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Abstract: The relativistic versions of Burgers equations on the Schwarzschild, FLRW, and de Sitter backgrounds have

recently been derived and analyzed numerically via finite volume approximation based on the concerned models. In this

work, we derive the relativistic Burgers equation on a Schwarzschild–(anti-)de Sitter spacetime and introduce a second-

order Godunov-type finite volume scheme for the approximation of discontinuous solutions to the model of interest. The

effect of the cosmological constant is also taken into account both theoretically and numerically. The efficiency of the

method for solutions containing shock and rarefaction waves are presented by several numerical experiments.
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1. Introduction

The theory of derivation of relativistic-type Burgers equations on curved spacetimes was initiated by LeFloch

et al. [6] and developed together with collaborators [2–4]. In particular, the first model of interest, which may

be considered as the fundamental relativistic Burgers equation, was derived in different ways, either from the

Euler system on a curved background or by introducing a hyperbolic balance law on a flat background carrying

out the same Lorentz invariance property fulfilled by the Euler equations of relativistic compressible fluids. This

analysis has recently been extended to the Schwarzschild, Friedmann–Lemaitre–Robertson–Walker (FLRW), de

Sitter, and anti-de Sitter spacetimes and studied numerically by means of finite volume approximation [2–4, 6].

In this paper we are interested in compressible fluids developing on a curved spacetime, particularly

on the domain of a Schwarzschild–(anti-)de Sitter geometry. The fluid flows under consideration may include

shock waves and we study within a class of weak solutions to the Euler equations on the concerned geometry.

Throughout this article, we denote the Schwarzschild–de Sitter and Schwarzschild–anti-de Sitter spacetimes by

SdS and SAdS spacetimes, respectively. Representing the Levi-Civita connection associated with the SdS–SAdS

metric by ∇ , the Euler equations for a compressible fluid on a curved spacetime are formularized as

∇α

(
Tαβ(ρ, u)

)
= 0, (1.1)

where the energy-momentum tensor of perfect fluids given by

Tαβ(ρ, u) = ρc2uαuβ + p(ρ)
(
uαuβ + gαβ

)
(1.2)
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is based on the mass-energy density of the fluid ρ ≥ 0 and its velocity field u = (uα). Here, c > 0 is the light

speed, p is the pressure stated as a function p = p(ρ) of the mass energy density, and uα is unit timelike vector

field so that

uαuα = −1, with u0 > 0.

1.1. Motivation and purpose of the paper

The inviscid Burgers equation is one of the simplest nonlinear hyperbolic conservation laws. It supplies a

simple model, which permits discontinuous solutions and generates a simplified framework for shock-capturing

numerical methods. The Burgers equation and its generalizations to a curved spacetime have been generally

used in physical and engineering science. The classical (inviscid) Burgers equation is as follows:

∂tv + ∂x(v
2/2) = 0, v = v(t, x), t > 0, x ∈ R. (1.3)

This equation can be deduced from the Euler system of compressible fluids:

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2 + p(ρ)) = 0,

(1.4)

in which v represents the velocity, ρ ≥ 0 the density, and p(ρ) the pressure of the fluid. Indeed, imposing

p(ρ) ≡ 0 in system (1.4) and taking a suitable combination of both equations,

0 = v ∂t(ρ) + ρ ∂t(v) + v2∂x(ρ) + 2vρ ∂x(v)

= ρ(∂tv + 2v∂xv) + v(∂tρ+ v∂xρ)

= ρ(∂tv + v∂xv)

gives the inviscid Burgers equation (1.3).

In the current work, we apply this analysis to derive the relativistic Euler equations on smooth, time-

oriented, curved SdS–SAdS spacetimes in order to obtain the relativistic Burgers equation on these backgrounds.

We are inspired by the work of LeFloch and his collaborators for the derivation of the model and we apply the

strategy therein [2, 3, 6]. Similar to the nonrelativistic case, we impose zero pressure in the Euler equations

(1.1) on the SdS–SAdS spacetimes to derive the relativistic Burgers equation.

The convergence and geometric formulation of finite volume schemes on a curved spacetime is based on

previous articles [1, 6, 7]. The construction of the first- and second-order Godunov-type finite volume schemes

was introduced in the book by Guinot [5] and the article by Van Leer [9].

