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Abstract: An effective method based upon cardinal Hermite interpolant multiscaling functions is proposed for the

solution of the one-dimensional parabolic partial differential equation with given initial condition and known boundary

conditions and subject to overspecification at a point in the spatial domain. The properties of multiscaling functions are

first presented. These properties together with a collocation method are then utilized to reduce the parabolic inverse

problem to the solution of algebraic equations. The scheme described is efficient. The numerical results obtained using

the present algorithms for test problems show that this method can solve the model effectively.
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1. Introduction

In this paper, we consider the inverse problem of finding a source parameter in the parabolic partial differential

equation

vt = αvxx + βvx + p(t)v + q(x, t), 0 ≤ x ≤ L, 0 < t ≤ T1, (1)

with initial condition

v(x, 0) = f(x), 0 ≤ x ≤ L, (2)

and boundary conditions

v(0, t) = g0(t), 0 < t ≤ T1, (3)

v(1, t) = g1(t), 0 < t ≤ T1, (4)

subject to the overspecification at a point in the spatial domain:

v(x∗, t) = E(t), 0 < t ≤ T1, (5)

where f , g0 , g1 , q, and E(t) are known functions, α and β are known constants, while the functions v and p

are unknown. Certain types of physical problems can be modeled by Eqs. (1)–(5), and have been investigated
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by many authors (see for example [1,3–6,8], and the references therein). Eq. (1) can be used to describe a heat

transfer process with a source parameter present. Eq. (5) represents the temperature at a given point x∗ , in a

spatial domain at time t . Thus, the purpose of solving this inverse problem is to identify the source parameter

that will produce at each time t a desired temperature at a given point x∗ in a spatial domain [2, 15, 22, 35, 37].

The existence and uniqueness of the problem and also other applications are discussed in Cannon and

Yin [6], Cannon and Lin [3], and Dehghan [9, 13]. This inverse problem as well as some other similar inverse

parabolic problems has recently attracted much attention, and various numerical methods are developed for

these problems (see for example, [1,8–12,14,15,20,22,23,29,30,32–38]).

In this paper, we use the cardinal Hermite interpolant multiscaling functions for solving the parabolic

inverse problem. These multiscaling functions are constructed in [21] and have several advantages in applications,

such as smoothness, short support, symmetry, and interpolation properties. The principal advantage of using

these functions is the simplicity with explicit expressions and therefore they can be implemented efficiently.

Our method consists of reducing the parabolic inverse problem to a set of algebraic equations by expanding the

unknown function as multiscaling functions with unknown coefficients. The operational matrices of derivative,

integration, and product are given. The idea of using operational matrices was used in the literature by several

authors [19,23–28,31]. These matrices together with the Hermite scaling functions are then utilized to evaluate

the unknown coefficients.

The paper is organized as follows: Section 2 is devoted to the basic formulation of the cardinal Hermite

interpolant multiscaling functions required for our subsequent development. In Section 3, the proposed method

is used to approximate the solution of a parabolic inverse problem. In Section 4, we report our numerical

findings and demonstrate the accuracy of the proposed numerical scheme by considering numerical examples.

Finally, Section 5 completes this paper with a brief conclusion.

2. Cardinal Hermite interpolant multiscaling functions

The cardinal Hermite interpolant scaling functions ϕ = (ϕ1(x), ϕ2(x), ϕ3(x), ϕ4(x))
T are defined in [21] by

ϕ1(x) = (x+ 1)4(1− 4x+ 10x2 − 20x3)χ[−1,0](x)

+(x− 1)4(1 + 4x+ 10x2 + 20x3)χ[0,1](x),

ϕ2(x) = (x+ 1)4(x− 4x+ 10x3)χ[−1,0](x)

+(x− 1)4(x+ 4x+ 10x3)χ[0,1](x),

ϕ3(x) = (x+ 1)4(x2/2− 2x3)χ[−1,0](x) + (x− 1)4(x2/2 + 2x3)χ[0,1](x),

ϕ4(x) = (x+ 1)4x3/6χ[−1,0](x) + (x− 1)4x3/6χ[0,1](x),

where T stands for transpose and

χ[x0,x1](x) =

{
1, x ∈ [x0, x1],
0, Otherwise.

