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Abstract: In this paper, taking into account the function θ , we introduce a new type of contraction for multivalued

maps on metric space. This new concept includes many known contractions in the literature. We then present some

fixed point results for closed and bounded set valued maps on complete metric space. Finally, we provide an example to

show the significance of the investigation of this paper.

Key words: Fixed point, multivalued contraction, generalized multivalued θ -contraction

1. Introduction

Metric fixed point theory was started by the Banach contraction principle, which asserts that if (X, d) is a

complete metric space and T : X → X is a contraction mapping, i.e. d(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ X ,

where L ∈ [0, 1), then T has a unique fixed point in X . This principle has been extended and generalized in

many directions (see [4, 5, 9, 15, 19]). Among all these, an attractive generalization given by Jleli and Samet

[12] introduced a new type of contractive mapping. Throughout this study we shall call the contraction defined

in [12] a θ -contraction. First, we recall some notions and some related results concerning θ -contraction.

Let θ : (0,∞) → (1,∞) be a function satisfying the following conditions:

(θ1) θ is nondecreasing;

(θ2) For each sequence {tn} ⊂ (0,∞) , limn→∞ θ(tn) = 1 if and only if limn→∞ tn = 0+ ;

(θ3) There exist r ∈ (0, 1) and l ∈ (0,∞] such that limt→0+
θ(t)−1

tr = l ;

(θ4) θ(inf A) = inf θ(A) for all A ⊂ (0,∞) with inf A > 0.

We denote by Θ and Ω the set of all functions θ satisfying (θ1 )–(θ3 ) and (θ1 )–(θ4 ), respectively. It is

clear that Ω ⊂ Θ and some examples of the functions belonging to class Ω are θ1(t) = e
√
t and θ2(t) = e

√
tet .

If we define θ3(t) = e
√
t for t ≤ 1, θ3(t) = 9 for t > 1, then θ3 ∈ Θ\Ω.

Note that if θ is right continuous and satisfies (θ1), then (θ4) holds. Conversely, if (θ4) holds, then θ is

right continuous.

Let (X, d) be a metric space and θ ∈ Θ. Then T : X → X is said to be a θ -contraction if there exists

k ∈ (0, 1) such that
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θ(d(Tx, Ty)) ≤ [θ(d(x, y))]
k

(1.1)

for all x, y ∈ X with d(Tx, Ty) > 0.

Choosing some appropriate functions for θ , such as θ1(t) = e
√
t and θ2(t) = e

√
tet , we can obtain some

different types of nonequivalent contractions from (1.1). Considering this new concept, Jleli and Samet proved

that every θ -contraction on a complete metric space has a unique fixed point. Some interesting papers are

available related to θ -contractions in the literature (see [2, 11]).

2. Preliminaries

In this section, we give some notational and terminological conventions that will be used throughout this paper.

Let (X, d) be a metric space. It is well known that H : CB(X)× CB(X) → R defined by

H(A,B) = max

{
sup
x∈A

D(x,B), sup
y∈B

D(y,A)

}

is a metric on CB(X), which is called the Pompeiu–Hausdorff metric, where CB(X) is the class of all nonempty,

closed, and bounded subsets of X and D(x,B) = inf {d(x, y) : y ∈ B} . A fixed point of a multivalued mapping

T : X → P(X), which is the class of all nonempty subsets of X , is an element x ∈ X such that x ∈ Tx . A

function f : X → R is lower semicontinuous if xn → x implies f(x) ≤ lim inf
n→∞

f(xn).

In 1969, Nadler [17] extended the Banach contraction principle to multivalued mappings and first initiated

the study of fixed point results for multivalued linear contraction.

Theorem 1 (Nadler [17]) Let (X, d) be a complete metric space and T : X → CB(X) a multivalued contrac-

tion; that is, there exists L ∈ [0, 1) such that

H(Tx, Ty) ≤ Ld(x, y)

for all x, y ∈ X . Then T has a fixed point.

Later on, several studies were conducted on a variety of generalizations, extensions, and applications of

this result of Nadler (see [1, 3, 6, 7, 13, 14, 16, 18]).