The content of this article is as follows. We introduce the basic features of the SdS and SAdS geometries

in Section 2. The relation between the SdS–SAdS and different spacetime metrics depending on cosmological

constant Λ and mass parameter m is analyzed in this part. We then calculate the Euler equations by the help

of the Christoffel symbols and energy-momentum tensor terms. After getting the pressureless Euler equations,

we connect our model to the Euler equations to derive the relativistic Burgers equation on the SdS–SAdS

backgrounds. In Section 3, we first present a geometric formulation of the finite volume method on a curved

background and then introduce the finite volume strategy on local coordinates. Construction of the first- and

second-order Godunov schemes and various numerical tests are displayed in Section 4. The effects of the

cosmological constant on the numerical scheme are also examined in the numerical part. We end the article

with a summary involving concluding remarks.
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2. Euler equations

2.1. SdS–SAdS spacetime metric

The SdS spacetime is a spherically symmetric black hole solution to Einstein’s vacuum field equations with

cosmological constant Λ and its metric in terms of time t , radial r , and angular coordinates (θ and φ) is

represented in spherical coordinates with signature (−,+,+,+) by

g = −
(
1− 2m

r
− Λr2

3

)
dt2 +

(
1− 2m

r
− Λr2

3

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (2.1)

where m > 0 is the mass parameter and c is the light speed. The sign of Λ is significant for assigning the

spacetime geometry; that is, the background is a SdS spacetime if Λ > 0 and a SAdS spacetime if Λ < 0. Here

we have three important observations:

• When Λ = 0, the metric (2.1) reduces to

g = −
(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (2.2)

which describes a Schwarzschild metric. That is, Λ = 0 corresponds to the Schwarzschild spacetime.

• If the mass parameter m = 0, the metric (2.1) reduces to

g = −
(
1− Λr2

3

)
dt2 +

(
1− Λr2

3

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (2.3)

which is the de Sitter metric if Λ > 0 and the anti-de Sitter metric if Λ < 0. Thus, m = 0 corresponds

to the de Sitter or anti-de Sitter spacetime.

• If both the cosmological constant Λ and the mass parameter m vanish, then the metric (2.1) reduces to

g = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2), (2.4)

which is the Minkowski (flat) metric, and hence it corresponds to the Minkowski (flat) spacetime.

In terms of Cartesian coordinates x = r sin θ cosφ, y = r sin θ sinφ , and z = r cos θ , with the indexes

(0, 1, 2, 3) indicating the coordinates (t, r, θ, φ), the metric (2.1) is represented by

(gαβ) =


−
(
1− 2m

r − Λr2

3

)
0 0 0

0
(
1− 2m

r − Λr2

3

)−1

0 0

0 0 r2 0
0 0 0 r2 sin2 θ


where the nonzero covariant elements are

g00 = −
(
1− 2m

r − Λr2

3

)
, g11 =

(
1− 2m

r − Λr2

3

)−1

,

g22 = r2, g33 = r2 sin2 θ,
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and the inverse (gαβ) of (gαβ) is

(gαβ) =


−
(
1− 2m

r − Λr2

3

)−1

0 0 0

0
(
1− 2m

r − Λr2

3

)
0 0

0 0 r−2 0
0 0 0 (r2 sin2 θ)−1


where the corresponding contravariant elements are

g00 = −
(
1− 2m

r − Λr2

3

)−1

, g11 =
(
1− 2m

r − Λr2

3

)
,

g22 = 1
r2 , g33 = 1

r2 sin2 θ
.

Here we have

gikgkj = δij =

{
1 if i = j,

0 if i ̸= j,

with δij the Kronecker delta function.

2.2. Derivation of the Euler equations

We need to calculate each term of the Christoffel symbols Γµ
αβ in order to derive the Euler system for the SdS

and SAdS geometries. The Christoffel symbols are formulated by

Γµ
αβ =

1

2
gµν(−∂νgαβ + ∂βgαν + ∂αgβν), (2.5)

where the terms α, β, µ, ν ∈ {0, 1, 2, 3} . A slightly long calculation shows that the terms of the Christoffel

symbols are

Γ0
00 = 0, Γ0

01 = Γ0
10 =

(
m
r2 − Λr

3

)
(
1− 2m

r − Λr2

3

) , Γ1
11 =

(
−m
r2 + Λr

3

)
(
1− 2m

r − Λr2

3

) ,

Γ0
01 =

(
m
r2 − Λr

3

)
(
1− 2m

r − Λr2

3

) , Γ1
00 =

(m
r2

− Λr

3

)(
1− 2m

r
− Λr2

3

)
,

Γ1
22 = −r

(
1− 2m

r
− Λr2

3

)
, Γ1

33 = −r
(
1− 2m

r
− Λr2

3

)
sin2 θ,

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r
, Γ2

33 = − sin θ cos θ, Γ3
23 = Γ3

32 = cot θ.