It is seen that ϕ is a piecewise polynomial of degree 7, three times continuously differentiable and symmetric,

supported on [−1, 1], has accuracy of order 8, and belongs to W 4.5 . Therefore [21], ϕ ∈ C4−ϵ for any ϵ > 0.
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Moreover, the vector ϕ satisfies the following properties (the cardinal Hermite interpolant properties):

ϕ(k) = δk[1, 0, 0, 0]
T , ϕ′(k) = δk[0, 1, 0, 0]

T ,

ϕ′′(k) = δk[0, 0, 1, 0]
T , ϕ′′′(k) = δk[0, 0, 0, 1]

T , ∀k ∈ Z, (6)

where δ is the Dirac sequence such that δ0 = 1 and δk = 0 for all k ∈ Z\{0} .
Suppose

ϕJ,k
i (x) = ϕi(2

Jx− k), i = 1, 2, 3, 4, J, k ∈ Z,

and

ßi,j,k = supp
[
ϕj,k
i (x)

]
= clos{x : ϕj,k

i (x) ̸= 0}, i = 1, 2, 3, 4,

It is easy to see that

ßi,j,k =
[
2−j(k − 1), 2−j(k + 1)

]
, j, k ∈ Z.

Define the set of indices

Si,j = {k : ßi,j,k ∩ (0, L) ̸= ∅} , j ∈ Z,

and it is easy to see that Si,j =
{
0, . . . , L× 2j

}
, j ∈ Z .

We need the biorthogonal Hermite functions intrinsically defined on [0, 1], and so we put

ϕJ,k
i (x) = ϕJ,k

i (x)χ[0,L](x), j ∈ Z, k ∈ Si,j , i = 1, 2, 3, 4.

2.1. Function approximation

For a fixed j = J , a function f(x) defined on L2[0, L] may be approximated by biorthogonal multiscaling

functions as [16,23–26]

f(x) ≈
L×2J∑
k=0

4∑
m=1

cJ,km ϕJ,k
m (x) = CTΦJ (x), (7)

where ΦJ (x) and C are N -vectors given by

ΦJ (x) =
[
ϕJ,0
1 (x), ϕJ,0

2 (x), ϕJ,0
3 (x), ϕJ,0

4 (x)|...|ϕJ,L×2J

1 (x), ϕJ,L×2J

2 (x), ϕJ,L×2J

3 (x), ϕJ,L×2J

4 (x)
]T

, (8)

C =
[
cJ,01 , cJ,02 , cJ,03 , cJ,04 |...|cJ,L×2J

1 , cJ,L×2J

2 , cJ,L×2J

3 , cJ,L×2J

4

]T
, (9)

in which N = 4(L× 2J + 1).

Because of the interpolatory nature of multiscaling function defined in (6), the coefficients cJ,ki are

computed by

cJ,k1 = f(k/2J), cJ,k2 = 2−Jf ′(k/2J),

cJ,k3 = 2−2Jf ′′(k/2J ), cJ,k4 = 2−3Jf ′′′(k/2J), k = 0, 1..., L× 2J .
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The approximation of the two-dimensional function u(x, t) for 0 ≤ x ≤ L and 0 ≤ t ≤ T1 , L
2([0, L] × [0, T1]),

is [16, 23, 25]

u(x, t) ≈ ΦT
J (t)UΦJ(x), (10)

where U is a block matrix with dimension M × N , with M = 4(T1 × 2J + 1) and N = 4(L × 2J + 1). The

matrix U is given by

U =

 U0
0 · · · U0

T1.2J

...
...

UL.2J

0 · · · UL.2J

T1.2J

 . (11)

In Eq. (11), U l
s , s = 0, . . . , T1 × 2J , l = 0, . . . , L× 2J are 4× 4 matrices. Using Eq. (6) we have

U l
s(i, j) = 2(i+j−2) ∂

j−1x

∂xj−1
(
∂i−1u(x, t)

∂ti−1

∣∣
t=s/T1.2J )

∣∣
x=l/L.2J , i, j = 1, . . . , 4.

2.2. The operational matrix of derivative for the cardinal Hermite interpolant multiscaling func-

tions

Using Eq. (7) we can approximate the derivative of ϕi(2
Jx− l) by the multiscaling functions as [16,23–26,31]

ϕ′
i(2

Jx− l) =

k=l+1∑
k=l−1

{
(ϕ′

i(k − l)ϕJ,k
1 (x) + ϕ′′

i (k − l)ϕJ,k
2 (x) + ϕ′′′

i (k − l)ϕJ,k
3 (x) + ϕ′′′′

i (k − l)ϕJ,k
4 (x)

}
, (12)

in which i = 1, 2, 3, 4 and l = 0, . . . , L× 2J .

Since the function vector ϕ(x) = (ϕ1(x), ϕ2(x), ϕ3(x), ϕ4(x))
T has accuracy order 8, Eqs. (12) are exact.

Then the differentiation of vector ΦJ(x) in Eq. (8) can be expressed as

ΦJ(x) = DϕΦJ(x), (13)

where Dϕ is an N ×N matrix as defined as

Dϕ = 2J



A0 B0

C0 A1 B1

. . .
. . .

. . .

. . .
. . .

. . .

