vk) ∩ supp(ck) = ∅ . Also, bq(k, 1) ≡ 1 mod (pa(k)) for an integer b since

(q(k, 1), p) = 1 by Lemma 3.2. Using this above gives

cbp
a(t)−a(k)

t = ck × · · · × c
bcp

a(t)−a(k)−1
t

k = ck × vbk.

Hence, cmk = cmbpa(t)−a(k)

t v−bm
k . Substituting this in (2) gives

c
cmk yn

t
j = c

v−bm
k cmbpb−a

t yn
t

j = c
cmbpa(t)−a(k)

t yn
t

j = c
cmbpa(t)−a(k)+n
t

j = c
ymbpb−a+n
t

j

since supp(cj) ⊂ supp(ck).

Case 2 k > t > j . We may suppose that supp(c
cmk
j ) ∩ supp(ynt ) ̸= ∅ ; otherwise, c

cmk yn
t

j = c
cmk
j and we

are done. Then there exists a cycle ct,r in the cycle decomposition of yt so that supp(c
cmk
j ) ⊆ supp(ct,r) by
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the cyclic-block property since |yj | < m(yt) by the hypothesis. For simplicity, put ut = ct,r and q(t) = q(t, r).

Clearly now c
cmk yn

t
j = c

cmk un
t

j . Let |ut| = pz . Then

cp
a(k)−z

k = u
q(t)
t × · · · × (u

q(t)
t )c

pa(k)−z−1
k = u

q(t)
t × vt

where (q(t), p) = 1 by (1). Then, as in Case 1, there exists an integer b so that

cbp
a(k)−z

k = ut × vbt

where supp(ut) ∩ supp(vt) = ∅ . Hence un
t = v−bn

t cnbp
a(k)−z

k . Substituting this above gives

c
cmk un

t
j = c

cmk v−bn
t cnbpa(k)−z

k
j = c

cmk cnbpa(k)−z

k
j

= c
cm+nbpa(k)−z

k
j = c

ym+nbpa(k)−z

k
j

since supp(c
cmk
j ) ⊆ supp(ut) and supp(ut) ∩ supp(vt) = ∅ , which completes the proof of the lemma. 2

Lemma 3.5 Let G be a totally imprimitive p-subgroup of FSym(Ω) . Let X be an ascending subset of G

satisfying the cyclic-block property and (∗) . Let Y = {yi : i ≥ 1} be the subset of X obtained in Lemma 3.3 and

suppose that |yi| < m(yi+1) for every i ≥ 1 . Let j ≥ 1 and put Y ∗
j = ⟨yi : i ≥ j⟩ . Let y = ym1

k1
· · · ymq

kr
∈ Y ∗

j ,

where ki ≥ j , r ≥ 1 , mi ≥ 1 , and ku ̸= ku+1 . Then cyj,1 = c
ys
u

j,1 for a u ∈ {k1, . . . , kr} and s ≥ 1 .

Proof We may use induction on r ≥ 1. For r = 1 the assertion is obvious. Suppose that r > 1 and the asser-

tion holds for numbers less than r . Note that |yj | < m(yki) for i = 1, . . . , q by the hypothesis. Hence, applying

Lemma 3.4 we obtain a k ∈ {k1, k2} and an m ≥ 1 so that c
y
m1
k1

y
m2
k2

···ymq
kr

j,1 = c
ym
k y

m3
k3

···ymq
kr

j,1 . Then the induction

hypothesis applies to the right side of the preceding equality. Therefore, there exist a u ∈ {k, k3, . . . , kr} and

an s ≥ 1 so that c
ym
k y

m3
k3

···ymq
kr

j,1 = c
ys
u

j,1 . Then since cyj,1 = c
ys
u

j,1 the induction and the proof of the lemma are

complete. 2

Lemma 3.6 Let the hypothesis and the notation be as in Lemma 3.5. Let j ≥ 1 . Then [cyj,1, cj,1] = 1 for every

y ∈ Y ∗
j .

Proof Put cj = cj,1 . Let y ∈ Y ∗
j . We have cyj = c

ys
k

j for a k ≥ j and an s ≥ 1 by Lemma 3.5. Let

supp(cj) = Γj and put H = G{Γj} . If y
s
k /∈ H , then ysk(Γj) ∩ Γj = ∅ and since supp(c

ys
k

j ) = y−s
k (Γj) it follows

that [c
ys
k

j , cj ] = 1, and the assertion holds in this case since cyj = c
ys
k

j .