On the other hand, the concept of θ -contraction from the case of single valued mappings was extended

to multivalued mappings by Hançer et al. [8] and they introduced the concept of the multivalued θ -contraction:

let T : X → CB(X) be a multivalued mapping. If for all x, y ∈ X with H(Tx, Ty) > 0, the contractive

condition

θ(H(Tx, Ty)) ≤ [θ(d(x, y))]
k

(2.1)

for some k ∈ (0, 1) and θ ∈ Θ is satisfied, then T is said to be a multivalued θ -contraction.

Considering the Pompeiu–Hausdorff metric H, they established a fixed point result for mappings of this

type on complete metric spaces as follows:

Theorem 2 ([8]) Let (X, d) be a complete metric space and T : X → K(X) , which is the class of all nonempty

compact subsets of X , be a multivalued mapping. If T is a multivalued θ -contraction, then T has a fixed point.
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In [8], they gave an example (Example 2.4 of [8]) that shows that in Theorem 2 we cannot take CB(X)

instead of K(X) under the same conditions and they showed that it is possible by adding the weak condition

(θ4 ) on the function θ .

Theorem 3 ([8]) Let (X, d) be a complete metric space and T : X → CB(X) be a multivalued mapping. If T

is a multivalued θ -contraction with θ ∈ Ω , then T has a fixed point.

3. The results

Our main results are based on the following new concept.

Let (X, d) be a metric space, θ ∈ Θ, and T : X → CB(X) be given a mapping . Then we say that T is

a generalized multivalued θ -contraction if there exists a constant k ∈ (0, 1) such that

θ(H(Tx, Ty)) ≤ [θ(M(x, y))]
k
, (3.1)

for all x, y ∈ X with H(Tx, Ty) > 0, where

M(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

1

2
[D(x, Ty) +D(y, Tx)]

}
.

Before we give our main results, we recall some notations and related lemmas concerning multivalued mappings

as follows: let X and Y be two topological spaces. Then a multivalued mapping T : X → P(Y ) is said to be

upper semicontinuous (lower semicontinuous) if the inverse image of a closed set (open set) is closed (open). A

multivalued mapping is continuous if it is both upper and lower semicontinuous.

Lemma 1 ([10]) Let (X, d) be a metric space and T : X → P(X) be an upper semicontinuous mapping such

that Tx is closed for all x ∈ X . If xn → x0, yn → y0 and yn ∈ Txn , then y0 ∈ Tx0 .

By the agency of the concept of generalized multivalued θ -contraction, we will give the following theorem.

This result is relevant in mapping T : X → CB(X).

Theorem 4 Let (X, d) be a complete metric space and T : X → CB(X) be a generalized multivalued θ -

contraction with θ ∈ Ω . If T is upper semicontinuous or θ is continuous, then T has a fixed point.

Proof Suppose that T has no fixed point. Then D(x, Tx) > 0 for all x ∈ X. Let x0 ∈ X be an arbitrary

point. Since Tx is nonempty for all x ∈ X , there exists x1 ∈ X such that x1 ∈ Tx0 . On the other hand, from

0 < D(x1, Tx1) ≤ H(Tx0, Tx1) and (θ1 ), we obtain

θ(D(x1, Tx1)) ≤ θ(H(Tx0, Tx1))

≤ [θ(M(x0, x1))]
k

=

[
θ(max

{
d(x0, x1), D(x0, Tx0), D(x1, Tx1),

1
2 [D(x0, Tx1) +D(x1, Tx0)]

}]k
≤ [θ(max {d(x0, x1), D(x1, Tx1)}]k . (3.2)

If max {d(x0, x1), D(x1, Tx1)} = D(x1, Tx1), from (3.2), we get

θ(D(x1, Tx1)) ≤ [θ(D(x1, Tx1)]
k
< θ(D(x1, Tx1),
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which is a contradiction. Thus, max {d(x0, x1), D(x1, Tx1)} = d(x0, x1), and then

θ(D(x1, Tx1)) ≤ [θ(d(x0, x1))]
k
. (3.3)

From (θ4 ), we know that

θ(D(x1, Tx1)) = inf
y∈Tx1

θ(d(x1, y)),

and so, from (3.3), we have

inf
y∈Tx1

θ(d(x1, y)) ≤ [θ(d(x0, x1))]
k
< [θ(d(x0, x1))]

s
, (3.4)

where s ∈ (k, 1) . Then, from (3.4), there exists x2 ∈ Tx1 such that

θ(d(x1, x2)) ≤ [θ(d(x0, x1))]
s
.

