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Abstract:We consider a general class of nonlinear constrained optimization problems, where derivatives of the objective

function and constraints are unavailable. This property of problems can often impede the performance of optimization

algorithms. Most algorithms usually determine a quasi-Newton direction and then use line search techniques. We propose

a smoothing algorithm without the need to use a penalty function. A new algorithm is developed to modify the trust

region and to handle the constraints based on radial basis functions (RBFs). The value of the objective function is

reduced according to the relation of the predicted reduction of constraint violation achieved by the trial step. At each

iteration, the constraints are approximated by a quadratic model obtained by RBFs. The aim of the present work is to

keep the good position for the interpolation points in order to obtain a proper approximation in a small trust region.

The numerical results are presented for some standard test problems.

Key words: Exact penalty function, derivative-free method, trust-region method, nonsmooth optimization, radial basis

functions, constrained optimization, nonlinear programming

1. Introduction

Consider the nonlinear optimization problem with general nonlinear constraints:

min
x

f(x)

s.t.
gp(x) ⩾ 0 p ∈ I1 = {1, 2, . . . , P}
ht(x) = 0 t ∈ I2 = {1, 2, . . . , T},

(1)

where x ∈ Rn , f : Rn → R , gp, ht : Rn → R , p ∈ I1 , t ∈ I2 are real valued continuous functions for which

there is no need for differentiability.

The penalty method needs the evaluation of the objective function and the constraints. There are

several difficulties associated with the use of penalty functions. The effectiveness of these methods depends

on the selection of penalty parameter. To avoid this deficiency, penalty-free methods are proposed. Moreover,

computation of the objective and constraints is complicated.

The first proposed penalty-free method seems to be an algorithm presented by Yamashita [47]. In [47],

a quasi-Newton method that does not use a penalty function for equality constraints is developed. In 2003,
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Yamashita and Yabe [48] modified this algorithm so that it can be applied to the solution of problems with

equality and inequality constraints. Another early penalty-free method is the Zoppke-Donaldsons tolerance-

tube algorithm, which was introduced in the author’s PhD thesis [50] in 1995. On the other hand, researchers

proposed some other penalty-free methods such as the SQP method by Liu and Yuan [30]. To avoid the selection

of the penalty parameter, some authors worked on the technique without the penalty function, for example,

see [10, 12, 26, 42]. The methods that do not use any penalty function are called the penalty-free-type ones.

Several extensions of trust region methods for problems involving inequality constraints have been proposed;

some of them are based on trust region methods for box-constrained problems; see, Byrd [8], Omojokun [35],

Dennis et al. [22], Conn et al. [15], Dennis and Vicente [24], and Chen et al. [11]. There are other related

approaches, such as Dennis et al. [23], Plantenga [37], Vicente [44], Byrd et al. [9], and Coleman and Li [14],

which combine the trust region method with the interior point method.

Most of these approaches require derivatives of the objective function and the constraints. We also assume

that some derivatives of the objective and constraint functions are either unavailable or are computationally

too expensive to obtain.

Recently, derivative-free trust region algorithms have been used increasingly [18, 29, 39, 49]. A common

approach is to combine conventional algorithms such as genetic algorithms or pattern search with surrogate

models to solve expensive problems. For instance, Booker et al. [6] and Jones et al. [28] proposed methods

based on Kriging basis functions. In recent years, nonlinear optimization is perhaps one of the most common

reasons for using derivative-free methods. Forming surrogate models by interpolation has been proposed by

Winfield [46] and reviewed by Powel [39] and Conn [18]. A derivative-free algorithm for constrained global

optimization based on exact penalty functions has been proposed by Pillo et al. [36]. Regis and Shoemaker [41]

constructed a surrogate model based on radial basis functions (RBFs).

The present paper gives a new derivative-free method without a penalty function for the solution of (1),

which belongs to the class of trust-region methods for constrained optimization. The underlying idea of this

method is towards the two goals in determining a trial point, whether it is accepted or not. One of them is to

improve the feasibility and the other is to reduce the value of the objective function.

The main contribution of this paper is to given trust-region algorithm using RBF’s interpolation without

using any penalty function or filter. Thus, the new method does not need updating the penalty parameter in

each iteration.

Our aim in this paper is to find an efficient algorithm for the global solution of optimization problems

with general constraints. At each iteration instead of constraints a quadratic surrogate model is built via RBFs

to obtain the suitable feasible point to have a sufficient decrease in the objective function. Thus, we have chosen

the position of interpolation points within a sphere of radius ∆ > 0 around the trial point. The important idea

is the assumption that the interpolation points exist and can well approximate constraints in small spheres.

When the current trial point is not sufficiently close to a local minimum, we update the interpolation points

and construct a new model by RBFs.