CL.2J−2 AL.2J−1 BL.2J−1

CL.2J−1 AL.2J


. (14)

in which

Ak =


0 0 0 −840
1 0 0 −480γk
0 1 0 −120
0 0 1 −16ωk

 , Bk =


0 0 0 840λk

0 0 0 360λk

0 0 0 60λk

0 0 0 4λk

 , Ck =


0 0 0 840τk
0 0 0 −360τk
0 0 0 60τk
0 0 0 −4τk

 ,
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with

γk := sgn(ϕ2(2
Jx− k)), ωk := sgn(ϕ4(2

Jx− k)), λk := κ1(2
Jx− k − 1), τk := κ2(2

Jx− k),

where

κ1(x) =

{
1 x ≤ 0
0 otherwise ,

κ2(x) =

{
1 x ≥ 0
0 otherwise ,

and

sgn(x) =

{
1 x ≥ 0
−1 otherwise .

2.3. The operational matrix of integration for the cardinal Hermite interpolant multiscaling

functions

The integration of vector ΦJ(x) in Eq. (8) can be expressed as [16, 23]

∫ x

0

ΦJ(x
′)dx′ ≈ IΦΦJ(x), (15)

where IΦ is N × N operational matrix of integration for multiscaling functions and can be obtained by the

following process. The function
∫ x

0
ϕi(2

Jx′ − l)dx′ using Eq. (7) can be approximated as

∫ x

0

ϕi(2
Jx′ − l)dx′ =

L×2J∑
k=0

({
∫ 2J

0

ϕi(2
Jx− l)dt}ϕJ,k

1 (x) +
1

2J
ϕi(k − l)ϕJ,k

2 (x)

+
1

22J
ϕ′
i(k − l)ϕJ,k

3 (x) +
1

23J
ϕ′′
i (k − l)ϕJ,k

4 (x)}),

for i = 1, 2, 3, 4 and l = 0, . . . , L× 2J . Then it can be shown that

IΦ =
1

2J



R1 R2 R2 · · · · · · R2

R3 R4 · · · · · · R4

R3
. . . · · · R4

. . .
. . .

...
R3 R4

R3


,

where

R1 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , R2 =


1
2 0 0 0
3
28 0 0 0
1
84 0 0 0
1

1680 0 0 0

 , R3 =


1
2 1 0 0

− 3
28 0 1 0
1
84 0 0 1

− 1
1680 0 0 0

 , R4 =


1 0 0 0
0 0 0 0
1
42 0 0 0
0 0 0 0

 .
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2.4. The operational matrix of the product for the cardinal Hermite interpolant multiscaling

functions

The property of the product of two multiscaling functions vectors will be as follows [27, 28]

ZΦJ (x)Φ
T
J (x) ≈ ΦT

J (x)Z̃, (16)

where Z =
[
zJ,01 , zJ,02 , zJ,03 , zJ,04 |...|zJ,L×2J

1 , zJ,L×2J

2 , zJ,L×2J

3 , zJ,L×2J

4

]T
is a known constant vector, and Z̃ is an

N ×N matrix. This matrix is called the operational matrix of product and can be obtained as

Z̃ =


Z̃0

Z̃1

. . .

Z̃L.2J

 , (17)

where Z̃k is a 4× 4 matrix given by

Z̃k =


zJ,k1

zJ,k2 zJ,k1

zJ,k3 2zJ,k2 zJ,k1

zJ,k4 3zJ,k3 3zJ,k2 zJ,k1

 , k = 0, . . . , L× 2J . (18)

2.5. Convergence of multiscaling bases

Theorem 1. Suppose that the function f : [0, L] → R is eight times continuously differentiable, f ∈ C8[0, L] ,

and the interpolation operator PJ mapping function f into space VJ is as Eq. (7); then the error bound is

given by

||f − PJ ||∞ := max
x∈[0,L]

|f(x)− PJ(x)| ≤
2−8J−8

8!
||f (8)||∞.

Moreover, the first derivative of f we have

||f ′ − P ′
J ||∞ := max

x∈[0,L]
|f ′(x)− P ′

J (x)| ≤
2−7J−6

6!
||f (8)||∞, (19)

where PJ (x) = CTΦJ(x).

Proof See [7]. 2

Remark. By using the above theorem, we can conclude if f ∈ L2[0, L] and CTΦJ (x) is the approximation of

f out of ΦJ(x) in Eq. (8) then

||
∫ x

0

f(s)ds−
∫ x

0

CTΦJ(s)ds||∞ := max
x∈[0,L]

|
∫ x

0

(f(s)− CTΦJ(s))ds| ≤ γf , (20)

where

γf :=
2−8J−8

8!
||f (8)||∞.

