Product of arbitrary Fibonacci numbers with distance 1 to Fibonomial coefficient

Nurettin IRMAK*

Department of Mathematics, Faculty of Arts and Sciences, Ömer Halisdemir University, Niğde, Turkey

| Received: 30.05 .2016 | Accepted/Published Online: 21.09 .2016 | Final Version: 25.07 .2017 |
| :--- | :--- | :--- | :--- | :--- |

Abstract: In this paper, we solve completely the Diophantine equation

$$
F_{n_{1}} F_{n_{2}} \ldots F_{n_{k}} \pm 1=\left[\begin{array}{c}
m \tag{1}\\
t
\end{array}\right]_{F}
$$

for $t=1$ and $t=2$ where $2<n_{1}<n_{2}<\ldots<n_{k}$ positive integers and $\left[\begin{array}{c}m \\ t\end{array}\right]_{F}$ is the Fibonomial coefficient.
Key words: Diophantine equation, Fibonomial coefficient, Fibonacci number

1. Introduction

Let F_{n} denote the $n^{\text {th }}$ term of the Fibonacci sequence. The first few terms of the Fibonacci sequence are $0,1,1,2,3,5,8,13, \ldots$. For $1 \leq k \leq m$, the Fibonomial coefficient $\left[\begin{array}{c}m \\ k\end{array}\right]_{F}$ is defined by

$$
\left[\begin{array}{c}
m \tag{2}\\
k
\end{array}\right]_{F}=\frac{F_{m} F_{m-1} F_{m-2} \ldots F_{m-k+1}}{F_{1} F_{2} \ldots F_{k}}
$$

always taking the integer values.
In 1876, Brocard and independently Ramanujan posed the problem of finding all integral solutions of the Diophantine equation

$$
n!+1=m^{2}
$$

which then became known as the Brocard-Ramanujan equation.
Recently, the Fibonacci version of the Brocard-Ramanujan equation has been studied by several authors. Marques [5] investigated the solutions of the Fibonacci version of the Brocard-Ramanujan Diophantine equation and showed that the Diophantine equation

$$
\begin{equation*}
F_{n} F_{n+1} \ldots F_{n+k-1}+1=F_{m}^{2} \tag{3}
\end{equation*}
$$

has no solution in positive integers m and n. Although the idea of the proof is sufficient and correct, the solutions $F_{4}+1=F_{3}^{2}$ and $F_{6}+1=F_{4}^{2}$ are not been observed, as noted in [7]. Marques [4] then generalized equation (3) one step more and showed that the equation

$$
\begin{equation*}
F_{n} F_{n-1} \ldots F_{1}+1=F_{m}^{t} \tag{4}
\end{equation*}
$$

[^0]has at most finitely many solutions in positive integers n, m, where t is previously fixed. Moreover, it was proven that there is no solution of equation (4) in the same paper for $1 \leq t \leq 10$. Afterwards, Szalay [7] generalized the Diophantine equation (3) as
$$
G_{n_{1}} G_{n_{2}} \ldots G_{n_{k}}+1=G_{m}^{2}
$$
where the binary recurrence $\left\{G_{n}\right\}$ is the Fibonacci sequence, the Lucas sequence, and the sequence of balancing numbers, respectively. In [6], Marques focused on the following Diophantine equation:
\[

\left[$$
\begin{array}{c}
m \tag{5}\\
k
\end{array}
$$\right]_{F} \pm 1=F_{n}
\]

and he proved that there is no solution of equation (5) without $(m, k, n)=(3,2,4)$ and $(m, k, n)=(3,2,1),(3,2,2)$ according to sign + and - , respectively. Very recently, the author of this paper proved that the solutions of the equation

$$
\sum_{k=0}^{m}\left[\begin{array}{c}
2 m+1 \\
k
\end{array}\right]_{F} \pm 1=F_{n}
$$

are $(m, n)=(1,3),(3,14)$ according to the sign - . If the sign is + , then there is no solution (see [3]).
In this paper, we will handle the following Diophantine equation:

$$
F_{n_{1}} F_{n_{2}} \ldots F_{n_{k}} \pm 1=\left[\begin{array}{c}
m \tag{6}\\
t
\end{array}\right]_{F}
$$

for $t=1$ and $t=2$, respectively.

2. Auxiliary results

1. The sequence of the Lucas numbers is given by following recurrence:

$$
L_{n+2}=L_{n+1}+L_{n}
$$

with initial conditions $L_{0}=2$ and $L_{1}=1$ for $n \geq 2$.
2. $F_{2 n}=L_{n} F_{n}$.
3. (Binet formulas) $F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$ and $L_{n}=\alpha^{n}+\beta^{n}$, where $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$.
4. $\alpha^{n-2} \leq F_{n} \leq \alpha^{n-1}$ where $\alpha=\frac{1+\sqrt{5}}{2}$.
5. (Primitive Divisor Theorem) A primitive divisor p of F_{n} is a prime factor of F_{n} that does not divide $\prod_{j=1}^{n-1} F_{j}$. It is known that a primitive divisor p of F_{n} exists whenever $n \geq 13$ (for more details, see [1, 2]). Shortly, we label this theorem as PDT.
6. The factorization of $F_{n} \pm 1$ depends on the class of n modul 4 , namely the identities for the case sign +