In the previous methods, whenever a trial point did not decrease the objective function as expected,

one of the interpolation points was replaced by another evaluated point. In our approach, all the interpolation

points can be changed at each iteration. Since evaluation of objective function is computationally expensive,

we stress the importance of having complete knowledge of all points previously evaluated by the algorithm.

This is a fundamental difference between our method and previous algorithms, where, in order to reduce linear

algebraic costs, the interpolation set was allowed to change by at most one point under proper assumptions.
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The proposed method will guarantee global convergence. Furthermore, models based on RBFs have been shown

to be of interest for global optimization.

The paper is organized as follows. In section 2, the surrogate model is introduced. In section 3, the RBFs

are described. In section 4, we present a derivative-free optimization method. Section 5 gives a summary of the

surrogate model based on RBFs. In section 6, the algorithm is introduced and its convergence properties are

established. Numerical results for some examples are reported in the last section.

Throughout the paper ||.|| denotes the Euclidean norm and for simplicity we also use subscripts to denote

functions evaluated at iterates, for example, fk = f(xk), k = 1, 2, . . . , gp = g(xp), and ht = h(xt).

2. Surrogate method

We consider the following nonlinear subproblem:

min
x∈Rn

C(x) =
T∑

t=1

h2
t (x) +

P∑
p=1

max(gp(x), 0), (2)

where gp : Rn → R and ht : Rn → R are functions that are not necessarily differentiable. In this paper, we

propose the smooth surrogate model, which is minimized more easily than C(x).

We remark that surrogate modeling is referred to as a technique that uses the sample points to build a

surrogate function, which is sufficient to predict the behavior of the C(x).

2.1. Quadratic surrogate model

Powell [39] and Conn et al. [17, 18] proposed the surrogate model as follows:

Sm(xk + s) = C(xk) +∇C(xk)
T s+

1

2
sT∇2C(xk)s,

where C(x) is twice differentiable and admits a Hessian matrix ∇2C(x) that is positive definite.

The goal is to construct the surrogate model Sm(x) instead of the C(x), which is computationally simple

and inexpensive with good analytical properties. It could be used in optimization because of its simplicity and

suitable algebraic form.

To build a quadratic model, we define the trust region Bk := {x ∈ Rn : ||x − xk|| ≤ ∆k} . At each

iteration of the surrogate method, the solution of the optimization problem inside Bk [16, 33], as

min
s

Sm(xk + s) s.t. ||s|| ≤ ∆k, (3)

is needed for some trust region with radius ∆k ≥ 0. The ratio of the actual C(x) over the predicted Sm(x) is

as follows:

ρk =
C(xk)− C(xk + sk)

Sm(xk)− Sm(xk + sk)
; (4)

given the standard trust region 0 ≤ η0 ≤ η1 < 1, 0 < γ0 < 1 < γ1 , 0 < ∆k ≤ ∆max , and xk ∈ Rn , we define a

model Smk on Bk , and compute a step sk such that xk + sk ∈ Bk , in order to sufficiently reduce the model

Sm(xk).
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By accepting the trial point xk , we compute C(xk + sk) and ρk by using (4), and then update the

surrogate model parameters as follows:

xk+1 =

{
xk + sk ρk ≥ η0
xk o.w.

and

∆k+1 =

 ∆k η0 ≤ ρk < η1 ,
min{γ1∆k,∆max} ρk ≥ η1 ,
γ0∆k ρk < η0;

the following assumptions were considered in this section:

(A1) C(x), which is defined by (2), is a two times differentiable function.

(A2) {xk} is a bounded sequence.

(A3) ||∇C(xk)||
||∇2C(xk)|| = +∞ when ∇2C(xk) = 0.

Suppose that these assumptions hold. Let sk be a solution of subproblem (3). The following lemma, which can

be obtained from the well-known result (Powel), is needed [39]:

Lemma 1 Subproblem (3) satisfies a sufficient decrease condition of the form

Sm(xk)− Sm(xk + sk) ≥
c

2
||∇Ck||min(∆k,

||∇C(xk)||
||∇2C(xk)||

),

for some constant c ∈ (0, 1) .

We implement the trust region method by using a cubic RBF model with 2-norm and we take care to distinguish

between the trust region norm (at iteration k ) and the standard 2-norm is used in the sequel.

Note that now the main questions are as follows: how to build surrogate models and how to evaluate the

accuracy of the surrogate models?

3. Interpolation by radial basis functions

RBFs are a powerful tool to solve the multivariate scattered data interpolation problems. Their use is not

common in optimization but they have a potential that we have exploited by developing a new derivative-

free algorithm based on RBFs. The scattered data interpolation problem consists of finding a function that

interpolates another function at some given points. Interpolation functions based on radial basis functions have

some nice properties. The matrix of the system made by these interpolation constraints is nonsingular.