Next suppose that ysk ∈ H . Let ck,1 = ck , supp(ck) = Γk , |Γj | = pa(j) , and |Γk| = pa(k) . Then

pa(k)−a(j)|s by Lemma 3.2 and hence s = pa(k)−a(j)t for a t ≥ 1. Also, supp(yj) ⊆ Γk and cp
a(k)−a(j)

k = c
q(j)
j ×vk

for a vk ∈ FSym(Ω) and q(j) ≥ 1 by (1) in Lemma 3.4. Hence, csk = c
tq(j)
j vtk , but also yk = ck × zk for a
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zk ∈ FSym(Ω). Combining these values we get ysk = c
tq(j)
j (vtkz

s
k), where supp(vkzk) ∩ Γk = ∅ . Using this last

equality we get

c
ys
k

j = c
ctjq(j)(v

t
kz

s
k)

j = c
vt
kz

s
k

j = cj

and hence

[c
ys
k

j , cj ] = [cj , cj ] = 1,

which was to be shown. 2

Lemma 3.7 Let G be a totally imprimitive p-subgroup of FSym(Ω) , where Ω is infinite. Let y ∈ G and let

j > 1 so that α ∈ supp(y) ⊂ ⟨cp
2

j,1⟩(α) and |cj,1| = pt for a t ≥ 4 . Then [cyj,1, cj,1] ̸= 1 .

Proof Put c = cj,1 . Then supp(y) ⊆ {α, cp2

(α), . . . , (cp
2

)p
t−2−1(α)} by the hypothesis. This means that if y

moves an element of Ω, then it must be of the form (cp
2

)k(α) for a 0 ≤ k ≤ pt−2 − 1.

Assume if possible that cyc = ccy . Then

ycy−1c(α) = cycy−1(α). (1)

Now

ycy−1c(α) = ycc(α) = y(c2(α))

since y cannot move c(α) and

cycy−1(α) = cyc(ckp
2

(α)) = cy(ckp
2+1(α)) = ckp

2+2(α)

since y cannot move ckp
2+1(α), where y−1(α) = (cp

2

)k(α) and 1 ≤ k ≤ pt−2 − 1 since y(α) ̸= α . Thus the

equality (1) takes the form

y(c2(α)) = ckp
2+2(α).

Now if p > 2, then y(c2(α)) = c2(α) since c2(α) is not of the form (cp
2

)k(α). Indeed, if c2(α) = (cp
2

)k(α), then

ckp
2−2(α) = α , which implies that pt|kp2 − 2 since |c| = pt , which is impossible. Therefore, c2(α) = ckp

2+2(α)

and hence α = ckp
2

(α), which is a contradiction since 1 ≤ k ≤ pt−2 − 1, c is a cycle, |c| = pt , and t ≥ 4. Next

suppose that p = 2. Again since y can move only elements of the form (cp
2

)k(α) = c4k(α) and since c2(α) is

not of this form, we get y(c2(α)) = c2(α) and hence c2(α) = c4k+2(α). Hence, c4k(α) = α , which is another

contradiction since |c| = 2t , t ≥ 4, and 1 ≤ k ≤ 2t−2 − 1. 2

Lemma 3.8 Let G be a totally imprimitive p-subgroup of FSym(Ω) , where Ω is infinite. Let X be the

ascending subset of G satisfying the cyclic-block property such that for every x ∈ X there exists a y ∈ X such

that m(x) < m(y) . Then there exists an ascending subset Z = {zi : i ≥ 1} of G so that m(zi) < m(zi+1) for

every i ≥ 1 .
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Proof By the hypothesis we can obtain easily an infinite subset X∗ = {xi : i ≥ 1} of X so that

m(xi) < m(xi+1) for every i ≥ 1. We may suppose that x1 ̸= 1. Let di be a cycle of xi of the smallest length,

that is, of length m(xi) for every i ≥ 1. Then |di| < |di+1| for every i ≥ 1. Choose an α ∈ supp(d1). By the

transitivity of G for every i ≥ 1 there exists an ai ∈ G so that α ∈ supp(dai
i ). Then supp(dai

i ) ⊂ supp(d
ai+1

i+1 )

by [4, Lemma 2.2 since α ∈ supp(dai
i ) ∩ supp(d

ai+1

i+1 ) for every i ≥ 1. Put zi = xai
i for every i ≥ 1 and define

Z = {zi : i ≥ 1} . Since supp(dai
i ) ⊂ supp(d

ai+1

i+1 ) and since each supp(dai
i ) is a block for G it follows that∪∞

i=1 supp(d
ai
i ) = Ω due to the fact that every proper block is finite by the transitivity of G on Ω. Hence,

it follows that Z cannot be contained in the set stabilizer of a finite subset of G and also exp(Z) is infinite.

Therefore, Z is an ascending subset of G . 2

Proof of Theorem 1.1 Let G be a totally imprimitive p -subgroup of FSym(Ω), where Ω is infinite. Let X

be an ascending subset of G satisfying the cyclic-block property so that conditions (a) and (b) are satisfied.

Then applying Lemma 3.8 we obtain an ascending subset Z = {zi : i ≥ 1} of G so that m(zi) < m(zi+1) for

every i ≥ 1. Next we can choose an infinite subset U = {ui : i ≥ 1} of Z so that |ui| < m(ui+1) for every

i ≥ 1 since the numbers m(zi) are increasing without bound. We now substitute U in place of X in Lemma

3.3. This gives an ascending subset Y = {yi : i ≥ 1} of G so that the following hold. The cycle decomposition

of each yi can be expressed as

yi = ci,1 × · · · × ci,r(i)

so that supp(yi) ⊂ supp(ci+1,1) and if 1 ≤ j ≤ r(i), k ≥ i , |ci,j | = pa , |ck,1| = pb , then

cp
b−a

k,1 |supp(ci,j) = c
q(i,j)
i,j

for a q(i, j) ≥ 1. Furthermore, for each i ≥ 1, the inequality |yi| < m(yi+1) is satisfied by definition of U .