It remains to find the energy-momentum tensors for perfect fluids in order to obtain the Euler equations. We

consider our spacetime to be (1+1)-dimensional; that is, the solutions to the Euler system depend only on the

time variable t and corresponding radial variable r , whereas the angular components θ, φ vanish. It follows

that

(uα) = (u0(t, r), u1(t, r), 0, 0), with uαuα = −1. (2.6)
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Since the velocity vector u is unit, it follows that

−1 = −
(
1− 2m

r
− Λr2

3

)
(u0)2 +

1(
1− 2m

r − Λr2

3

) (u1)2. (2.7)

It is suitable to introduce the scalar velocity

v :=
c(

1− 2m
r − Λr2

3

) u1

u0
, (2.8)

generating

(u0)2 =
c2(

1− 2m
r − Λr2

3

)
(c2 − v2)

, (u1)2 =
v2
(
1− 2m

r − Λr2

3

)
(c2 − v2)

. (2.9)

The energy-momentum tensor components follow from (1.2) and (2.9):

T 00 =
ρc4 + pv2

(c2 − v2)
(
1− 2m

r − Λr2

3

) , T 01 = T 10 =
cv(ρc2 + p)

(c2 − v2)
,

T 11 =
c2
(
1− 2m

r − Λr2

3

)
(v2ρ+ p)

(c2 − v2)
, T 22 =

p

r2
, T 33 =

p

r2 sin2 θ
,

T 02 = T 03 = T 12 = T 13 = T 20 = T 21 = T 23 = T 30 = T 31 = T 32 = 0.

(2.10)

Then the Euler system (1.1) can be expressed in the form

∂αT
αβ + Γα

αγT
γβ + Γβ

αγT
αγ = 0. (2.11)

Hence, the Euler equations on the SdS–SAdS spacetimes are obtained by substituting tensor components (2.10)

in equation (2.11) with repeated indices. We refer the reader to articles [2–4] for further details on tensor

calculations.

2.3. Vanishing pressure Euler equations

We substitute the Christoffel symbol terms into equations (2.11) and then impose the pressure p = 0 to obtain

∂0

( c(
1− 2m

r − Λr2

3

)
(c2 − v2)

)
+ ∂1

( v

c2 − v2
)
+

v

(c2 − v2)

(
− 2m

r2 − 4Λr
3 + 2

r

)(
1− 2m

r − Λr2

3

) = 0,

∂0

( cv

c2 − v2

)
+ ∂1

(v2(1− 2m
r − Λr2

3

)
c2 − v2

)
+

c2

c2 − v2

(m
r2

− Λr

3

)
+

v2

c2 − v2

(−5m

r2
− Λr

3
+

2

r

)
= 0,

(2.12)

which is called the vanishing pressure Euler equations on the SdS–SAdS backgrounds. In view of these equations,

we observe the following:
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• If Λ = 0, (2.12) reduces (after a suitable normalization) to the vanishing pressure Euler system on the

Schwarzschild background (see [6]).

• If m = 0, (2.12) reduces to the vanishing pressure Euler system on the de Sitter spacetime if Λ > 0

(anti-de Sitter spacetime if Λ < 0) (see [3, 4]).

• If both Λ = 0 and m = 0, the system (2.12) reduces to the vanishing pressure Euler system on flat

spacetime. We notice that, from the pressureless Euler system on flat spacetime, one can recover the

nonrelativistic (classical) Burgers equation (see [6]).

2.4. The derivation of the model

We are motivated by the idea of recovering the relativistic Burgers equation from the pressureless Euler system

on a curved background. LeFloch and his collaborators introduced the theory of this derivation in several ways

and then generalized this idea for the flat, Schwarzschild, FLRW, and de Sitter geometries [2–4, 6]. In this

paper we apply the same technique by taking into account the SdS–SAdS spacetimes.