1014



ASHPAZZADEH et al./Turk J Math

Lemma 1 Suppose that the function f : [0, L] → R and f ∈ L2[0, L] . If CTΦJ(x) is the approximation of f

out of ΦJ in Eq. (8) and we use Eq. (15) for approximation of integration of f then the error bounds are given

by

||
∫ x

0

f(s)ds− CT IϕΦJ (x)||∞ ≤ Λf + γf ,

where Λ := M12
−J−7 . Constant M1 is a bound for

fM1(x) :=
5

2
f(x) +

5

4
× 2−Jf ′(x) +

1

4
× 2−2Jf ′′(x) + 2−3Jf ′′′(x)− 5

2
f(x+

1

2J
)

+
5

4
× 2−Jf ′(x+

1

2J
)− 1

4
× 2−2Jf ′′(x+

1

2J
) + 2−3Jf ′′′(x+

1

2J
), (21)

such that |fM1
(x)| ≤ M1 for all x ∈ [0,L] .

Proof Theorem 1 provides a interpolation error for x ∈ [xi, xi+1] that arises if the polynomial Pi replaces f

f(x)− Pi(x) =
(x− xi)

4(x− xi+1)
4

8!
f (8)(ξ), x, ξ ∈ [xi, xi+1], (22)

so that Hermite interpolation conditions

Pi(xi) = f(xi), Pi(xi+1) = f(xi+1), xi =
i

2J
, i = 0, . . . , L× 2J − 1

are satisfied.

By taking the seventh derivative of function vector ϕ = (ϕ1(x), ϕ2(x), ϕ3(x), ϕ4(x))
T and using Eq. (22)

we get

(

∫ x

0

ϕ1(2
Js− k)ds− IϕΦJ (x))[4k + 1, 1] = −27J100800

(x− k−1
2J

)4(x− k
2J

)4

8!
χ( k−1

2j
, k

2j
)(x)

+27J100800
(x− k

2J
)4(x− k+1

2J
)4

8!
χ( k

2j
, k+1

2j
)(x),

(

∫ x

0

ϕ1(2
Js− k)ds− IϕΦJ (x))[4k + 2, 1] = 27J50400

(x− k−1
2J

)4(x− k
2J

)4

8!
χ( k−1

2j
, k

2j
)(x)

+27J50400
(x− k

2J
)4(x− k+1

2J
)4

8!
χ( k

2j
, k+1

2j
)(x),

(

∫ x

0

ϕ1(2
Js− k)ds− IϕΦJ (x))[4k + 3, 1] = −27J10080

(x− k−1
2J

)4(x− k
2J

)4

8!
χ( k−1

2j
, k

2j
)(x)

+27J10080
(x− k

2J
)4(x− k+1

2J
)4

8!
χ( k

2j
, k+1

2j
)(x),

(

∫ x

0

ϕ1(2
Js− k)ds− IϕΦJ (x))[4k + 4, 1] = 27J840

(x− k−1
2J

)4(x− k
2J

)4

8!
χ( k−1

2j
, k

2j
)(x)

+27J840
(x− k

2J
)4(x− k+1

2J
)4

8!
χ( k

2j
, k+1

2j
)(x),

where k = 0, . . . , L× 2J .
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Using the above equations and after simplification we have

CT (

∫ x

0

ΦJ (s)ds− IϕΦJ(x)) =

27J
L×2J−1∑

k=0

{5
2
f(

k

2J
) +

5

4
× 2−Jf ′(

k

2J
) +

1

4
× 2−2Jf ′′(

k

2J
) + 2−3Jf ′′′(

k

2J
)− 5

2
f(

k + 1

2J
)

+
5

4
× 2−Jf ′(

k

2J
)− 1

4
× 2−2Jf ′′(

k

2J
) + 2−3Jf ′′′(

k

2J
)}(x− k

2J
)4(x− k + 1

2J
)4|( k

2J
, k+1

2J
).

We can write the above expression as

CT (

∫ x

0

ΦJ (s)ds− IϕΦJ(x)) =

L×2J−1∑
k=0

H[k]hk(x),

where

H[k] :=
5

2
f(

k

2J
) +

5

4
× 2−Jf ′(

k

2J
) +

1

4
× 2−2Jf ′′(

k

2J
) + 2−3Jf ′′′(

k

2J
)− 5

2
f(

k + 1

2J
)

+
5

4
× 2−Jf ′(

k

2J
)− 1

4
× 2−2Jf ′′(

k

2J
) + 2−3Jf ′′′(

k

2J
),

hk(x) := 27J(x− k

2J
)4(x− k + 1

2J
)4|( k

2J
, k+1

2J
).

Then by computing the maximum value of the function hk(x), we get

||
∫ x

0

CTΦJ (x
′)dx′ − CT IϕΦJ(x)||∞ ≤ M12

−J−8, (23)

where M1 is a bound for fM1
(x) given in Eq. (21) On the other hand,

||
∫ x

0

f(x′)dx′ − CT IϕΦ(x)||∞ ≤ ||
∫ x

0

f(x′)dx′ −
∫ x

0

CTΦ(x)||∞ + ||
∫ x

0

CTΦ(x)− CT IϕΦ(x)||∞.