Thus, Lemmas 3.4, 3.5, and 3.6 can be applied to Y .

Next we may suppose that y1 ̸= 1. Choose an α ∈ supp(y1). Let ∆ be the smallest block such that

supp(y1) ⊆ ∆ and let |∆| ≤ pt , for a t ≥ 4. There exists a j > 1 so that |cj,1| ≥ p2t and ∆ ⊆ supp(cj,1).

Put cj = cj,1 . Then cj = (α, cj(α), . . . , c
|cj |−1
j (α)). Now cp

2

j is a product of p2 cycles each of length

≥ p2t−2 = p2(t−1) ≥ pt since t ≥ 4. Then it is easy to see that ∆ ⊆ ⟨cp
2

j ⟩(α) by the cyclic-block property since

⟨cp
2

j ⟩(α) is a block and α ∈ ∆ ∩ ⟨cp
2

j ⟩(α).

Put Y ∗
j = ⟨yi : i ≥ j⟩ . Then the application of Lemmas 3.4, 3.5, and 3.6 gives [cyj,1, cj,1] = 1 for every

y ∈ Y ∗ , but application of Lemma 3.7 gives [cy1

j , cj ] ̸= 1, which implies that y1 /∈ Y ∗ and so Y ∗ ̸= G . However,

since {yi : i ≥ j} is ascending by definition of Y , the subgroup Y ∗ cannot be an FC -subgroup of G . Therefore,

G cannot be an MNFC -group and so the proof of the theorem is complete. 2

Proof of Corollary 1.2 Let G be a totally imprimitive p -subgroup of FSym(Ω), where Ω is infinite. Let X

be an ascending subset of homogeneous elements of G satisfying the cyclic-block property so that X satisfies

the (∗) condition. Then condition (a) of Theorem 1.1 is satisfied. Therefore, we need only show that condition

(b) of Theorem 1.1 is satisfied. Since X is ascending by the hypothesis, exp(X) is infinite and ⟨X⟩ is a non-

FC -subgroup of G . Also, since G is locally finite, it follows that for every x ∈ X there exists a y ∈ X so that
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|x| < |y| . Now the homogeneity of the elements of X shows that (b) is satisfied by X . Therefore, G cannot

be MNFC by Theorem 1.1. 2

Proof of Corollary 1.3 Let G be the p -subgroup of FSym(N∗) described in Section 2. Then G satisfies the

cyclic-block property by [4, Theorem 1.1]. We have G = ⟨gk : k ≥ 1⟩ , where gk = uk × vk , uk = (a1, . . . , apk),

vk = uk × · · · × u
xp−1
k+1,1

k , supp(uk) = ∆k , and supp(vk) = ∆k+1 \ ∆k . Hence, it follows that each gk is

homogeneous; that is, |gk| = m(gk) = pk for every k ≥ 1. Furthermore,

gpk+1|∆k
= gk

since up
k+1 = gk as was shown in Section 2. Thus, G satisfies the hypothesis of Corollary 1.2 and therefore G

cannot be an MNFC -group.

Next we show that G′ cannot be MNFC . For each s ≥ 2 let Ys = {g−1
k ggsk : 1 ≤ k < s} and put

Y =
∪

s≥2 Ys . Then Y is an ascending subset of homogeneous elements of G′ . To see this let 1 ≤ k < s .

Then g−1
k ggsk = g−1

k gus

k since supp(gk) = ∆k+1 = supp(uk+1) ⊆ supp(us). Also up
k+1 = gk (see Section

2). Hence g−1
k g

gk+1

k = g−1
k g

uk+1

k = 1. So suppose that s > k + 1. Then us(∆k+1) ∩ ∆k+1 = ∅ . Also,

supp(gus

k ) = u−1
s (supp(gk)) = u−1

s (∆k+1). Clearly it follows from this that g−1
k ggsk = g−1

k × ggsk and so g−1
k ggsk

is homogeneous since gk is homogeneous. Furthermore, gk /∈ G{∆k−1} since gk = uk × vk , supp(uk) = ∆k

and ∆k−1 ⊂ ∆k . Now suppose that s > k + 1. Then also g−1
k gus

k /∈ G{∆k−1} since ∆k−1 ⊂ supp(gk) and

gus

k ∈ G∆k−1
due to the fact that supp(gk)∩supp(gus

k ) = ∅ . Therefore, Y is an ascending subset of homogeneous

elements of G′ . In particular, (b) of Theorem 1.1 is satisfied.

Finally, let 1 ≤ k + 1 < s . Then

(g−1
k+1g

gs
k+1)

p|∆k
= g−p

k+1|∆k
= u−p

k+1|∆k
= g−1

k |∆k
= g−1

k × ggsk |∆k

and so (a) of Theorem 1.1 is satisfied. Therefore, G′ cannot be MNFC by Theorem 1.1. (A different proof of

this result is given in [5,Theorem 1.6].) 2
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