To this aim, we start by rewriting the first and second equations of (2.12) with the notation ∂0 =

∂t, ∂1 = ∂r . After taking the partial derivatives of related terms in both equations of (2.12) and then keeping

a convenient combination of them, we derive the following single equation:

∂tv + (1− 2m

r
− Λr2

3
)∂r(

v2

2
) =

mv2

r2
− Λrv2

3
− mc2

r2
+

Λrc2

3
. (2.13)

This equation is called the relativistic Burgers equation on the SdS–SAdS spacetimes. In view of (2.13), we

observe that:

• If Λ = 0, (2.13) reduces to the relativistic Burgers equation on the Schwarzschild background (see [6]).

• If m = 0, (2.13) reduces to the relativistic Burgers equation on the de Sitter spacetime if Λ > 0 (anti-de

Sitter spacetime if Λ < 0) (see [3, 4]).

• If both Λ = 0 and m = 0 in (2.13), then we recover the classical (inviscid) Burgers equation

∂tv + ∂r(v
2/2) = 0.

This result is coherent with the fact that the limiting case of the relativistic Burgers equations on a curved

spacetime yields the classical (nonrelativistic) Burgers equation, which is a common property shared by

the relativistic models.

3. Finite volume method

The finite volume method is one of the most versatile discretization techniques for scientific computing and

has several applications in physical and engineering sciences. Particularly, it permits one to approximate weak

solutions containing shock waves to nonlinear hyperbolic balance laws like the Euler equations of compressible

fluids. The method is based on the integration of the equations over a finite volume in order to discretize the

equation. In the present work, we use a finite volume approximation for general balance laws of hyperbolic

partial differential equations following articles [1, 7, 8] and we apply the method to the derived relativistic

Burgers equation (2.13) on a (1 + 1)-dimensional SdS(–SAdS) spacetime.
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3.1. Geometric formulation

Let M be a time-oriented, (n+1)-dimensional curved spacetime with metric g . The geometry is time-oriented

in the sense that we can distinguish between past-oriented and future-oriented vectors. We consider a hyperbolic

balance law given by

div
(
T (v)

)
= S(v), v : M → R, (3.1)

where v is a scalar field, div(·) is the divergence operator, T (v) is the flux vector field, and S(v) is the scalar

field. We seek a formulation of the finite volume scheme for discretizing (3.1) on M following Amorim et al.

[1].

In general relativity, it is a usual assumption that the spacetime should be globally hyperbolic; that is, we

assume that M is globally hyperbolic in the sense that M admits a foliation by spacelike, oriented hypersurfaces

Ht so that

M =
∪
t∈R

Ht,

where each slice has the topology of a smooth n-dimensional manifold with a boundary and the hypersurface

H0 is an initial slice. We introduce a triangulation of spacetime M by

Th =
∪

K∈T h

K,

which is a collection of finite elements K satisfying the following properties:

• The boundary ∂K of an element K is piecewise smooth, n -dimensional manifold, and given by ∂K =∪
e⊂∂K e and it contains exactly two spacelike faces represented by e+K and e−K , and “timelike” elements,

represented by

e0 ∈ ∂0K := ∂K \
{
e+K , e−K

}
.

• The intersection K ∩K ′ of two distinct elements K,K ′ ∈ Th is either a common face of K,K ′ or else is

a submanifold that has at most (n− 1) dimensions.

• H0 ⊂
∪

K∈T h ∂K , where H0 is the initial slice.

• |K| , |e+K | , |e−K | , |e0| represent the measures of K , e+K , e−K , e0 , respectively, defined from the Lorentzian

metric or the induced metric on these hypersurfaces.

• Along the timelike faces e+K , e−K , we define the outgoing unit normal vector field denoted by nK .

The most natural way of establishing the finite volume method is to average the balanced law (3.1) over

each element K ∈ T h of the triangulation. We first consider the discrete solution as defined on the spacelike

elements e+K , e−K . Next, to a particular element K we introduce two values, v+K and v−K , to the unique outflow

and inflow elements e+K , e−K , respectively. It follows that the value vK of the discrete solution on the element

K is the solution v+K set on the outflow element e+K , or vK is the solution v+K set on inflow element e−K , or

some average of the both, depending on the coherent selection throughout the background geometry.