By using Eqs. (20) and (23), the result can be obtained. 2

Lemma 2 Suppose that the function f : [0, L] → R and f ∈ L2[0, L] . If CTΦJ(x) is the approximation of f

out of ΦJ in Eq. (8) and we use Eq. (14) for approximation of derivative f then the error bounds are given by

||f ′(x)− CTDΦJ (x)||∞ ≤ 2−7J−6

6!
||f (8)||∞ (24)

Proof By using Eqs (13) and (19) the result can be obtained. 2
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3. Solving the inverse problem

In this section, we solve the inverse problem in Eq. (1) with initial and boundary conditions in Eqs. (2)–(5).

Employing a pair of transformations [11, 23]

r(t) = e−
∫ t
0
p(s)ds, (25)

u(x, t) = r(t)v(x, t), (26)

Eqs. (1)–(5) can be replaced by

ut = αuxx + βux + r(t)q(x, t), 0 ≤ x ≤ L, 0 < t ≤ T1, (27)

subject to

u(x, 0) = f(x), 0 ≤ x ≤ L, (28)

u(0, t) = r(t)g0(t), 0 < t ≤ T1, (29)

u(L, t) = r(t)g1(t), 0 < t ≤ T1, (30)

and

u(x∗, t) = r(t)E(t), 0 < t ≤ T1. (31)

With this transformation, p(t) disappeared, and its role is represented implicitly by r(t). It is seen that if we

have u(x, t) and r(t), then by using Eqs. (25) and (26), v(x, t) and p(t) can be obtained as

v(x, t) =
u(x, t)

r(t)
, 0 ≤ x ≤ L, 0 < t ≤ T1. (32)

p(t) = −r′(t)

r(t)
, 0 < t ≤ T1. (33)

By integrating Eq. (27) from 0 to t and using Eq. (28) we have

u(x, t)− f(x) = α

∫ t

0

uxx(x, t
′)dt′ + β

∫ t

0

ux(x, t
′)dt′ +

∫ t

0

r(t′)q(x, t′)dt′ (34)

Similarly to Eq. (10), we expand q(x, t) as

q(x, t) ≈ ΦT
J (t)QΦJ (x), (35)

where Q is a M × N known matrix, and the entries of matrix Q can be found similarly to Eq. (12). The

function r(t) may be expanded in terms of multiscaling functions as

r(t) ≈
T1×2J∑
k=0

4∑
m=1

hJ,k
m ϕJ,k

m (t) = HTΦJ (t), (36)
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where H =
[
hJ,0
1 , hJ,0

2 , hJ,0
3 , hJ,0

4 |...|hJ,T1×2J

1 , hJ,T1×2J

2 , hJ,T1×2J

3 , hJ,T1×2J

4

]T
is an unknown vector. Using Eqs.

(10), (14), and (15), we get

∫ t

0

uxx(x, t
′)dt′ =

(∫ t

0

ΦT
J (t

′)dt′
)
U

(
d2ΦJ (x)

dx2

)
≈ ΦT

J (t)I
T
ΦUD2

ΦΦJ (x), (37)

∫ t

0

ux(x, t
′)dt′ =

(∫ t

0

ΦT
J (t

′)dt′
)
U

(
dΦJ(x)

dx

)
≈ ΦT

J (t)I
T
ΦUDΦΦJ(x), (38)

and by using Eqs. (10), (35), and (36) we have

∫ t

0

r(t′)q(x, t′)dt′ ≈
(∫ t

0

HTΦJ(t
′)ΦT

J (t
′)dt′

)
QΦJ(x). (39)

Thus we get

HTΦJ (t)Φ
T
J (t) ≈ ΦT

J (t)H̃, (40)

where H̃ can be calculated similarly to matrix Z̃ in Eq. (17). Employing Eqs. (15) and (40) in Eq. (39) we

have ∫ t

0

r(t′)q(x, t′)dt′ ≈ ΦT
J (t)I

T
ϕ H̃QΦJ (x). (41)

Expanding f(x) in terms of the multiscaling functions yields

f(x) ≈
L×2J∑
k=0

4∑
m=1

fJ,k
m ϕJ,k

m (x) = ΦT
J (t)FΦJ (x), (42)

in which F is a known M ×N matrix and can be obtained similarly to Eq. (11).

