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Abstract: In this paper, a computational method based on a hybrid of parabolic and block-pulse functions is proposed

to solve a system of linear and special nonlinear Fredholm integral equations of the second kind. The convergence and

error bound are analyzed. Numerical examples are given to illustrate the efficiency of the method.
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1. Introduction

Second kind integral equations have recently attracted attention due to their wide applications in various areas

of science and engineering; for example, many problems in plasma physics [6] or electrical engineering [7] result

in solving some second kind integral equations.

Usually the explicit solution of an integral equation system is difficult to derive. Hence it is necessary to

seek efficient numerical solutions. There are many different basis functions such as the Adomian decomposition

method [2, 21], Legendre collocation method [18], Tau method [9], method of Taylor’s expansion [10, 19],

homotopy perturbation method [11], method of spline collocation [5, 13, 17], Runge–Kutta [15, 25], Sinc-

collocation method [8, 20], block-pulse functions [4, 12] and hat function [3] that have been used to get

approximate solutions of integral equations.

Recently, the idea of hybrid functions has been exploited to improve the convergence rate of the numerical

solution of integral equations. For example, the combination of block-pulse functions with Chebyshev polyno-

mials [23, 24], the combination of block-pulse functions with Legendre polynomials [16, 22] and the combination

of block-pulse functions with Bernstein polynomials [14] have been investigated.

This paper considers the combination of block-pulse function and parabolic functions (BPPFs) to solve

the system of linear Fredholm integral equations (SLFIEs) and system of special nonlinear Fredholm integral

equations (SSNFIEs) of the second kind

X(s) = Y (s) + λ

∫ 1

0

K(s, t)X(t)dt, 0 ≤ s ≤ 1, (1.1)
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and

X(s) = Y (s) + λ

∫ 1

0

K(s, t)Xα(t)dt, 0 ≤ s ≤ 1, (1.2)

where K(s, t) and Y (s) are known, X(s) is unknown, and α is a positive integer.

The method is based on a simple algorithm that converts a system of nonlinear Fredholm integral

equations into a system of nonlinear algebraic equations, which is then solved by fixed-point iteration.

In Section 2, we introduce BPPFs and derive their properties. In section 3, we demonstrate the established

numerical method to solve SLFIEs of the second kind. In section 4, the error bound and convergence of the

proposed method are discussed. The SSNFIE is studied in section 5. Sections 6 and 7 are respectively devoted

to numerical examples and concluding remarks.

2. BPPFs

A set of hybrid of parabolic with block-pulse functions φi(t) ( i = 0, 1, 2, ..., n ) is usually defined in the unit

interval [0, 1) where n is even and h = 1
n as:

φ0(t) =

{
(t−h)2

h2 , 0 ≤ t < h,
0, otherwise,

(2.1)

φ2i+1(t) =

{
(t−2ih)((2i+2)h−t)

h2 , 2ih ≤ t < (2i+ 2)h,
0 otherwise,

(2.2)

i = 0, ..., n/2− 1,

φ2i+2(t) =


(t−(2i+1)h)2

h2 , (2i+ 1)h ≤ t < (2i+ 2)h,
(t−(2i+3)h)2

h2 , (2i+ 2)h ≤ t < (2i+ 3)h,
0 otherwise,

(2.3)

i = 0, ..., n/2− 2,

φn(t) =

{
(t−(1−h))2

h/2 , 1− h ≤ t < 1,

0, otherwise,
(2.4)

According to the definition of BPPFs, we have

φi(t)φj(t) = 0, |i− j| ≥ 2, (2.5)

and

φi(jh) =

{
1, i = j,
0, i ̸= j.

(2.6)

We can consider Φ(t) as an (n+ 1) -vector:

Φ(t) = [φ0(t), ..., φn(t)]
T . (2.7)
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By representation above, it follows that

Φ(t)ΦT (t) =


φ2
0 φ0φ1

φ0φ1 φ2
1 φ1φ2

. . .
. . .

. . .

φn−1φn

φn−1φn φ2
n

 , (2.8)

∫ 1

0

Φ(t)ΦT (t)dt = P, (2.9)

where

P =
h

5



1 2/3
2/3 16/3 2/3

2/3 2 2/3

2/3 16/3
. . .

. . .
. . .

2/3
2/3 1


. (2.10)

The expansion of a function x(t) over [0, 1) in a series of φi(t), i = 0, 1, ..., n , may be written as

x(t) ≈ Mnx(t) :=

n∑
i=0

xiφi(t) = XTΦ(t),

where

X = [x0, x1, ..., xn]
T ,Φ(t) = [φ0(t), ..., φn(t)]

T , xi = x(ih).

