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Abstract: λ -Perfect maps, a generalization of perfect maps (i.e. continuous closed maps with compact fibers) are

presented. Using Pλ -spaces and the concept of λ -compactness some classical results regarding λ -perfect maps will be

extended. In particular, we show that if the composition fg is a λ -perfect map where f, g are continuous maps with

fg well-defined, then f, g are α -perfect and β -perfect, respectively, on appropriate spaces, where α, β ≤ λ .
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1. Introduction

A perfect map is a kind of continuous function between topological spaces. Perfect maps are weaker than

homeomorphisms, but strong enough to preserve some topological properties such as local compactness that

are not always preserved by continuous maps. Let X,Y be two topological spaces such that X is Hausdorff.

A continuous map f : X → Y is said to be a perfect map provided that f is closed and surjective and each

fiber f−1(y) is compact in X . In [3], the authors study a generalization of compactness, i.e. λ-compactness.

Motivated by this concept we are led to generalize the concept of perfect mapping. In the current section

we recall some preliminary definitions and related results such as λ-compact spaces and Pλ -spaces presented

in [3]. In Section 2, we will introduce λ-perfect maps and generalize some classical results related to the

perfect maps and finally we prove that if the composition of two continuous mappings is λ -perfect, then its

components are µ -compact and β -compact, where µ, β ≤ λ . We extended some important well-known results

regarding compactness properties to λ -compactness properties (namely, Theorem 2.2 is extended to Theorem

2.3). Moreover, some important known results regarding perfect maps are also extended accordingly.

The following definition, which is a natural generalization of compactness, has been considered by some

authors earlier; see [3, 5].

Definition 1.1 A topological space X (not necessarily Hausdorff) is said to be λ-compact whenever each open

cover of X has an open subcover whose cardinality is less than λ , where λ is the least infinite cardinal number

with this property. λ is called the compactness degree of X and we write dc(X) = λ .

We note that compact spaces, Lindelöf noncompact spaces are ℵ◦ -compact, ℵ1 -compact spaces, respec-

tively, and in general every topological space X is λ -compact for some infinite cardinal number λ ; see [3] and

also the concept of Lindelöf number in [1, p 193].
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The following useful lemma, which is well known, is somehow a generalization of the fact that a continuous

function f : X → Y takes compact sets in X to compact sets in Y ; see [6].

Lemma 1.2 Let X,Y be two topological spaces. If f : X → Y is a continuous function and A ⊆ X is

λ-compact, then dc(f(A)) ≤ λ .

Proof Let f(A) ⊆
∪

i∈I Hi , where each Hi is open in Y . Clearly, A ⊆
∪

i∈I f
−1(Hi). By λ -compactness of

A , there exists J ⊆ I with |J | < λ such that A ⊆
∪

i∈J f−1(Hi). Hence f(A) ⊆
∪

i∈J Hi , which means that

dc(f(A) ≤ λ . 2

We also recall the following proposition, a proof of which can be found in [4].

Proposition 1.3 [4, Proposition 2.6] Let F be a closed subset of a topological space X ; then dc(F ) ≤ dc(X).

Next we are going to introduce a generalization of the concept of a P -space (i.e. pseudo-discrete space).

P -spaces are very important in the contexts of rings of continuous functions, which are fully investigated by

Gillman and Henriksen in [2].

Definition 1.4 Let X be a topological space. The intersection of any family with cardinality less than λ of

open subsets of X is called a Gλ -set. Obviously, Gδ -sets are precisely Gℵ1 -sets.

Definition 1.5 The topological space X is said to be a Pλ -space whenever each Gλ -set in X is open. It is

manifest that every arbitrary space is a Pℵ0 -space and Pℵ1 -spaces are precisely P -spaces. See Example 1.8 and

Example 1.9 in [3]

2. λ-Perfect maps

Lemma 2.1 If A is a β -compact subspace of a space X and y is a point of a Pλ -space Y such that β ≤ λ

then for every open set W ⊆ X × Y containing A × {y} there exist open sets U ⊆ X and V ⊆ Y such that

A× {y} ⊆ U × V ⊆ W.

Proof For every x ∈ A the point (x, y) has a neighborhood of the form Ux × Vx contained in W . Clearly

A × {y} ⊆
∪

x∈A Ux × Vx . Since A is β -compact, there exists a family {xi}i∈I with |I| < β ≤ λ such that

A× {y} ⊆
∪

i∈I Uxi × Vxi . Clearly the sets U =
∪

i∈I Uxi and V =
∩

i∈I Vxi have the required properties. 2

Let us recall the celebrated theorem of Kuratowski; see [1].

Theorem 2.2 For a topological space X the following statements are equivalent:

(i) The space X is compact.

(ii) For every topological space Y the projection p : X × Y → Y is closed.

(iii) For every T4 -space Y the projection p : X × Y → Y is closed.

Next we generalize the above theorem.

The implication (ii)⇒(i) in the following theorem can be obtained also as a consequence of Proposition

3 in [5].