Applying Eqs. (10), (37), (38), (41), and (42) in Eq. (34), we get

ΦT
J (t)[U − F − ITϕ H̃Q− αITϕ UD2

Φ − βITϕ UDΦ]ΦJ(x) = 0. (43)

By collocating Eq. (43) in M(N − 2) points (xi, tj), i = 1, · · · , N − 2, j = 1, . . . ,M , where xi = L i
(N−1) , i =

1, . . . , N − 2 and tj = T1
j
M , j = 1, · · · ,M , we obtain

R(xi, tj) = ΦT
J (tj)[U − F − ITϕ H̃Q− αITϕ UD2

Φ − βITϕ UDΦ]ΦJ (xi) = 0, (44)

Moreover, using Eqs. (29)–(31) and Eq. (10) we obtain

ΦT
J (t)UΦJ(0) = g0(t)Φ

T
J (t)H, (45)

ΦT
J (t)UΦJ(L) = g1(t)Φ

T
J (t)H, (46)

ΦT
J (t)UΦJ(x

∗) = E(t)ΦT
J (t)H. (47)
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Eqs. (45)–(47) are collocated at points

tj = T1
j − 1

M − 1
, j = 1, · · · ,M. (48)

The number of unknown coefficients ui,j and zi is equal to M(N+1) and can be obtained from Eqs. (44)–(47).

Consequently, u(x, t), and r(t) given in Eqs. (10) and (36) can be calculated. Finally, using Eqs. (32) and

(33), the unknowns v(x, t) and p(t) can be found.

4. Illustrative examples

In this section, three examples are given to demonstrate the applicability and accuracy of our method. These

examples are chosen such that their analytical solutions are known. Example 1 was considered in [33] by

sinc-collocation method, and the absolute value of the errors (AVE) for p(t) and u(x, 0.5) for N1 = 5, 10, 15

and 20 were given. In [33], the step size in the definition of the sinc-collocation method are appropriately

chosen depending on N1 . For this example we report the AVE of our method with J = 1 and J = 2 with

[33], for N1 = 15 and N1 = 20. Example 2 was first considered in [15] by using the finite-difference method

and also solved in [33]. For this example we report the AVE of our method with J = 2 for p(t) with [15] by

using the second-order three-point forward time centered space (FTCS) method, the second-order three-point

backward time centered space (BTCS) procedure, and the Crank–Nicolson (3,3) technique, and with [33] with

N1 = 10. Example 3 was first considered in [1] by using the finite difference method and also solved in [36]

by the reproducing kernel space. For this example the root-mean-square (RMS) errors for v(x, t) and p(t) for

several N2×M2, where N2 and M2 are step sizes, were considered in [1] and in [36]. For example 3, we report

the RMS errors of our method for J = 2 and J = 3 with the RMS errors in [1] and [36] for N2 ×M2 = 56× 56

and N2 ×M2 = 8× 8, respectively.

Example 1 Consider the equation [33]

vt = vxx + 2vx + p(t)v,

with

v(x, 0) = e−x(1 + cosx),

v(0, t) = et
2−sin t(1 + e−t),

v(1, t) = et
2−1−sin t(1 + e−t cos 1),

v(0.26, t) = e(t
2−0.26−sin t)(1 + 0.96639e−t).

This problem has the exact solution

v(x, t) = et
2−x−sin t(1 + e−t cosx),

and p(t) = 2t− 1 + cos t . We solved this example by using the present method. In Tables 1 and 2, we compare

the absolute error of our method with J = 1 and J = 2 together with the sinc-collocation method presented in

[33] for p(t) and v(x, 0.5) , respectively.

Example 2 In this example to show the stability of our method, consider the following perturbed equation

[15, 33]:
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Table 1. The computational results for p(t) , for Example 1.