Lemma 2.1 Let D = C3([0, 1)), x ∈ D , and Mn be defined by Mnx(t) =
∑n

i=0 xiφi(t) , where n is even and

φi(t) is i th BPPF. Then

∥x−Mnx∥∞ ≤ h3

15

∥∥∥x(3)
∥∥∥
∞

.

Proof Mnx(t) is written within t ∈ [ti, ti+2] , ti = ih ,

Mnx(t) = xiφi(t) + xi+1φi+1(t) + xi+2φi+2(t),

which yields a polynomial of degree two for Mnx(t); by using interpolation function error at the points ti, ti+1 ,

and ti+2 , we have

x(t)−Mnx(t) =
1

6
(t− ti)(t− ti+1)(t− ti+2)x

(3)(ηi), ti ≤ ηi ≤ ti+2.

Now, |(t− ti)(t− ti+1)(t− ti+2)| ≤ .385h3 ; hence

|x−Mnx| ≤
h3

15

∣∣∣x(3)(η)
∣∣∣ , 0 ≤ η ≤ 1.
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Therefore ∥x−Mnx∥∞ ≤ h3

15

∥∥x(3)
∥∥
∞ .

Now the expansion of a function k(s, t) in a series of φi(t), i = 0, 1, ..., n , may be written as

k(s, t) ∼= ΦT (x)ΨΦ(t),

where Φ(x) is n + 1 component BPPFs vectors and Ψ is an (n + 1) × (n + 1) coefficient matrix with entries

aij = k(ih, jh). 2

3. Applying BPPFs to solve SLFIEs

Definition 3.1 Let D = C3([0, 1)) and subspace Dn ⊂ C3([0, 1)) ; the set of all functions that are piecewise

linear on [0, 1) then Dm is a Banach space with norm that is defined as

∥X∥ = max
1≤i≤m

sup
s∈[0,1]

|xi(s)| ,

Definition 3.2 A projection operator Mn : Dm → Dm
n is defined as

MnX(s) = [Mn1x1(s), ...,Mnmxm(s)]T , (3.1)

where

Mnixi(s) =
n∑

j=0

xi(tj)φj(s), i− 1, . . . ,m.

It [25] can be shown that

∀ X ∈ Dm
n , MnX(s) = X(s).

Definition 3.3 An operator κ : Dm → Dm is defined as κX = [κ1X, ...,κmX]T , where κiX =
∫ 1

0
(ki1(s, t)x1(t)+

· · ·+ kim(s, t)xm(t))dt , and the norm of κ is defined as

∥κ∥ = max
1≤i≤m

max
1≤j≤m

sup
s∈[0,1]

∫ 1

0

|kij(s, t)| dt.

We consider BPPFs to solve the SLFIEs of the second kind:

X(s) = Y (s) + λ

∫ 1

0

K(s, t)X(t)dt, (3.2)

where

X(s) = [x1(s), ..., xm(s)]T , Y (s) = [y1(s), ..., ym(s)]T ,K(s, t) = [ki,j(s, t)]i,j=1,...,m.

We can write the system of integral equations (3.2) in the operator form

(I − λκ)X = Y, (3.3)

where κ = [κi,j ]i,j=1,...,m and κijxj(s) =
∫ 1

0
kij(s, t)xj(t)dt .
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We consider the i th equation of (3.2) as

xi(s) = yi(s) + λ

∫ 1

0

(ki1(s, t)x1(t) + · · ·+ kim(s, t)xm(t))dt; (3.4)

according to the expansion of a function respect to BPPFs, we can write

kij(s, t) ∼= ΦT (s)ΨijΦ(t). (3.5)

xi(t) ∼= ΦT (t)Xi, (3.6)

Substituting (3.6) into (3.4) we have

ΦT (s)Xi
∼= ΦT (s)Yi + λΦT (s)(Ψi1(

∫ 1

0

Φ(t)ΦT (t)dt)X1 + · · ·

+Ψim(

∫ 1

0

Φ(t)ΦT (t)dt)Xm))

Replacing the approximation sign with =, we have

Xi = Yi + λ(Ψi1PX1 + · · ·+ΨimPXm) (3.7)

The matrix form of the above system can be expressed as

(I − λΨ̂)X̂ = Ŷ , (3.8)

where I is (m(n+ 1)×m(n+ 1)) identity matrix.