Then the finite volume scheme follows by first integrating (3.1) for any element K in space and time,

applying the divergence theorem by decomposing the boundary ∂K into its parts e+K , e−K and ∂0K , and finally

1033



CEYLAN and OKUTMUŞTUR/Turk J Math

averaging the space and time elements via convenient approximations. For the finite volume scheme and further

details, we refer the reader to articles [1, 6–8].

3.2. Finite volume schemes in coordinates

We work on a (1 + 1)-dimensional spacetime M , i.e. we take n = 1 in the geometric formulation of the finite

volume method. It follows that the balance law (3.1) becomes

∂tT
0(t, r) + ∂rT

1(t, r) = S(t, r), (3.2)

where T 0, T 1 are flux fields and S is the source term. The finite volume method is considered over each grid

cell:

[tn, tn+1]× [rj−1/2, rj+1/2].

Integrating (3.2) over these grid cells and introducing the approximations of the numerical flux functions gives

the finite volume scheme in coordinates. We refer the reader to previous works [2–4, 6] for the formulation of

finite volume schemes on a (1 + 1)-dimensional spacetime.

4. Godunov-type schemes and numerical tests

The Godunov-type finite volume scheme, which is a conservative numerical scheme, is a part of the family of

shock-capturing schemes in numerical analysis and computational fluid dynamics for solving partial differential

equations. In this section we introduce both first- and second-order Godunov-type schemes and numerically

analyze our model (2.13) by means of these schemes with several illustrations.

4.1. First-order Godunov scheme

This part is devoted to introducing a first-order Godunov-type scheme and its illustration by numerical ex-

periments for the derived equation attained on the SdS and SAdS geometries. Our model of interest (2.13) is

examined with a single shock and rarefaction for an initial function considering the Godunov-type scheme with

a local Riemann problem on each grid cell. It is a fact that in Riemann problems both shocks and rarefaction

waves are produced; therefore, we look for the fastest wave at each grid cell.

The formulation of the first-order Godunov schemes is given below. We start by a normalization (imposing

c = 1) for equation (2.13), which yields

∂tv + (1− 2m

r
− Λr2

3
)∂r(

v2

2
) =

mv2

r2
− Λrv2

3
− m

r2
+

Λr

3
, (4.1)

and the corresponding finite volume scheme is given by

vn+1
j = vnj − ∆t

∆r
(bnj+1/2 gnj+1/2 − bnj−1/2g

n
j−1/2) + ∆tSn

j , (4.2)

where the source term is

Sn
j =

m(vnj )
2

(rnj )
2

−
Λrnj (v

n
j )

2

3
− m

(rnj )
2
+

Λrnj
3

,
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and the other terms in (4.2) are

bnj±1/2 = 1− 2m

(rnj±1/2)
−

Λ(rnj±1/2)
2

3
,

gnj−1/2 = f(vnj−1, v
n
j ), gnj+1/2 = f(vnj , v

n
j+1),

with the flux function f(u, v) described as follows:

f(u, v) =



u2

2 , if u > v and u+ v > 0,
v2

2 , if u > v and u+ v < 0,
u2

2 , if u ≤ v and u > 0,
v2

2 , if u ≤ v and v < 0,

0, if u ≤ v and u ≤ 0 ≤ v.

(4.3)

It can be easily deduced that the speed term is

1− 2m

(rnj±1/2)
−

Λ(rnj±1/2)
2

3
. (4.4)

Moreover, in order to satisfy the stability condition in the scheme, we choose ∆t and ∆r so that

∆t

∆r
max

j

∣∣∣1− 2m

(rnj±1/2)
−

Λ(rnj±1/2)
2

3

∣∣∣ ≤ 1.

The numerical tests for the first-order Godunov schemes are illustrated in Figures 1 and 2, representing

shock and rarefaction wave propagations, respectively. Each of these figures consists of four subfigures displaying

the time evolution of the schemes for different numbers of iterations n . The number of iterations for Figure 1a

is n = 200, for Figure 1b is n = 400, for Figure 1c is n = 600, and for Figure 1d is n = 800. These figures

illustrate the shock wave propagation for the first-order Godunov schemes. The same numbers of iterations are

used for the next figures: n = 200 for Figure 2a, n = 400 for Figure 2b, n = 600 for Figure 2c, and n = 800

for Figure 2d. These figures display the rarefaction wave propagation for the first-order Godunov schemes.