Theorem 2.3 For an infinite regular cardinal number λ and a topological space X the following conditions

are equivalent.
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(i) The space X is β -compact for some β ≤ λ .

(ii) For every Pλ -space, Y the projection p : X × Y → Y is closed.

(iii) For every T4 , Pλ -space Y the projection p : X × Y → Y is closed.

Proof (i)⇒(ii) Let X be a β -compact space and F be a closed subspace of X × Y . Take a point y /∈ p(F );

thus X × {y} ⊆ (X × Y ) \ F . In view of lemma 2.1, we infer that y has a neighborhood V such that

(X × V ) ∩ F = ∅ . Consequently, we have p(F ) ∩ V = ∅ , which immediately shows that Y \ p(F ) is an open

subset of Y ; hence we are done.

(ii)⇒(iii) It is obvious.

(iii)⇒ (i) Suppose that there exists a family {Fs}s∈S of closed subsets of X with the λ-intersection property

such that
∩

s∈S Fs = ∅ and proceed by contradiction. Take a point y0 /∈ X and consider the set Y = X ∪ {y0}
with the the topology T consisting of all subsets of X and of all sets of the form

{y0} ∪ (
∩
i∈I

Fsi) ∪K,where si ∈ S, |I| < λ and K ⊆ X.

Since
∩

s∈S Fs = ∅ , then for every x ∈ X there exists sx ∈ S such that x /∈ Fsx . Notice that the set

{y0} ∪ Fsx ∪ (X \ {x}) = Y \ {x}

belongs to T and since X ∈ T , {y0} is closed; therefore Y is a T1 -space.

Next we aim to show that Y is normal. Let A and B be two disjoint closed subsets of Y ; hence at least one

of them, say A , does not contain y0 and so it is open. Therefore, A and Y \ A are two disjoint open subsets

of Y containing A and B , respectively. Hence Y is normal, and by regularity of λ it is a Pλ -space.

Now take F = {(x, x) : x ∈ X} ⊆ X × Y . By our hypothesis p(F ) is closed in Y . Since {y0} is not

open, every open subset of Y that contains y0 meets X ; hence clY X = Y .

We note that if x ∈ X then (x, x) ∈ F and therefore x = p(x, x) ∈ p(F ); hence X ⊆ p(F ). Consequently,

y0 ∈ Y = clY X ⊆ clY p(F ) = p(F ).

Therefore, there exists x0 ∈ X such that (x0, y0) ∈ F. For every neighborhood U ⊆ X of x0 and every s ∈ S ,

the set U × ({y0} ∪ Fs) is open in X × Y . Hence

[U × ({y0} ∪ Fs)] ∩ {(x, x) : x ∈ X} ≠ ∅,

and thus U ∩ Fs ̸= ∅ , which means that x0 ∈ Fs for every s ∈ S . This implies that
∩

s∈S Fs ̸= ∅ , which is the

desired contradiction. 2

Definition 2.4 Let X and Y be two topological spaces. A continuous map f : X → Y is said to be λ-perfect

whenever f is closed and surjective and λ is the least infinite cardinal number such that for every y ∈ Y the

compactness degree of f−1(y) is less than or equal to λ .

Proposition 2.5 Let Y be a Pλ -space and X be a β -compact space such that β ≤ λ . Then the projection

p : X × Y → Y is β -perfect.
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Proof By Theorem 2.3 p is closed and we notice that p−1(y) = X × {y} is β -compact for every y ∈ Y . 2

The following theorem is an extension of [1, Theorem 3.7.2]

Theorem 2.6 Let λ and β be two regular cardinal numbers and f : X → Y be a λ-perfect mapping. Then

for every β -compact subspace Z ⊆ Y the inverse image f−1(Z) is µ-compact for some µ ≤ max{λ, β} .

Proof Let {Us}s∈S be a family of open subsets of X whose union contains f−1(Z), K be the family of all

subsets of S with cardinality less than λ , and UT =
∪

s∈T Us for some T ∈ K . For each z ∈ Z , dc(f
−1(z)) ≤ λ

and thus is contained in the set UT for some T ∈ K ; it follows that z ∈ Y \ f(X \ UT ) and thus

Z ⊆
∪

T∈K

(Y \ f(X \ UT )).

Since f is closed, we infer that for each T ∈ K the set Y \ f(X \ UT ) is open. Hence there exists I ⊆ K with

|I| < β such that Z ⊆
∪

T∈I(Y \ f(X \ UT )). Thus

f−1(Z) ⊆
∪
T∈I

f−1(Y \ f(X \ UT )) =
∪
T∈I

(X \ f−1f(X \ UT )) ⊆

∪
T∈I

(X \ (X \ UT )) =
∪
T∈I

UT =
∪
s∈S0

Us,

where S0 =
∪

T∈I T. Since λ and β are regular cardinals, we infer that |S0| < max{λ, β} , i.e. f−1(Z) is

µ -compact for some µ ≤ max{λ, β} . 2

The following corollary is now immediate.