By solving the system (3.8) we obtain m(n + 1) unknowns and then it also allows getting approximate

numerical values at other points by another method such as interpolation or applying BPPFs as

xi(s) ≈
n∑

j=0

xi(sj)φj(s) = XT
i Φ(s), i = 1, ...,m. (3.9)

Now, we approximate the solution of (3.2) by solving Xn from the equation

Mn(I − λκ)Xn = Y,Xn ∈ Dm
n ,

or
(I − λMnκ)Xn = Y (3.10)

4. Error bound analysis

In this section, error bound analysis is discussed.

Lemma 4.1 Let D = C3([0, 1)), X ∈ Dm , and Mn : Dm → Dm
n be defined by (3.1).

Then

∥X −MnX∥∞ ≤ h3

15

∥∥∥X(3)
∥∥∥
∞

.
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Proof For ti ≤ s < ti+2 , we can write

X −MnX ∼=[
1

6
(s− ti)(s− ti+1)(s− ti+2)x

(3)
1 (η1), . . . ,

1

6
(s− ti)(s− ti+1)(s− ti+2)x

(3)
m (ηm)]T .

Therefore

∥X −MnX∥∞ ≤ h3

15

∥∥∥X(3)
∥∥∥
∞

.

2

Lemma 4.2 Let D be a Banach space, and let {Mn} be a family of bounded projections on D with

lim
n→∞

MnX = X, X ∈ D.

Let κ : D → D be compact. Then

lim
n→∞

∥κ−Mnκ∥ = 0.

Proof See [1] . 2

Now with the assumptions of lemma 4.1, we conclude that lim
n→∞

∥κ−Mnκ∥ = 0.

Theorem 4.3 Assume κ : D → D is bounded, with D a Banach space, and assume I − κ : D → D is

one-to-one and onto. Further assume lim
n→∞

∥κ−Mnκ∥ = 0; then

1. for all sufficiently large n , say n ≥ N , the operator (I −Mnκ)
−1 exists as a bounded operator from D

to D and is uniformly bounded, i.e. sup
n≥N

∥∥∥(I−Mnκ)
−1

∥∥∥ < ∞,

2. lim
n→∞

∥∥(I −Mnκ)
−1

∥∥ =
∥∥(I − κ)−1

∥∥ ,
3. X −Xn = (I −Xnκ)

−1(X −MnX),

4. 1
∥(I−Mnκ)∥ ∥X −MnX∥ ≤ ∥X −Xn∥ ≤

∥∥(I −Mnκ)
−1

∥∥ ∥X −MnX∥ ,

5. ∥X −Xn∥ ≤
∥∥(I − κ)−1

∥∥ (∥Y −MnY ∥+ ∥κ−Mnκ∥ ∥Xn∥) .

Proof See [3, 1]. 2

Now if lim
n→∞

∥κ−Mnκ∥ = 0, then we conclude that Xn is convergent to X .

5. Nonlinear SFIEs

Consider a (2× 2) special nonlinear SFIE of the second kind{
x1(s) = y1(s) +

∫ 1

0
k11(s, t)x

α1
1 (t)dt+

∫ 1

0
k12(s, t)x

α2
2 (t)dt,

x2(x) = y2(s) +
∫ 1

0
k21(s, t)x

α1
1 (t)dt+

∫ 1

0
k22(s, t)x

α2
2 (t)dt.

(5.1)
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Now, we approximate functions xi , yi , kij , and xαi
i (i, j = 1, 2) with respect to BPPFs. Substituting into

(5.1) and eliminating ΦT (x), we obtain

{
X1(s) ∼= Y1(s) +K11PXα11 +K12PXα22,
X2(s) ∼= Y2(s) +K21PXα12 +K22PXα22,

(5.2)

where

Xαii = [xαi
i (0), xαi

i (h)..., xαi
i (nh)]T .

The system of Equations (5.2) is a (2(n+ 1)× 2(n+ 1)) nonlinear system of algebraic equations that we solve

by fixed-point iteration method.

6. Numerical examples

In this section, we present some examples and their numerical results.

