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Abstract: In this paper, we solve completely the Diophantine equation

Fn1Fn2 . . . Fnk ± 1 =

[
m

t

]
F

(1)

for t = 1 and t = 2 where 2 < n1 < n2 < . . . < nk positive integers and
[
m
t

]
F

is the Fibonomial coefficient.
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1. Introduction

Let Fn denote the nth term of the Fibonacci sequence. The first few terms of the Fibonacci sequence are

0, 1, 1, 2, 3, 5, 8, 13, . . . . For 1 ≤ k ≤ m, the Fibonomial coefficient
[
m
k

]
F

is defined by[
m

k

]
F

=
FmFm−1Fm−2 . . . Fm−k+1

F1F2 . . . Fk
, (2)

always taking the integer values.

In 1876, Brocard and independently Ramanujan posed the problem of finding all integral solutions of the

Diophantine equation

n! + 1 = m2,

which then became known as the Brocard–Ramanujan equation.

Recently, the Fibonacci version of the Brocard–Ramanujan equation has been studied by several authors.

Marques [5] investigated the solutions of the Fibonacci version of the Brocard–Ramanujan Diophantine equation

and showed that the Diophantine equation

FnFn+1 . . . Fn+k−1 + 1 = F 2
m (3)

has no solution in positive integers m and n. Although the idea of the proof is sufficient and correct, the

solutions F4 + 1 = F 2
3 and F6 + 1 = F 2

4 are not been observed, as noted in [7]. Marques [4] then generalized

equation (3) one step more and showed that the equation

FnFn−1 . . . F1 + 1 = F t
m (4)
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has at most finitely many solutions in positive integers n,m , where t is previously fixed. Moreover, it was

proven that there is no solution of equation (4) in the same paper for 1 ≤ t ≤ 10. Afterwards, Szalay [7]

generalized the Diophantine equation (3) as

Gn1Gn2 . . . Gnk
+ 1 = G2

m,

where the binary recurrence {Gn} is the Fibonacci sequence, the Lucas sequence, and the sequence of balancing

numbers, respectively. In [6], Marques focused on the following Diophantine equation:

[
m

k

]
F

± 1 = Fn, (5)

and he proved that there is no solution of equation (5) without (m, k, n) = (3, 2, 4) and (m, k, n) = (3, 2, 1) , (3, 2, 2)

according to sign + and − , respectively. Very recently, the author of this paper proved that the solutions of

the equation

m∑
k=0

[
2m+ 1

k

]
F

± 1 = Fn

are (m,n) = (1, 3) , (3, 14) according to the sign −. If the sign is +, then there is no solution (see [3]).

In this paper, we will handle the following Diophantine equation:

Fn1Fn2 . . . Fnk
± 1 =

[
m

t

]
F

, (6)

for t = 1 and t = 2, respectively.

2. Auxiliary results

1. The sequence of the Lucas numbers is given by following recurrence:

Ln+2 = Ln+1 + Ln,

with initial conditions L0 = 2 and L1 = 1 for n ≥ 2.

2. F2n = LnFn .

3. (Binet formulas) Fn = αn−βn

α−β and Ln = αn + βn, where α = 1+
√
5

2 and β = 1−
√
5

2 .

4. αn−2 ≤ Fn ≤ αn−1 where α = 1+
√
5

2 .

5. (Primitive Divisor Theorem) A primitive divisor p of Fn is a prime factor of Fn that does not divide

n−1∏
j=1

Fj . It is known that a primitive divisor p of Fn exists whenever n ≥ 13 (for more details, see [1, 2]).

Shortly, we label this theorem as PDT.

826



IRMAK/Turk J Math

6. The factorization of Fn ± 1 depends on the class of n modul 4, namely the identities for the case sign +

F4l + 1 = F2l−1L2l+1

F4l+1 + 1 = F2l+1L2l

F4l+2 + 1 = F2l+2L2l

F4l+3 + 1 = F2l+1L2l+2

hold. Similarly, the identities

F4l − 1 = F2l+1L2l−1

F4l+1 − 1 = F2lL2l+1

F4l+2 − 1 = F2lL2l+2

F4l+3 − 1 = F2l+2L2l+1

hold for the case − . The above identities can be proven by using Binet formulas for Fibonacci and Lucas

numbers.

7. For n ∈ Z+, then

FnFn−1 − Fn+1Fn−2 = (−1)
n

holds.

3. The case t = 1

Theorem 1 The solutions of the Diophantine equation

Fn1Fn2 . . . Fnk
± 1 = Fm

in positive integers k , m and 2 < n1 < n2 < . . . < nk are F3 + 1 = F4 , F4 − 1 = F3 , F3 − 1 = F2 , and

F3F4 − 1 = F5

Proof We focus on the Diophantine equation (6) with the case +. For the case − , we can follow in a similar

way. Suppose that F4l − 1 = F2l+1L2l−1 holds. Equation (6) turns into

Fn1Fn2 . . . Fnk
= F2l+1L2l−1.

By identity 2, we have that

Fn1Fn2 . . . Fnk
F2l−1 = F2l+1F4l−2.

In the sequel, assume that l ≥ 6. By the PDT, there exists prime divisors p of F2l+1 and F4l−1 that do

not divide
∏2l

j=1 Fj and
∏4l−2

j=1 Fj , respectively, since 4l − 1 ≥ 2l + 1 ≥ 13. Together with identity 5, the

equations 4l − 1 = nk and 2n + 1 = nk−1 must hold by equation Fn1Fn2 . . . Fnk
F2l−1 = F2l+1F4l−2 . We get

Fn1Fn2 . . . Fnk−2
F2l−1 = 1, which is not possible since F2l−1 ≥ 1. The solutions for the case l ≤ 5 are given in

Theorem 1. The remaining cases can be proven in a similar way. 2
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4. The case t = 2

Theorem 2 The Diophantine equation

Fn1Fn2 . . . Fnk
+ (−1)

n
=

[
n

2

]
F

(7)

has an infinite family of solutions given by

Fn1Fn2 = Fn+1Fn−2, n ≥ 2.

Proof Assume that n ≥ 15. Let k = 1 in (7). By identity 7, since we have Fn1 = Fn+1Fn−2, then the

equation n1 = n + 1 must hold by the PDT. Then Fn−2 = 1 contradicts the fact n ≥ 15. If k = 2, then

Fn1Fn2 = Fn+1Fn−2 gives that n2 = n− 2 and n1 = n+ 1. If k ≥ 3, then Fn1Fn2 . . . Fnk
= Fn+1Fn−2 yields

that Fn1
Fn2

. . . Fnk−2
= 1 since nk = n+ 1 and nk−1 = n− 2 by the PDT. However, this is not possible since

n1 > 2. Checking the eligible possibilities for the case n ≤ 14, there is no solution of the Diophantine equation

(7). 2
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