A radial basis function ϕ(x) by the linear combination of N translates of a radial function is a one

variable continuous function, where ϕ(x) = ϕ(||x− xi||), i = 1, . . . , N for a finite set of center’s xi ∈ Rn . Here

the radial basis function is simply ϕ(r) = ϕ(||x− xi||), i = 1, . . . , N [7].

A multivariate interpolation can be stated as follows: given data (xi, C(xi)), i = 1, . . . , N , with xi ∈ Rn ,

C(xi) ∈ R , we find a continuous function Sm(x) such that Sm(xi) = C(xi), i = 1, . . . , N .

The function Sm(x) is assumed to be given by a linear combination of RBFs for the interpolation points

{yi}Ni=1 , that is,

Sm(xk + s) =
N∑
i=1

λiφ(||s− yi||) + V (s), (5)
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where φ(||s − yi||) from R+ to R is a univariate function centered at the point s . Note that we have

V (s) =
M∑
j=1

γjνj(s), where ν = {ν1(s), . . . , νM (s)} is an ordered basis for the linear space πn
M−1 , and Γ =

{γ1, . . . , γM} ∈ R are scalar coefficients to be determined. The space of n variable polynomials of total degree

less than or equal to M − 1. {λj}Nj=1 are the unknown RBF’s coefficients. Sm(x) as defined by (5) has M

degrees of freedom. To overcome additional degrees of freedom two more constraints are imposed as follows:

Sm(xi + s) = C(xi + s), i = 1, . . . , N, (6)

N∑
i=1

λiνk(s) = 0, k = 1, . . . ,M. (7)

We consider the equations (6) and (7) can be written in the form of the symmetric linear system:

[
Φ V
V T 0

] [
Λ
Γ

]
=

[
f
0

]
, (8)

where Λ = {λi}Ni=1 and Γ = {γj}Mj=1 are the undetermined coefficient vectors. For the sake of clarity, the

matrix Φ is in the form:

Φ =

 φ(||x1 − x1||) · · · φ(||x1 − xN ||)
...

...
φ(||xN − x1||) · · · φ(||xN − xN ||)


N×N

.

It can be seen (8) is well-posed if the coefficient matrix is nonsingular [7]. Moreover, RBFs can be classified by

using the concept of conditionally positive definite functions. The main interest of the concept of conditionally

positive definite functions is characterization of the nonsingularity of the interpolation matrix.

Definition 1 Let ν be a basis for πn
M−1 , with the convention that π = ∅ if M = 0 . A function φ is said to

be conditionally positive definite (CPD) of order M if for all distinct points in Y ⊂ Rn and all λ ̸= 0 , such

that
∑|Y |

i=1 λiπ(yi) = 0 , the quadratic form
∑|Y |

i,j=1 λiλjφ(|yj − yi||) is positive[7, 32, 45].

Micchelli [32] proved that the interpolation problem in equation (8) is solvable when the following two conditions

are met:

(A1) The points {xj}Nj=1 are distinct.

(A2) The RBFs used are conditionally positive definite.

Some of the most popular RBFs are shown in Table 1.

4. Derivative-free optimization

In this section, we suppose that C(x) is a function from Rn into R that is not necessarily smooth. The

algorithm is based on approximating the function (2) by a positive definite quadratic model. The main idea is

to use the available values of C(x) and building a quadratic model by interpolating within a trust region.

Suppose that in the current xk , we have the sample points Yk = {y1k = 0, y2k, . . . , y
N
k } , with yik ∈ Rn ,

i = 1, . . . , N , which contains the points that are in the neighborhood of xk . Furthermore, we will always enforce
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Table 1. Some examples of popular RBFs and their orders of conditional positive definiteness.

ϕ(r) Order Parameters Example

rβ 2 β ∈ (2, 4) Cubic, r3

(c2 + r2)β 2 c > 0, β ∈ (1, 2) MqI, (c2 + r2)
3
2

−(c2 + r2)β 1 c > 0, β ∈ (0, 1) MqII,−(c2 + r2)
1
2

(c2 + r2)−β 0 c > 0, β > 0 Inv.Mq, (c2 + r2)−
1
2

Exp(−c2r2) 0 c > 0 Gaussian, Exp(−c2r2)

interpolation at the current iterate xk so that xk = y1k . We wish to construct a quadratic model of the form

Sm(xk + s) = C(xk) +∇C(xk)
T s+

1

2
sT∇2C(xk)s, (9)

where ∇C(xk) ∈ Rn , and ∇2C(xk) ∈ Rn×n is a symmetric matrix [34]. We impose the interpolation

condition in what follows:

Sm(xk + yj) = C(xk + yj), j = 1, . . . , N. (10)

We now need to evaluate Sm(xk + s) in N = 1
2 (n + 1)(n + 2) points to find an approximating quadratic

form, where n is the number of variables [5, 18, 20].