In each of these subfigures, we investigate three schemes for Λ = −1,Λ = 0, and Λ = 1 representing SAdS,

Schwarzschild, and SdS spacetimes, respectively. As a remark, for the numerical implementation, transmissive

boundary conditions are chosen and r is taken in [0.1, 1] with m = 0.05. From these graphs we observe that

the numerical solution for the particular case Λ = −1, represented by the red curve, moves faster than the

particular cases Λ = 0 and Λ = 1, represented by the green curve and the blue curve, respectively. This

outcome can also be verified by plugging Λ = −1, 0, 1 into the speed term given by (4.4). We also observe that,

for all particular cases of Λ = −1, 0, 1, the solution curves converge. More specifically, we can conclude that the

numerical solution for the SAdS geometry converges faster than the SdS and Schwarzschild geometries. The

convergence rate is smallest for the SdS geometry among these three geometries.

4.2. Second-order Godunov scheme

In this part, we construct a second-order Godunov-type finite volume scheme for the derived model. We give a

summary for the algorithm step by step. Starting by discretizing each cell in finite volume, we attain a profile
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(a) (b)

(c) (d)

Figure 1. First-order Godunov schemes with shock waves.

construction on the cells. The next step is doing particularization of the Riemann problems at cell interfaces.

Then we find the solution for the Riemann problem and do the computation for fluxes on cell interfaces. The

final step is determining the variables for the next time stage.

A second-order Godunov-type scheme departs from the first-order Godunov-type scheme in construction

of the profile and specification of the Riemann problem. For the equation

∂tv + ∂rf(v, r) = 0,

a first-order scheme can be converted to a second-order method by proceeding to the cell-boundary values,

which are used in the numerical flux functions, to decide the intermediate time level tn+1/2 = (tn+ tn+1)/2. In

other words, the second-order Godunov scheme is obtained from the edge-boundary values of the reconstructed

profile proceeded by a half time step. The article by Van Leer [9] and the book by Guinot [5] are referred to

for construction of the algorithm to the second-order Godunov method.

The model is investigated with a single shock and rarefaction for an initial function considering the

Godunov scheme with a local Riemann problem for each grid cell depending on three particular cases of
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(a) (b)

(c) (d)

Figure 2. First-order Godunov schemes with rarefaction waves.

cosmological constant Λ. The finite volume scheme for the model (4.1) is given by

v
n+1/2
j±1/2 = vnj±1/2 −

∆t

2∆r
(bnj+1/2g

n
j+1/2 − bnj−1/2g

n
j−1/2) +

∆t

2
Sn
j±1/2, (4.5)

vn+1
j = vnj − ∆t

∆r
(b

n+1/2
j+1/2 g

n+1/2
j+1/2 − b

n+1/2
j−1/2 g

n+1/2
j−1/2 ) + ∆tS

n+1/2
j , (4.6)

with

tn+1/2 = (tn + tn+1)/2.

Here the terms in (4.5) and (4.6) are

b
n+1/2
j±1/2 = 1− 2m

(r
n+1/2
j±1/2 )

−
Λ(r

n+1/2
j±1/2 )

2

3
,

g
n+1/2
j−1/2 = f(v

n+1/2
j−1 , v

n+1/2
j ), g

n+1/2
j+1/2 = f(v

n+1/2
j , v

n+1/2
j+1 ),
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with the source term

S
n+1/2
j =

m(v
n+1/2
j )2

(r
n+1/2
j )2

−
Λr

n+1/2
j (v

n+1/2
j )2

3
− m

(r
n+1/2
j )2

+
Λr

n+1/2
j

3
.

The flux function f(v1, v2) has already been defined in (4.3). The speed term is

1− 2m

(r
n+1/2
j±1/2 )

−
Λ(r

n+1/2
j±1/2 )

2

3
, (4.7)

and for the stability condition, we select ∆t and ∆r so that

∆t

∆r
max

j

∣∣∣1− 2m

(r
n+1/2
j±1/2 )

−
Λ(r

n+1/2
j±1/2 )

2

3

∣∣∣ ≤ 1.