Therefore, continuing recursively, we obtain a sequence {xn} in X such that xn+1 ∈ Txn and

θ(d(xn, xn+1)) ≤ [θ(d(xn−1, xn))]
s
, (3.5)

for all n ∈ N. Denote cn = d(xn, xn+1) for n ∈ N . Then cn > 0 for all n ∈ N and, using (3.5), we have

θ(cn) ≤ [θ(cn−1)]
s ≤ [θ(cn−2)]

s2 ≤ · · · ≤ [θ(c1)]
sn−1

,

i.e.

1 < θ(cn) ≤ [θ(c1)]
sn−1

(3.6)

for all n ∈ N. Letting n → ∞ in (3.6), we obtain

lim
n→∞

θ(cn) = 1. (3.7)

From (θ2 ) , we get limn→∞ cn = 0+ and so from (θ3 ) there exist r ∈ (0, 1) and l ∈ (0,∞] such that

lim
n→∞

θ(cn)− 1

(cn)r
= l.

Suppose that l < ∞. In this case, let B = l
2 > 0. From the definition of the limit, there exists n0 ∈ N such

that, for all n ≥ n0, ∣∣∣∣θ(cn)− 1

(cn)r
− l

∣∣∣∣ ≤ B.

This implies that, for all n ≥ n0,

θ(cn)− 1

(cn)r
≥ l −B = B.

Then, for all n ≥ n0,

n(cn)
r ≤ An [θ(cn)− 1] ,

where A = 1/B.
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Suppose now that l = ∞. Let B > 0 be an arbitrary positive number. From the definition of the limit,

there exists n0 ∈ N such that, for all n ≥ n0,

θ(cn)− 1

(cn)r
≥ B.

This implies that, for all n ≥ n0,

n [cn]
r ≤ An [θ(cn)− 1] ,

where A = 1/B.

Thus, in all cases, there exist A > 0 and n0 ∈ N such that

n [cn]
r ≤ An [θ(cn)− 1] ,

for all n ≥ n0 . Using (3.6), we obtain

n [cn]
r ≤ An

[
[θ(c1)]

sn−1

− 1
]
,

for all n ≥ n0 . Letting n → ∞ in the above inequality, we obtain

lim
n→∞

n [cn]
r
= 0.

Thus, there exists n1 ∈ N such that n [cn]
r ≤ 1 for all n ≥ n1, so we have, for all n ≥ n1,

cn ≤ 1

n1/r
. (3.8)

In order to show that {xn} is a Cauchy sequence, consider m,n ∈ N such that m > n ≥ n1. Using the

triangular inequality for the metric and from (3.8), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

= cn + cn+1 + · · ·+ cm−1

=
m−1∑
i=n

ci ≤
∞∑
i=n

ci ≤
∞∑
i=n

1

i1/r
.

By the convergence of the series
∞∑
i=1

1
i1/r

, we get d(xn, xm) → 0 as n → ∞ . This yields that {xn} is a Cauchy

sequence in (X, d). Since (X, d) is a complete metric space, the sequence {xn} converges to some point z ∈ X ;

that is, limn→∞ xn = z.

Now suppose that T is upper semicontinuous. Then, from Lemma 1, we have z ∈ Tz , which is in contrast

to our assumption.

Now suppose θ is continuous. In this case, since z /∈ Tz , there exist an n0 ∈ N and a subsequence {xnk
}

of {xn} such that D(xnk+1, T z) > 0 for all nk ≥ n0 . Since D(xnk+1
, T z) > 0 for all nk ≥ n0 , then we have

θ(D(xnk+1, T z)) ≤ θ(H(Txnk+1, T z))

≤ [θ(M(xnk
, z))]

k

≤
[
θ(max

{
d(xnk

, z), d(xnk
, xnk+1), D(z, Tz),

1
2 [D(xnk

, T z) +D(z, Txnk+1)]

}]k
.
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Letting limit n → ∞ in the above and using the continuity of θ , we have θ(D(z, Tz)) ≤ [θ(D(z, Tz))]
k
, which

is a contradiction.