We consider {φi(.)}Ni=1 as a basis for the linear space of N -dimensional quadratic functions. The

quadratic function (9) can be expressed as

Sm(xk + yj) =
N∑
i=1

λiφi(y
j), j = 1, . . . , N

for some coefficients λi , which should be determined from the interpolation equation (10),

N∑
i=1

λiφi(y
j
k) = C(xk + yjk), j = 1, . . . , N.

λi ’s are unique if the matrix below is nonzero φ1(y
1
k) · · · φ1(y

N
k )

...
...

φN (y1k) · · · φN (yNk )

 ,

and is invertible. Then iteratively we optimize and update the surrogate model Smk to reach a

satisfactory solution.

5. Surrogate methods based on radial basis functions

In this section, the relevance of the surrogate methods and RBFs is considered. Suppose

Sm(xk + s) =
N∑
i=1

λiφi(s) +
M∑
k=1

γkνk(s);
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the model is twice differentiable, which is important for the convergence part of our method [21, 40]. This study

considers the interpolation condition at the points of Y :

Sm(xk + yik) = C(xk + yik), ∀yik ∈ Y.

Let Φ ∈ RN×N , V ∈ RN×M be the matrices defined by Φij = φ(||yi − yj ||) and Vjk = νk(y
j), k = 1, . . . ,M .

Then the interpolation condition can be expressed as ΦΛ+V Γ = C. By using RBFs we get the following linear

system:[
ΦN×N VN×M

V T
M×N 0M×M

] [
ΛN×1

ΓM×1

]
=

[
CN×1

0M×1

]
⇒

[
Φ V

0M×N −V TΦ−1V

] [
Λ
Γ

]
=

[
C

−V TΦ−1C

]
, (11)

with the solution Γ = (V TΦ−1V )−1V TΦ−1C , Λ = Φ−1(C − V Γ).

Sufficient condition for the solvability of system (11) is that the points in Y are distinct and yield a V

of full column rank.

Suppose that V = QR and hence R ∈ RN×M . The null space of matrix V T , denoted ℵ(V T ), is the set

of all solutions to the homogeneous equation V TZ = 0. Written in set notation, we have

ℵ(V T ) = {Z : Z ∈ RN and V TZ = 0}

If Z is an orthonormal basis for the null space of V T [3], using the equation (7) it follows that

Λ ∈ ℵ(V T ). Therefore, Λ = Zw . According to (11), ΦΛ + V Γ = C . Multiplying by ZT from the left

gives ZTΦΛ + ZTV Γ = ZTC . Keeping in mind that Z is an orthonormal basis for the null space V T , we

obtain ZTV Γ = 0. Hence

ZTΦZw = ZTC. (12)

Now we can obtain w from (12) and compute Λ. If we use RBFs based on cubic spline [7, 20], which is the

smooth and conditional positive definite interpolants, then ZTΦZ is also positive definite. By replacing the

Cholesky factorization ZTΦZ = LLT , in which L is a nonsingular lower triangular matrix in (12), we obtain

LLTw = ZTC , which yields w = (LLT )−1ZTC and so

||Λ|| = ||Zw|| = ||Z(LT )−1L−1ZTC|| ≤ ||L−1||2|C|.

Moreover, for procure Γ, we have ΦΛ + V Γ = C , which by using the QR factorization and premultiplying by

QT , yields RΓ = QT (C − ΦΛ). Finally Λ = Zw concludes

RΓ = QT (C − ΦZw). (13)

Now we discuss a method of creating surrogate models. For this purpose Φ must be conditionally positive

definite of order at least 2 (Table 1) and V ∈ πn
2 linear.

The RBF coefficients λi and γi must be bounded in magnitude. Suppose yi is the ith point in Y , that

is in the vicinity of the trust region. However, for n ≥ 1 equation (10) is not sufficient for the existence and

uniqueness of the interpolant and to guarantee the good quality of the model. Some geometric conditions on

the set Y are required to ensure the existence and uniqueness of the interpolant [19].
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Definition 2 Let Y = {y1, . . . , yN} be points in Rn . These points are called affinely independent if there do

not exist real numbers α1, α2 . . . αN that are not all zero such that
N∑
i=1

αiy
i = 0 and

N∑
i=1

αi = 0 .

The process can be summarized as follows:

The study chooses the n+1 affinely independent points and then generates the other interpolation points.

Definition 3 Y is unisolvent for πn
M if there exists a unique polynomial in πn

M of lowest possible degree with

interpolation points of Y .

The cubic spline φ(r) = r3 in dimension n is unisolvent on points Y = {y1, . . . , yN} if the matrix[
φ(||yi − yj ||)

]
1 ≤ i, j ≤ N,

is invertible for any choice of N distinct points y1, . . . , yN ∈ Y . Unisolvent systems of RBFs are widely used

in interpolation because they guarantee a unique solution to the interpolation problem. This is equivalent to

the interpolation system (11), which is nonsingular if the interpolation point set Y is unisolvent.