ti p(t) N1 = 15 N1 = 20 J = 1 J = 2

exact error in[33] error in [33] present method present method

0.05 0.10125 3.5e− 03 1.1e− 03 8.3e− 06 1.8e− 07

0.1 0.204996 2.9e− 04 4.0e− 05 3.0e− 05 1.8e− 07

0.15 0.311229 1.4e− 04 2.8e− 05 1.3e− 05 2.3e− 07

0.2 0.419933 9.7e− 05 2.8e− 05 3.2e− 05 1.9e− 07

0.25 0.531088 1.4e− 04 2.3e− 05 6.4e− 05 5.0e− 09

0.3 0.644664 7.6e− 05 1.7e− 05 5.2e− 05 2.4e− 07

0.35 0.760627 7.8e− 05 1.2e− 05 2.6e− 06 2.4e− 07

0.4 0.878939 1.0e− 04 1.9e− 05 4.3e− 05 3.0e− 07

0.45 0.999553 8.4e− 06 1.7e− 06 3.8e− 05 2.6e− 07

0.5 1.12242 1.1e− 04 1.7e− 05 1.2e− 06 3.3e− 09

0.55 1.24748 8.6e− 05 1.4e− 05 3.2e− 05 3.2e− 07

0.6 1.37466 6.9e− 05 7.0e− 06 5.4e− 05 3.3e− 07

0.65 1.50392 1.8e− 04 2.1e− 05 1.7e− 05 3.9e− 07

0.7 1.63516 4.6e− 05 1.4e− 06 5.1e− 05 3.4e− 07

0.75 1.76831 2.8e− 04 3.9e− 05 9.6e− 05 9.2e− 09

0.8 1.90329 1.7e− 04 4.1e− 05 7.8e− 05 4.0e− 07

0.85 2.04002 6.3e− 04 1.1e− 04 3.0e− 06 4.0e− 07

0.9 2.17839 8.1e− 04 3.2e− 04 6.2e− 05 5.5e− 07

0.95 2.31832 7.2e− 03 3.4e− 04 4.5e− 05 5.8e− 07

Table 2. The computational results for v(x, 0.5), for Example 1.

x v(x, 0.5) N1 = 15 N1 = 20 J = 1 J = 2

exact error in [33] error in [33] present method present method

0.05 1.21431 8.4e− 04 7.2e− 05 2.6e− 08 2.6e− 11

0.1 1.15346 1.3e− 04 9.7e− 06 2.4e− 08 5.3e− 11

0.15 1.09462 2.0e− 04 2.2e− 05 2.1e− 08 3.4e− 11

0.2 1.03779 6.0e− 05 1.3e− 05 2.0e− 08 2.2e− 11

0.25 0.982992 9.1e− 05 9.7e− 06 2.1e− 08 4.4e− 11

0.3 0.930201 6.4e− 05 7.2e− 06 2.4e− 08 1.9e− 11

0.35 0.87941 8.7e− 05 2.0e− 05 2.9e− 08 3.9e− 11

0.4 0.830602 6.4e− 05 4.7e− 06 3.4e− 08 4.0e− 11

0.45 0.783755 2.5e− 05 6.8e− 06 3.8e− 08 2.6e− 11

0.5 0.738844 4.9e− 05 1.2e− 05 4.2e− 08 1.3e− 11

0.55 0.695839 3.2e− 05 6.8e− 06 4.6e− 08 1.8e− 12

0.6 0.654708 2.1e− 04 7.2e− 05 5.0e− 08 1.4e− 11

0.65 0.615414 8.2e− 05 6.7e− 06 5.2e− 08 3.2e− 11

0.7 0.577919 4.3e− 05 2.1e− 05 5.3e− 08 5.2e− 11

0.75 0.542182 2.8e− 04 3.6e− 05 5.3e− 08 5.2e− 11

0.8 0.508161 1.6e− 04 2.7e− 05 5.1e− 08 4.0e− 11

0.85 0.475809 2.2e− 04 2.0e− 05 4.7e− 08 3.6e− 12

0.9 0.445081 5.0e− 04 6.3e− 05 3.9e− 08 3.9e− 11

0.95 0.415928 6.7e− 04 8.0e− 05 2.5e− 08 8.4e− 11
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v = vxx + p(t)v + (1 + ε1)q(x, t),

with

v(x, 0) = (1 + ε2)f(x), v(0, t) = e−t2 , v(1, t) = −e−t2 , v(0.25, t) =
√
2e−t2 ,

where

q(x, t) = (π2 − (t+ 1)2)e−t2(cos(πx) + sin(πx)),

f(x) = cos(πx) + sin(πx),

and 0 < ε1, ε2 ≪ 1 are small perturbation parameters.

The exact solution of the original problem (when ε1 = 0, ε2 = 0) is [15, 33]

v(x, t) = e−t2(cos(πx) + sin(πx)),

and

p(t) = 1 + t2.

In this Example we have reported the MaxErrors in Table 3 for different values of ε1 and ε2 . This table shows

that small errors in the initial data cannot result in larger errors in the answers. In Figures 1(a) and 1(b),

errors of approximate solutions for p(t) and v(x, 1) with perturbation parameters ε1 = 10−3 and ε2 = 10−3

are presented, respectively.

Table 3. Max errors for v(x, 1) and p(t) for different values of ε1 and ε2 .

ε1 ε2 MaxError of p(t) MaxError of v(x, 1)
1
2 × 10−2 1

2 × 10−2 4.43e− 02 1.8253e− 07
10−3 10−3 8.92e− 03 1.8245e− 07
10−4 10−3 1.37e− 03 1.8241e− 07
10−5 10−4 9.53e− 04 1.8239e− 07
0 0 8.10e− 04 1.8239e− 07

Furthermore, for the purpose of comparison, in Table 4, we compare the absolute error of our method

for the original equation with J = 2 for p(t) with [15] by using the FTCS method, the BTCS procedure, the

Crank–Nicolson (3,3) technique, and with [33] N = 10. The graphs of error of approximate solutions for v(x, 1)

at levels of J = 1 and J = 2 are reported in Figures 2(a) and 2(b), respectively.