Therefore, T has a fixed point in X. Thereby, this completes the proof. 2

Now we give a significant example showing that T is generalized multivalued θ -contraction, but it is not

only a generalized multivalued contraction but also a multivalued θ -contraction.

Example 1 Let X = [0, 1] ∪ {2, 3, · · · } and

d(x, y) =

 0 , if x = y
|x− y| , if x, y ∈ [0, 1]
x+ y , if one of x, y /∈ [0, 1]

.

Then (X, d) is a complete metric space. Define the mapping T : X → CB(X) by

Tx =


{

3
4

}
, x = 0

{1} x ∈ (0, 1]
{1, x− 1} , x ∈ {2, 3, ...}

.

For y = 1 and x > 2 , since H(Tx, Ty) = x and M(x, y) = x+ 1 , we get

lim
x→∞

H(Tx, Ty)

M(x, y)
= lim

x→∞

x

x+ 1
= 1.

Then we cannot find λ ∈ (0, 1) satisfying

H(Tx, Ty) ≤ λM(x, y).

Also, since H(T0, T 1
4 ) =

1
4 = d(0, 1

4 ) , then for all θ ∈ Θ, which is continuous, and any k ∈ (0, 1) , we have

θ(H(Tx, Ty)) = θ(
1

4
) >

[
θ(

1

4
)

]k
= [θ(d(x, y))]

k
.

Therefore, T is not a multivalued θ -contraction mapping. Then Theorem 3 cannot be applied to this example.

Now we claim that T is a generalized multivalued θ -contraction with θ(t) = e
√
tet and k = e−

1
8 . To see

(3.1), we have to show that

H(Tx, Ty)

M(x, y)
eH(Tx,Ty)−M(x,y) ≤ e−

1
4

for all x, y ∈ X with H(Tx, Ty) > 0 . Note that H(Tx, Ty) > 0 if and only if (x, y) /∈ △ ∪ {(1, 2), (2, 1)} ∪
(0, 1) × (0, 1) , where △ = {(x, x) : x ∈ X} . Now, without loss of generality, we may assume x > y in the

following four cases:

Case 1. For x, y ∈ [0, 1] , then we have y = 0 and x ̸= 0. Therefore, since

H(Tx, Ty) =
1

4
≤ 1

3

3

4
≤ 1

3
d(0, T0) =

1

3
d(y, Ty) ≤ 1

3
M(x, y)

we obtain

H(Tx, Ty)

M(x, y)
eH(Tx,Ty)−M(x,y) ≤

1
3M(x, y)

M(x, y)
e−

2
3M(Tx,Ty) ≤ 1

3
< e−

1
4 .
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Case 2. For y ∈ 0 and x ∈ {2, 3, ...} , since H(Tx, Ty) = x− 1
4 and d(x, y) = x, we have

H(Tx, Ty)

M(x, y)
eH(Tx,Ty)−M(x,y) ≤ H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y)

≤
x− 1

4

x
e−

1
4 ≤ e−

1
4 .

Case 3. For y ∈ (0, 1] and x ∈ {2, 3, ...} , since H(Tx, Ty) = x and D(x, Tx) = x+ 1 , we have

H(Tx, Ty)

M(x, y)
eH(Tx,Ty)−M(x,y) ≤ H(Tx, Ty)

d(x, Tx)
eH(Tx,Ty)−d(x,Tx)

≤ x

x+ 1
e−1 ≤ e−1 < e−

1
4 .

Case 4. For x, y ∈ {2, 3, ...} , since H(Tx, Ty) = x+ y − 2 and d(x, y) = x+ y , we have

H(Tx, Ty)

M(x, y)
eH(Tx,Ty)−M(x,y) ≤ H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y)

≤ x+ y − 2

x+ y
e−2 < e−2 < e−

1
4 .