The collection of n+ 1 distinct points will uniquely determine a polynomial of lowest possible degree in

πn . In this section, we describe an algorithm to find n + 1 interpolation points that are affinely independent.

We suppose D := {di ∈ ∆k | C(xk + di) is known} ; we note that ∆k is the chosen radius of the current

trust-region. Algorithm 1 shows how to obtain n+ 1 affinely interpolation points.

Algorithm 1 For finding n+1 affinely independent points:

Step0: Constants 0 < γ0 ≤ γ1 , ∆k ∈ (0,∆max] and |D| > N .

Step1: Choose D = {d1, d2, . . . , d|D|} ⊂ Rn such that xi = xk + di are close to xk .

Step2: Let Z = In .

Step3: While i, j ≥ 1

if ||di|| ≤ γ1.∆k , define u = di

γ0∆k
,

if ||projuZ || ≥ γ0 , then yj = di ,

Using the Gram–Schmidt algorithm, we obtain an orthogonal basis for Y as Z̄ , update Z = Z̄ ,

Step4: If |Y | < n+ 1

if ||di|| ≤ 2∆max , define u = di

γ0∆k

if ||projuZ || ≥ γ0 , then yj = di

Using the Gram–Schmidt process, we obtain an orthonormal basis for Y as Z̄ . Update Z = Z̄ .

We note that the projections in Steps 3 and 4 are exactly the magnitude of the pivot that results from

adding point di to Y . The projection of di onto Y is defined by ⟨Y,di⟩
||Y ||2 Y . We can alternatively define the

projection of di onto Y to be the vector in the space spanned by Y that is closest (in Euclidean distance) to

di .

However, with n + 1 points, the solution of the system (11) is just interpolation obtained for linear

function and coefficient Λ = 0N . To build the surrogate model for nonlinear functions, we must add some new

points. Algorithm 2 shows how we can obtain ”well independent” additional sample points in the trust region.
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Algorithm 2 Finding additional independent points

Step0: Input Y (obtained from algorithm 1), pmax = (n+1)(n+2)
2 and D = {d1, d2, . . . , d|D|} ⊂ Rn .

While i ≥ 1

Step1: If |Y | < pmax ,

ΠT =

[
y1 = 0 y2 . . . y

|Y |
di

1 1 . . . 1 1

]
.

Step2: Find the orthogonal basis Z for null space Π.

Step3: Build the interpolation matrix by using the cubic spline function at sample points Y ,

Φnew =

[
Φ Φdj

ΦT
dj

0

]
.

Step4: Obtain P=ZTΦnewZ :

P = ZTΦnewZ =

[
ZTΦZ ZTΦdjZ
ZTΦT

dj
Z 0

]
.

Step5: P is positive definite for cubic spline function φ(r) = r3 ; note that for P to be positive definite, the

points Y must be distinct.

Step6: Let P = LLT ; if all diagonal entries of L are positive, then add dj to the set of sample points Y .

This procedure continues until |Y | = (n+1)(n+2)
2 . Note that the points D = {d1, . . . , d|D|} are in the

neighborhood of the trial point xk with radius ∆k by using a random process.

In a derivative-free algorithm, it is essential to guarantee whenever necessary a model for the objective

function with uniformly good local accuracy can be constructed. Indeed, it is no longer guaranteed that the

model Sm(xk) approximates the function locally. Therefore, it is required that we design a derivative-free

method similar to derivative-based models.

The main difference between interpolation models and gradient-based models is that the former are

considered as suitable approximations of the objective function only under some specific conditions. These

conditions depend mainly on the geometry of the points. If they are satisfied, we say that the model is valid in

the trust region. If not, new points are generated to improve the accuracy of the model. The class of algorithms

based on interpolation models is called the conditional trust region method. The term conditional just means

that the model is a convenient approximation of f only if some conditions are satisfied. The general framework

of trust region methods guarantees convergence to a first- or second-order critical point, depending on the

assumptions on the model and on the objective function. A full analysis of trust region methods can be found

in [25, 39, 49].

The radial function φ must be both twice continuously differentiable and we have relatively simple

analytic expressions for the gradient:

∇Smk(xk + s) =
N∑
i=1

λiφ
′(||s− yik||)

s− yi

||s− yik||
+∇V (s),
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and similarly for the Hessian,

∇2Smk(xk + s) =
N∑
i=1

λi[
φ′(||s− yik||)
||s− yik||

In + (φ′′(||s− yik||)−
φ′(||s− yik||
||s− yik||

)
(s− yik)

||s− yik||
(s− yik)

T

||s− yik||
]

6. Optimization surrogate based on radial basis functions (OSRB)

This section discusses the details of the derivative-free algorithm for finding a global solution of problem (1).