Corollary 2.7 Let f : X → Y be a λ-perfect mapping. Then for every λ-compact subspace Z ⊆ Y the inverse

image f−1(Z) is λ-compact as well.

Proof By the previous theorem f−1(Z) is µ -compact for some µ ≤ λ , and by lemma 1.2, Z = f(f−1(Z)) is

γ -compact for some γ ≤ µ . However, by our hypothesis γ = λ ; hence, µ = λ . 2

Corollary 2.8 Let g : X → Z be a λ-perfect and f : Z → Y be a β -perfect mapping. Then the composition

fg : X → Y is γ -perfect for some γ ≤ max{λ, β} .

Proof Let y ∈ Y . Since f is β -perfect, f−1({y}) is µ -compact, where µ ≤ β . Now by Theorem 2.6 and the

equality (fg)−1({y}) = g−1(f−1({y})) the proof is complete. 2

It is well known that in every regular space two disjoint closed sets, one of which is compact, are contained in

two disjoint open sets. Next we have an extension of this fact.

Theorem 2.9 Let A be a β -compact subspace of a regular Pλ -space X , for some β ≤ λ . Then for every

closed set B disjoint from A there exist open sets U, V ⊆ X such that A ⊆ U , B ⊆ V , and U ∩ V = ∅ . If,

moreover, dc(B) = α ≤ λ then it suffices to assume that X is a Hausdorff Pλ -space.

Proof Since X is regular, for every x ∈ A there exist two disjoint open sets Ux, Vx ⊆ X such that

x ∈ Ux, B ⊆ Vx . Clearly A ⊆
∪

x∈A Ux ; therefore there exists J ⊆ A with |J | ≤ β such that A ⊆
∪

x∈J Ux .

Obviously the sets U =
∪

x∈J Ux and V =
∩

x∈J Vx have the required properties. Now let we assume that
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dc(B) = α ≤ λ and X is only a Hausdorff Pλ -space. For every x ∈ B we consider the sets A and {x} and

clearly similar to the first part we will obtain the disjoint open sets Ux and Vx such that x ∈ Vx and A ⊆ Ux .

Clearly B ⊆
∪

x∈B Vx 2

Lemma 2.10 Suppose that X is a Hausdorff Pλ -space and f : X → Y is a β -perfect mapping with β ≤ λ .

Then f has no continuous extension to any Hausdorff space Z such that X ⫋ Z and clX = Z.

Proof Without loss of generality, we can assume that Z = X ∪ {x} . Now if F : Z → Y is a continuous

extension of f then dc(f
−1(F (x))) ≤ β and clearly f−1(F (x)) does not contain x . Therefore, by the second

part of Theorem 2.9 there exist open sets U, V ⊆ Z such that x ∈ U, f−1(F (x)) ⊆ V , and U ∩ V = ∅ . Clearly
the sets (Z \ V ) ∩X = X \ V , f(X \ V ), and F−1(f(X \ V )) are closed. Thus we have

clz(X \ V ) ⊆ F−1(f(X \ V )) = f−1(f(X \ V )) ⊆ X.

Since x /∈ clzV , we have clzV ⊆ X ; therefore clzX = clz(X \ V ) ∪ clzV ⊆ X . Hence X is not dense in Z . 2

Proposition 2.11 If the composition gf of continuous mappings f : X → Y and g : Y → Z , where Y is

Hausdorff and f is surjective, is λ-perfect, then the mappings g , f are β -perfect and µ-perfect respectively for

some µ, β ≤ λ .

Proof Since for every z ∈ Z we have dc((gf)
−1(z)) ≤ λ , it follows from lemma 1.2 that the compactness

degree of the set g−1(z) = f [(gf)−1(z)] is less than or equal to λ . The fact that g is a closed mapping follows

from [1, Proposition 2.1.3] and thus the mapping g is µ -perfect for some µ ≤ λ .

We note that for every y ∈ Y , f−1(y) is a closed subset of (gf)−1(g(y)); hence dc(f
−1(y)) ≤

dc(gf)
−1(g(y)) ≤ λ . Thus to complete the proof it suffices to show that f is closed. To this end, we con-

sider the arbitrary closed subset F ⊆ X and the mapping h = (gf)|F . For every z ∈ Z, h−1(z) = (gf)−1(z)∩F

is a closed subset of (gf)−1(z). Hence dc(h
−1(z)) ≤ dc((gf)

−1(z)) ≤ λ. This means that h is α -perfect for

some α ≤ λ . Consequently, by the first part of our proof, the restriction g|f(F ) is θ -perfect for some θ ≤ α .

Clearly g|f(F ) can be continuously extended to f(F ) (note that the restriction of g to f(F ) is the continuous

extension of g|f(F ) to f(F )). It follows from the previous lemma that f(F ) = f(F ) and therefore f is a closed

mapping. 2
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