This shows that T is a generalized multivalued θ -contraction. Thus, all conditions of Theorem 4 are satisfied

and so T has a fixed point.

The following result is relevant in mapping T : X → K(X). Here we can remove the condition (θ4 ) on

the function θ .

Theorem 5 Let (X, d) be a complete metric space and T : X → K(X) be a generalized multivalued θ -

contraction. If T is upper semicontinuous or θ is continuous, then T has a fixed point.

Proof As in the proof of Theorem 4, we get

θ(D(x1, Tx1)) ≤ θ(H(Tx0, Tx1))

≤ [θ(M(x0, x1))]
k

...

≤ [θ(d(x1, x0))]
k
. (3.9)

Since Tx1 is compact, there exists x2 ∈ Tx1 such that d(x1, x2) = D(x1, Tx1). From (3.9),

θ(d(x1, x2)) ≤ θ(H(Tx0, Tx1)) ≤ [θ(d(x1, x0))]
k
.

By induction, we obtain a sequence {xn} in X with the property that xn+1 ∈ Txn , and

θ(d(xn, xn+1)) ≤ [θ(d(xn, xn−1))]
k
,

for all n ∈ N. The rest of the proof can be completed as in the proof of Theorem 4. 2

From Theorem 4, we obtain the following corollaries.
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Corollary 1 Let (X, d) be a complete metric space and T : X → CB(X) be given a mapping that satisfies

θ(H(Tx, Ty)) ≤ [θ(ad(x, y) + bD(x, Tx) + cD(y, Ty), e [D(x, Ty) +D(y, Tx)])]
k
, (3.10)

for all x, y ∈ X with H(Tx, Ty) > 0 , where k ∈ (0, 1) , a, b, c ≥ 0 , and a + b + c + 2e < 1 . If T is upper

semicontinuous or θ is continuous, then T has a fixed point.

Proof For all x, y ∈ X with H(Tx, Ty) > 0, we have

ad(x, y) + bD(x, Tx) + cD(y, Ty), e [D(x, Ty) +D(y, Tx)]

≤ (a+ b+ c+ 2e)max

{
d(x, y), D(x, Tx), D(y, Ty),

1

2
[D(x, Ty) +D(y, Tx)]

}
≤ M(x, y).

Then by (θ1 ) we see that (3.1) is a consequence of (3.10). This completes the proof. 2

Remark 1 Since every multivalued θ -contraction is multivalued nonexpansive and every multivalued nonex-

pansive mapping is upper semicontinuous, then T is upper semicontinuous. Since (3.10) is a consequence of

(2.1), we get Theorem 3 from Corollary 1.

Corollary 2 Let (X, d) be a complete metric space and T : X → CB(X) be given a mapping that satisfies

H(Tx, Ty)(H(Tx, Ty) + 1)

M(x, y)(M(x, y) + 1)
≤ k2 < 1,

for all x, y ∈ X with H(Tx, Ty) > 0 , where k ∈ [0, 1) . Then T has a fixed point.

Proof By taking θ(t) = e
√
t2+t ∈ Θ, we obtain the corollary from Theorem 4. 2

Corollary 3 Let (X, d) be a complete metric space and T : X → CB(X) be given a mapping that satisfies

H(Tx, Ty) ≤ ad(x, y) + bD(x, Tx) + cD(y, Ty)

for all x, y ∈ X , where a, b, c ≥ 0 and a+ b+ c < 1 . Then T has a fixed point.

Proof If θ(t) = e
√
t and k =

√
a+ b+ c, since H(Tx, Ty) ≤ (a + b + c)M(x, y), from Theorem 4, then the

corollary is proved. 2

Corollary 4 Let (X, d) be a complete metric space and T : X → CB(X) be given a mapping that satisfies

H(Tx, Ty) ≤ λmax {D(x, Tx), D(y, Ty)}

for all x, y ∈ X , where λ ∈ [0, 1) . Then T has a fixed point.

Proof If θ(t) = e
√
t and k =

√
λ, since H(Tx, Ty) ≤ λM(x, y), from Theorem 4, then the corollary is proved.

2
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