As pointed out in the introduction, since the objective function and constraints are not necessarily smooth, the

traditional methods are not sufficient to search good directions. In order to optimize problem (1) in a feasible

area, similar to the penalty method, the two following aims are considered. One is to satisfy the constraints

and the other is to minimize the objective function. We give the algorithm of the feasibility phase in which

a surrogate model of problem (2) is solved. The algorithm proceeds until the magnitudes of the constraints

become less than a natural stopping criterion.

Here we propose a derivative-free algorithm without using the penalty parameter. In this algorithm we

solve the subproblem (3), which is approximated by using RBFs (as in Section5) and obtain a search direction
sk .

Given the current iterate xk at step k , we probe the behavior of the objective function f(x) along the

direction sk . In the case a sufficient reduction of the function value is obtained, a suitable optimal solution is

computed and is used for the next iteration, i.e. xk+1 = xk + sk . If we do not obtain a sufficient reduction,

then the trust region radius ∆k is updated and interpolation points are chosen again (Algorithms 1 and 2).

By solving the subproblem (3), we obtain another direction sk at the next iteration that suitably reduces the

objective function.

Given N , a set of distinct interpolation points Yk = {y1k = 0, y2k, . . . , y
N
k } ∈ Rn , and the function values

{C(xk + yik)} , we obtain the surrogate model for C on Yk . Algorithm 3 is described as follows:

In step 1, the interpolation points set Y = {y1 = 0, . . . , ypmax} is determined, which are linearly

independent. In step 2, we consider how to construct a model and to obtain parameters of RBF model from

(12) and (13). In step 4, the algorithm uses criteria for model Smk(xk + s) and updates the parameters trust

region method. We finds the candidate step sk by approximately solving the subproblem (3). In this paper,

we solve subproblem (3) by using the Fmincon function in MATLAB software.

6.1. Convergence properties of OSRB algorithm

In this study, the trust region algorithm ensures that C(x) is sampled only within the relaxed level set,

L(x) := {y ∈ Rn; ||x− y|| ≤ ∆max}.

Theorem 1 Let {∆k} and {xk} be sequences generated by the OSRB algorithm. Then lim
k→∞

∆k = 0 and

lim
k→∞

∇C(xk) = 0 .

Proof After the last successful iteration, there is an infinite number of iterations that are not either acceptable

or successful. If xk+1 = xk+sk is obtained so that C(xk+1) ≤ C(xk), then ∆k is never increased for sufficiently

large k , and so ∆k is decreased at least once every n iterations by a factor of 0 < γ < 1; thus ∆k convergence

to zero. Secondly, for each k , after the j th iteration we have ||xk − xj || → 0 since ||xk − xj || ⩽ lim
k→∞

n∆k and
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Algorithm 3 Iteration k of a derivative-free surrogate model

Step0: Input 0 ≤ γ0 < γ1 ≤ 1, 0 < η < 1, 0 < ∆1 ≤ ∆max , θ > 1 and ϵ, ϵ′ > 0.

We assume that trial point xk is given.

While k ≥ 1

Step1: From algorithm 1 and 2 find independent points that are denoted by Y .

Step2: Obtain surrogate model Sm(xk + s) by using the RBFs described in Section 5.

Step3: If |f(x)| ≤ ϵ′ , then terminate.

Step4: While ||∇Sm(xk)|| > ϵ

If Sm(xk)− Sm(xk + sk) ≤ η
2 ||∇Sm(xk)||min(∆k,

||∇Sm(xk)||
||∇2Sm(xk)|| )

Obtain a step sk by solving: min {Sm(xk + s) ; xk + s ∈ B(xk,∆k)}.
Evaluate f(xk + sk) and update the trial point according to the ratio ρk (4),

xk+1 =

{
xk + sk f(xk + sk) ≤ f(xk)
xk o.w.

∆k+1 =

{
min{γ1∆k,∆max} f(xk + sk) ≤ f(xk)
γ0∆k f(xk + sk) > f(xk)

If there are no adaptable direction sk to minimize Sm(xk), otherwise update ∆k = θ.∆k and go to Step 1.

lim
k→∞

n∆k → 0. Now

||∇C(xk)|| ⩽ ||∇C(xk)−∇Sm(xk) +∇Sm(xk)|| ⩽ ||∇C(xk)−∇Sm(xk)||+ ||∇Sm(xk)||.

All terms on the right-hand side are equal to zero. 2

The statement of theorem 1 gives a natural stopping criterion for the OSRB algorithm. It results from

the updating of the trust region at the k -th iteration.

Surrogate model Smk is made such that

Sm(xk + sk)− Sm(xk) = GT sk + 1
2sk

THksk,

where Gk = ∇C(xk) and Hk = ∇2C(xk).