Example 6.1 Consider the following SLFIEs:

{
x1(s) = sin(s)− .301s2 − .382s+

∫ 1

0
s2tx1(t)dt+

∫ 1

0
stx2(t)dt,

x2(s) = cos(s)− .301s2 − .382s+
∫ 1

0
s2tx1(t)dt+

∫ 1

0
stx2(t)dt,

where y1(s) = sin(s)− .301s2 − .382s , y2(s) = cos(s)− .301s2 − .382s, k11(s, t) = s2t , k12(s, t) = st ,

k21(s, t) = s2t, k22(s, t) = st,

with the exact solutions x1(s) = sin(s) and x2(s) = cos(s) . The system (I−λΨ̂)X̂ = Ŷ for n = 2 is calculated
as

Ŷ T = [0, 0.2132, 0.1585, 1, 0.611,−0.1426]

and

I − Ψ̂ =


1 0 0 0 0 0

−.0104 .9375 −.0521 −.0208 −.125 −.1041
−.0417 −.25 .7917 −.0417 −.25 −.2083

0 0 0 1 0 0
−.0104 −.0625 −.052 −.0208 .875 −.1042
−.0417 −.25 −.2083 −.0417 −.25 .7917

 .

The numerical results are shown in Table 1 and Figures 1 and 2.

Example 6.2 Consider the following SLFIEs:
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Table 1.

Table 1 True solution BPPF method True solution BPPF method

N = 32 x− 1 x− 1 x− 2 x− 2

s = 0.0 0. 0. 1. 1.

h 0.312449 0.0312463 0.999512 0.999513

4h 0.124657 0.124679 0.992198 0.992202

8h 0.247404 0.247408 0.968912 0.968916

12h 0.366273 0.366272 0.930508 0.930507

16h 0.479426 0.479417 0.877583 0.877574

20h 0.585097 0.585077 0.810963 0.810943

24h 0.681639 0.681603 0.731689 0.731653

28h 0.767544 0.767488 0.640997 0.640941

1 0.841471 0.841391 0.540302 0.540223

Figure 1. Dot Approximate solution Dash: Exact solu-

tion X1

Figure 2. Dot Approximate solution Dash: Exact solu-

tion X2

{
x1(s) = − 4s3

3 + 7s2

4 + s
15 + 5

6 +
∫ 1

0
(s− t)3x1(t)dt+

∫ 1

0
(s− t)2x2(t)dt,

x2(s) = − 3s3

2 + 7s2

6 + 3s
4 + 11

12 +
∫ 1

0
(s− t)2x1(t)dt+

∫ 1

0
(s− t)3x2(t)dt,

with the exact solutions x1(s) = s2 + 1 and x2(s) = s+ 1 . The numerical results are shown in Table 2

Example 6.3 Consider the following nonlinear SFIEs:
x1(s) = −3/4es + 0.5es−2 + e−s +

∫ 1

0
es+tx3

1(t)dt−
∫ 1

0
tesx2

2(t)dt,

x2(s) = −.01s+ 2 sin(s) + 0.1se−3s cos(1) + 0.3s sin(1)e−3 − sin(s− 1)− 2 cos(s− 1) + s

+
∫ 1

0
s sin(t)x3

1(t)dt−
∫ 1

0
cos(s− t)x2

2(t)dt,

with the exact solutions x1(s) = e−s and x2(s) = s.

The numerical results are shown in Table 3.
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Table 2.

Table 2 True solution BPPF method True solution BPPF method

N = 32 x− 1 x− 1 x− 2 x− 2

s = 0.0 1. 1.00007 1. 0.999962

h 1.00098 1.00104 1.03125 1.03121

4h 1.01562 1.01567 1.12500 1.12495

8h 1.06250 1.06253 1.25000 1.24995

12h 1.14062 1.14065 1.37500 1.37497

16h 1.25000 1.25004 1.50000 1.49999

20h 1.39062 1.39068 1.62500 1.62503

24h 1.56250 1.56259 1.75000 1.75008

28h 1.76562 1.76576 1.87500 1.87515

1 2. 2.00020 2. 2.00022

Table 3.

Table 3 True solution BPPF method True solution BPPF method

N = 32 x− 1 x− 1 x− 2 x− 2

s = 0.0 1. 1.0 0. −0.000231

h 0.969233 0.969236 0.0312500 0.0310190

4h 0.882497 0.882508 0.125000 0.124659

8h 0.778801 0.778821 0.250000 0.249769

12h 0.687289 0.687316 0.375000 0.374859

16h 0.606531 0.606561 0.500000 0.499769

20h 0.535261 0.535296 0.625000 0.624659

24h 0.472367 0.472403 0.750000 0.749859

28h 0.416862 0.416900 0.875000 0.874659

1 0.367879 0.367918 1. 0.999769

7. Conclusion

As a main feature of our approach, we show that the suggested hybrid block-pulse and parabolic functions can

improve the convergence rate to be of O(h3) order. The order of convergence of the hat function [3] method is

O(h2) and the order of convergence of the block-pulse functions [12] method is O(h).
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