The implementation of the second-order Godunov scheme is based on the structure given above and presented in

Figures 3 and 4. Each of these figures consists of four subfigures displaying the time evolution of the schemes

for different numbers of iterations n . The number of iteration for Figure 3a is n = 200, for Figure 3b is

n = 400, for Figure 3c is n = 600, and for Figure 3d is n = 800. These figures illustrate the shock wave

propagation for the second-order Godunov schemes. Finally, to display the rarefaction wave propagation for the

second-order Godunov schemes, the same iteration numbers are used. That is, n = 200 for Figure 4a, n = 400

for Figure 4b, n = 600 for Figure 4c, and n = 800 Figure 4d. In each of these subfigures, we investigate three

schemes for Λ = −1,Λ = 0, and Λ = 1 representing SAdS, Schwarzschild, and SdS spacetimes, respectively.

The number of iterations and the values of r and m are taken the same as in the first-order case. From these
graphs we observe that the numerical solution for the particular case Λ = −1, represented by the red curve,

shifts faster than the cases Λ = 0 and Λ = 1, represented by the green curve and the blue curve, respectively.

This outcome can also be proven by putting Λ = −1, 0, 1 into the speed term given by (4.7). The solution

curves for all particular cases of Λ are convergent, which demonstrates the efficiency and robustness of the

scheme. It is again possible to conclude that the numerical solution for the SAdS geometry converges faster

than the SdS and Schwarzschild geometries. Once more, the convergence is slowest for the SdS geometry.

4.3. Comparison of first- and second-order schemes

We investigated shock and rarefaction wave propagations for our model with different possible values of the

cosmological constant Λ by using the first- and second-order Godunov-type schemes. The numbers of iterations

and the values of m and r are fixed for each experiment. One of the more significant findings to emerge

from the numerical experiments is that changing the order of the scheme made no significant difference to the

results. We obtained almost the same outcomes for the same inputs from the first- and second-order schemes

for each particular case, which supports the consistency of numerical results. Furthermore, in each of these

experiments, it is observed that the numerical solution for the SAdS geometry converges faster than the SdS

and Schwarzschild geometries.

4.4. Summary

An original hyperbolic model that describes the propagation and interactions of shock waves on the SdS and

SAdS spacetimes is attained in this paper. We begin with derivation of the relativistic Euler equations on these
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(a) (b)

(c) (d)

Figure 3. Second-order Godunov schemes with shock waves.

curved backgrounds and impose a vanishing pressure to the energy-momentum tensor for perfect fluids. The

pressureless Euler equations yield model (2.13), which involves a cosmological constant factor Λ. According to

the sign of Λ, the background geometries become the SdS, SAdS, or Schwarzschild spacetimes. The numerical

illustrations are taken into account for these spacetimes separately. As a result, we have the following remarks:

• The findings of this work support those of earlier studies on spacetimes.

• The numerical tests illustrate the convergence, efficiency, and robustness of the proposed scheme on the

SdS and SAdS backgrounds.

• This study strengthens the idea that the finite volume scheme is consistent with the conservative form

of our model, which yields correct computations of weak solutions containing shock waves, which is a

common property shared by the models obtained on the Schwarzschild, FLRW, and de Sitter spacetimes.

• We attain almost the same outcomes for the first- and second-order Godunov schemes for each particular

case, which supports the consistency of numerical results.

• The results of this research confirm the idea that the classical (nonrelativistic) Burgers equation can be
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(a) (b)

(c) (d)

Figure 4. Second-order Godunov schemes with rarefaction waves.

recovered from the derived model, which is a common property shared by relativistic equations. Indeed,

for Λ = m = 0, the model gives exactly the classical Burgers equation.

• Numerical solutions for Λ = −1, 0, 1 are compared. The solution curve corresponding to Λ = −1 converges

faster than the solution curve corresponding to Λ = 0 and Λ = 1. This trait can be verified by observing

that the characteristic speed in equations (4.4) and (4.7) is increased by negative values of Λ. Thus,

we conclude that the case Λ = −1 for the solution curves of both first- and second-order finite volume

schemes shifts faster than the cases Λ = 0 and Λ = 1. In other words, we have faster convergence in the

SAdS geometry than the SdS and Schwarzschild geometries.
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