Assumption 1 The following assumptions were considered:

(A1) The expression C(x) , defined by (2), is bounded below on L(x) .

(A2) The quadratic model Sm(x) , defined by (9), is twice continuously differentiable.

Now we discuss the corresponding lemma 2 on the models realizations that we use in the algorithm. This lemma

guarantees that we are able to adequately reduce the model at each iteration of our algorithm.

Lemma 2 Suppose that assumption 1 holds. Then

Sm(xk + sk)− Sm(xk) ≥
1

2
||Gk||min{∆k,

||Gk||
||Hk||

}.

Proof We first note that

Sm(xk − αkG) = Sm(xk)− α||G||2 + 1

2
α2GTHG.

818



RAHMANPOUR et al./Turk J Math

If sk = −H−1
k Gk such that ||sk|| ≤ ∆k , then the quadratic subproblem (9) can be resolved,

Sm(xk −H−1
k Gk) = Sm(xk)−H−1

k ||Gk||2 +
1

2
(H−1

k )2GT
k HkGk.

Knowing the cubic spline is twice continuously differentiable and Hk is symmetric and positive definite,

GT
k HkGk > 0 , we know the model is convex along direction sk and so a stationary point will necessarily

be the global minimizer in the direction sk . Denoting the optimal parameter by α∗ we have

−||Gk||2 + α∗GT
k HkGk = 0 ⇒ α∗ =

||Gk||2

GT
k HkGk

.

Thus if ||α∗Gk|| ≤ ∆k , we conclude

Sm(xk + sk)− Sm(xk) = − ||Gk||4

GT
k
HkGk

+
1

2

||Gk||4

GT
k
HkGk

= −1

2

||Gk||4

GT
k
HkGk

,

and consequently

Sm(xk)− Sm(xk + sk) =
1
2

||Gk||4
GT
k
HkGk

≥ 1
2

||Gk||2
GT
k
HkGk

≥ 1
2 ||Gk||min{∆k,

||Gk||
||Hk||}.

2

It is worth noting that lemma 2 guarantees that the OSRB algorithm is convergent and the objective function

will sufficiently decrease at iteration k . The subproblem (3) is required to satisfy a sufficient decrease condition

of the form given in lemma 2 at each iteration.

7. Numerical results

In this section, we present preliminary computational results to illustrate the performance of the Algorithm 3,

denoted by OSRB. For the nonlinear programming problems we use the following OSRB parameters: ∆1 =

max(1, ||x0||), ∆max = 103∆1 , η0 = 0, η1 = 10−3 , γ0 = 0.1, γ1 = 10, and termination criterion ||∇Sm(xk)|| <
1.e− 7.

We present the well-known engineering optimization problem. This example has linear and nonlinear

constraints, and has been previously solved using a variety of other techniques, and is useful to show the

validity and effectiveness of the proposed algorithm.

Example 1 Tension/compression spring design problem

The tension/compression spring design problem is described by Belegundu [2] and Arora [1] for which the aim is

to minimize the weight (f(x)) of a tension/compression spring (as shown in Figure1) subject to constraints on

minimum deflection, shear stress, surge frequency, limits on outside diameter, and design variables. The design

variables are wire diameter d(x1), mean coil diameter D(x2), and number of active coils P (x3). Formally, the

problem can be expressed as
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Figure 1. Tension/compression spring design problem.

min
x

f(x) = (x3 + 2)x2x
2
1

s.t.

g1(x) = 1− x3
2x3

71785x4
1
≤ 0

g2(x) =
4x2

2−x1x2

125669(x2x3
1−x4

1)
+ 1

5108x2
1
− 1 ≤ 0

g3(x) = 1− 140.45x1

x2
2x3

≤ 0

g4(x) =
x1+x2

1.5 − 1 ≤ 0
0.05 ⩽ x1 ⩽ 2
0.25 ⩽ x2 ⩽ 1.30
2.00 ⩽ x3 ⩽ 15.00

The comparison of the best solution among several algorithms is given in Table 2. This problem has been

used as a benchmark problem for testing different optimization methods, such as Coello [13], CONMIN [43],

and OPTDYN [4].

We present a set of nonlinear programming problems from [27] that have been solved by the OSRB

algorithm proposed to accommodate a practical experiment to show the success of the proposed method. Note

that the interpolation points are chosen so that the interpolation matrix always is invertible even when the trust

region is very small.

Table 2. Comparison of the results for example 1 (tension/compression spring design problem).