Example 3 Consider the equation [36]

vt = vxx + 2vx + p(t)v − (2 + xt2)et, (49)

with

v(x, 0) = x, v(0, t) = 0, v(1, t) = et, v(0.5, t) =
1

2
et.

1021



ASHPAZZADEH et al./Turk J Math

(a) (b)

Figure 1. Plot of absolute error for the solutions p(t) (a) and v(x, 1) (b) for Example 2 with J = 2

and perturbation parameters ε1 = 10−3 and ε2 = 10−3. .

(a) (b)

Figure 2. Plot of absolute errors for v(x, 1) for Example 2 with ε1 = 0, ε2 = 0; (a): J = 1, (b): J = 2.

The exact solution of this problem is

v(x, t) = xet,

and

p(t) = 1 + t2.

We solved Eq. (49) by using the present method with J = 2 and J = 3 . In Table 5, we report the RMS errors
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Table 4. The computational results for p(t) with ε1 = 0, ε2 = 0, for Example 2.

t p(t) FTCS BTCS Crank-Nicolson N = 10 J = 2

exact error in [15] error in [15] error in [15] error in [33] present method

0.05 1.0025 6.9e− 03 6.5e− 03 5.3e− 03 5.4e− 03 6.0e− 05

0.1 1.0100 6.8e− 03 6.3e− 03 5.2e− 03 2.5e− 03 4.2e− 05

0.15 1.0225 6.7e− 03 6.1e− 03 5.1e− 03 2.2e− 03 7.6e− 05

0.2 1.0400 6.7e− 03 6.2e− 03 5.0e− 03 8.3e− 04 7.2e− 05

0.25 1.0625 6.7e− 03 6.6e− 03 5.5e− 03 6.9e− 04 2.7e− 06

0.3 1.0900 6.6e− 03 6.7e− 03 5.4e− 03 4.2e− 04 2.5e− 05

0.35 1.1225 6.5e− 03 6.8e− 03 5.7e− 03 4.3e− 04 8.2e− 06

0.4 1.1600 6.4e− 03 6.5e− 03 5.6e− 03 3.1e− 04 3.4e− 05

0.45 1.2025 6.2e− 03 6.9e− 03 5.5e− 03 3.0e− 04 1.3e− 05

0.5 1.2500 6.3e− 03 6.7e− 03 5.3e− 03 3.2e− 04 7.4e− 06

0.55 1.3025 6.3e− 03 6.7e− 03 5.2e− 03 2.7e− 04 8.3e− 05

0.6 1.3600 6.3e− 03 6.6e− 03 5.2e− 03 2.9e− 04 9.9e− 05

0.65 1.4225 6.2e− 03 6.6e− 03 5.1e− 03 4.7e− 04 6.9e− 05

0.7 1.4900 6.2e− 03 6.5e− 03 5.1e− 03 4.9e− 04 1.1e− 05

0.75 1.5625 6.1e− 03 6.5e− 03 5.1e− 03 6.5e− 04 2.2e− 05

0.8 1.6400 6.0e− 03 6.4e− 03 5.0e− 03 8.1e− 04 3.6e− 05

0.85 1.7225 6.0e− 03 6.3e− 03 5.0e− 03 8.0e− 04 3.1e− 04

0.9 1.8100 6.1e− 03 6.3e− 03 5.3e− 03 4.5e− 03 6.5e− 04

0.95 1.9025 6.0e− 03 6.2e− 03 5.3e− 03 5.4e− 03 8.1e− 04

of our method for J = 2 and J = 3 for v(x, t) and p(t). Figures 3(a) and 3(b) show the plot of error for p(t)

and v(x, 1) , respectively.

Table 5. RMS errors for v(x, t) and p(t) .

The methods RMS errors of v(x, t) RMS errors of p(t)
Method in [1] 4.3e− 04 6.0e− 02
for N2 ×M2 = 56× 56
Method in [36] 2.0e− 05 9.1e− 05
for N2 ×M2 = 8× 8
Present method 5.3e− 10 6.6e− 08
for J = 2
Present method 6.5e− 11 2.3e− 08
for J = 3

From the obtained results presented in Figures 1, 2, and 3 and Tables 1–5 one can observe that the

propose method is working well and provide good results.

5. Conclusion

This paper focused on solving the one-dimensional parabolic inverse problem subject to temperature overspec-

ification. The cardinal Hermite interpolant multiscaling functions on [0, 1] were employed and the operational

matrices of derivative, integration, and product for them were calculated. As it is seen from numerical examples,

the method provides accurate solutions.
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(a) (b)

Figure 3. Plot of absolute error for the solutions p(t) (a) and v(x, 1) (b) for Example 3 with J = 2.
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