$$
\begin{aligned}
F_{4 l}+1 & =F_{2 l-1} L_{2 l+1} \\
F_{4 l+1}+1 & =F_{2 l+1} L_{2 l} \\
F_{4 l+2}+1 & =F_{2 l+2} L_{2 l} \\
F_{4 l+3}+1 & =F_{2 l+1} L_{2 l+2}
\end{aligned}
$$

hold. Similarly, the identities

$$
\begin{aligned}
F_{4 l}-1 & =F_{2 l+1} L_{2 l-1} \\
F_{4 l+1}-1 & =F_{2 l} L_{2 l+1} \\
F_{4 l+2}-1 & =F_{2 l} L_{2 l+2} \\
F_{4 l+3}-1 & =F_{2 l+2} L_{2 l+1}
\end{aligned}
$$

hold for the case - . The above identities can be proven by using Binet formulas for Fibonacci and Lucas numbers.
7. For $n \in \mathbb{Z}^{+}$, then

$$
F_{n} F_{n-1}-F_{n+1} F_{n-2}=(-1)^{n}
$$

holds.

3. The case $t=1$

Theorem 1 The solutions of the Diophantine equation

$$
F_{n_{1}} F_{n_{2}} \ldots F_{n_{k}} \pm 1=F_{m}
$$

in positive integers k, m and $2<n_{1}<n_{2}<\ldots<n_{k}$ are $F_{3}+1=F_{4}, F_{4}-1=F_{3}, F_{3}-1=F_{2}$, and $F_{3} F_{4}-1=F_{5}$
Proof We focus on the Diophantine equation (6) with the case + . For the case - , we can follow in a similar way. Suppose that $F_{4 l}-1=F_{2 l+1} L_{2 l-1}$ holds. Equation (6) turns into

$$
F_{n_{1}} F_{n_{2}} \ldots F_{n_{k}}=F_{2 l+1} L_{2 l-1}
$$

By identity 2, we have that

$$
F_{n_{1}} F_{n_{2}} \ldots F_{n_{k}} F_{2 l-1}=F_{2 l+1} F_{4 l-2}
$$

In the sequel, assume that $l \geq 6$. By the PDT, there exists prime divisors p of $F_{2 l+1}$ and $F_{4 l-1}$ that do not divide $\prod_{j=1}^{2 l} F_{j}$ and $\prod_{j=1}^{4 l-2} F_{j}$, respectively, since $4 l-1 \geq 2 l+1 \geq 13$. Together with identity 5 , the equations $4 l-1=n_{k}$ and $2 n+1=n_{k-1}$ must hold by equation $F_{n_{1}} F_{n_{2}} \ldots F_{n_{k}} F_{2 l-1}=F_{2 l+1} F_{4 l-2}$. We get $F_{n_{1}} F_{n_{2}} \ldots F_{n_{k-2}} F_{2 l-1}=1$, which is not possible since $F_{2 l-1} \geq 1$. The solutions for the case $l \leq 5$ are given in Theorem 1. The remaining cases can be proven in a similar way.
4. The case $t=2$

Theorem 2 The Diophantine equation

$$
F_{n_{1}} F_{n_{2}} \ldots F_{n_{k}}+(-1)^{n}=\left[\begin{array}{l}
n \tag{7}\\
2
\end{array}\right]_{F}
$$

has an infinite family of solutions given by

$$
F_{n_{1}} F_{n_{2}}=F_{n+1} F_{n-2}, n \geq 2
$$

Proof Assume that $n \geq 15$. Let $k=1$ in (7). By identity 7, since we have $F_{n_{1}}=F_{n+1} F_{n-2}$, then the equation $n_{1}=n+1$ must hold by the PDT. Then $F_{n-2}=1$ contradicts the fact $n \geq 15$. If $k=2$, then $F_{n_{1}} F_{n_{2}}=F_{n+1} F_{n-2}$ gives that $n_{2}=n-2$ and $n_{1}=n+1$. If $k \geq 3$, then $F_{n_{1}} F_{n_{2}} \ldots F_{n_{k}}=F_{n+1} F_{n-2}$ yields that $F_{n_{1}} F_{n_{2}} \ldots F_{n_{k-2}}=1$ since $n_{k}=n+1$ and $n_{k-1}=n-2$ by the PDT. However, this is not possible since $n_{1}>2$. Checking the eligible possibilities for the case $n \leq 14$, there is no solution of the Diophantine equation (7).

References

[1] Bilu Y, Hanrot G, Voutier PM. Existence of primitive divisors of Lucas and Lehmer numbers. J Reine Angew Math 2011; 539: 75-122.
[2] Carmichael RD. On the numerical factors of the arithmetics forms $\alpha^{n} \pm \beta^{n}$. Ann Math 1913; 2: 30-70.
[3] Irmak N. Sum of the Fibonomial coefficients at most one away from Fibonacci numbers. Mathematical Reports 2016; 18: 567-571.
[4] Marques D. The Fibonacci version of the Brocard-Ramanujan Diophantine equation. Far East J Math Sci 2011; 56: 219-224.
[5] Marques D. The Fibonacci version of the Brocard-Ramanujan Diophantine equation. Portugal Math 2011; 68: 185189.
[6] Marques D. Fibonomial coefficients at most one away from Fibonacci numbers. Demonstratio Math 2012; 45: 25-28.
[7] Szalay L. Diophantine equations with binary recurrences associated to Brocard-Ramanujan problem. Portugal Math 2012; 69: 213-220.

[^0]: *Correspondence: nirmak@nigde.edu.tr
 2010 AMS Mathematics Subject Classification: 11D02; 11B39.