D. V
Best solution
This paper Coello Arora M-5 OPTDYN

x1 0.05031 0.051989 0.053396 0.05000 0.0644
x2 0.35321 0.363965 0.399180 0.315900 0.7488
x3 11.1013 10.890522 9.185400 14.25000 2.9597
g1(x) −0.0637065 −0.000013 0.000019 −0.000014 −0.005134
g2(x) −0.07027909 −0.000201 −0.000018 −0.003782 0.002609
g3(x) −4.1019 −4.061338 −4.123832 −3.938302 −4.450398
g4(x) −0.073098 −0.722698 −0.698283 −0.756067 −0.457867

We have employed the Fmincon routine from MATLAB, which corresponds to the surrogate model. The

starting points are randomly chosen in our algorithm. We solve problem (1) with equality and inequality

constraints to show the efficiency of the proposed method.

The numerical results for the test problems are listed in Table 3. The headers of the columns are as

follows: n is number of variables, Eq. and Ineq. are number of equality and inequality constraints respectively,

f is the final value of the objective function value at the final iteration, and nf is the number of objective
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function evaluations. The problems are numbered in the same way as in Hock and Schittkowski [27]. For

example, HS6 means problem 6 in Hock and Schittkowski collection [27].

Table 3 shows the comparison of the best solution of our method in terms of the value of design

variables and function value. The comparison of the OSRB algorithm against the Skinny method [31] and

HOPSPACK [38] shows that our algorithm is more robust, because the number function evaluations are less

than in most problems; also in HOPSPACK [38] some problems have no feasible solution, whereas our algorithm

is always able to find a feasible point. These overall results suggest that the proposed OSRB can be considered

an effective optimization technique for solving nonsmooth constrained optimization problems.

Table 3. Comparison of the results. The function values marked with ’*’ are infeasible solutions.

This paper Algorithm in [31] HOPSPACK [38]
Problem n Eq. Ineq. f nf f nf f nf

HS6 2 1 0 7.7849E-17 83 8.8304E-08 97 4.8400E+00* 151
HS7 2 1 0 -1.7321E+00 98 -1.7321E+00 150 6.93147E-01 325
HS8 2 2 0 -1.0000E+00 43 -1.0000E+00 56 -1.0000E+00* 187
HS9 2 1 0 -5.0000E+00 78 -5.0000E-01 109 -5.0000E-01 26
HS14 2 1 1 1.3935E+00 112 1.3935E+00 142 1.3941E+00 202
HS26 3 1 0 9.0579E-7 26 2.1160E+01 33 2.11600E+01 585
HS27 3 1 0 4.0000E+00 31 4.0000E+00 269 4.0006E+00 1358
HS28 3 1 0 1.2998E-23 29 3.6892E-27 43 7.7034E-08 264
HS32 5 1 1 1.0000E+00 178 1.0000E+00 209 1.0000E+00 51
HS39 4 2 0 -1.0000E+00 101 -1.0000E+00 302 -1.0000E+00 830
HS40 4 3 0 -2.5000E-01 128 -2.5000E-01 215 -2.5056E-01* 897
HS41 4 1 0 1.9259E+00 116 1.9259E+00 348 1.9259E+00 292
HS42 4 2 0 1.3869E+01 173 1.3858E+01 209 1.4000E+01 779
HS48 5 2 0 9.1339E-17 52 1.4960E-16 76 1.1174E-06 497
HS49 5 2 0 6.3236E-09 184 3.7388E-05 261 1.4294E-04 1002
HS50 5 3 0 2.7840E-07 103 7.7030E-06 246 5.2937E-07 290
HS51 5 3 0 5.4689E-17 64 8.4671E-17 88 1.2537E-06 142
HS52 5 3 0 5.3268E+00 191 5.3267+00 337 5.3267E+00* 311
HS53 5 3 0 4.0930E+00 234 400930E+00 295 4.09302E+00 216
HS55 6 6 6 6.3333E+00 96 6.3333E+00 223 - -
HS61 3 2 0 -1.43462E+00 109 -1.4365E+00 196 -1.4300E+02 621
HS63 3 2 0 9.61736E+00 58 9.6172E+02 159 9.6261E+02 317
HS71 4 1 1 1.7032E+01 189 1.7014E+01 398 1.7031E+01* 1939
HS77 5 2 0 2.41495E-01 315 2.4151E-01 598 4.6807E+00* 1904

8. Conclusions

In this paper, we have proposed a smooth penalty-free algorithm based on the trust-region method for solving

nonsmooth constrained optimization problems, and have discussed global convergence. The approach has been

improved by a derivative-free local search phase in which the basis of the algorithm uses the radial basis

functions. This algorithm does not use any penalty function and the constraint violation of the iterate points is

controlled by trust-region radius. The trial step is accepted if the value of the objective function is sufficiently

reduced. At each iteration, a surrogate model is constructed instead of the constraints by RBFs. The most

significant advantage of the proposed algorithm is that the interpolation points can be managed easier in the
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system (11) to have a unique solution. We have tested a set of problems from [27]. The preliminary numerical

simulations illustrate the effectiveness of the proposed method. Study of numerical experiments, especially for

large scale optimization problems, is the aim of our future research.
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