

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2017) 41: 841 – 853 © TÜBİTAK doi:10.3906/mat-1408-52

Research Article

Generalized *-Lie ideal of *-prime ring

Selin TÜRKMEN^{*}, Neşet AYDIN

Department of Mathematics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey

Received: 22.08.2014	•	Accepted/Published Online: 24.09.2016	٠	Final Version: 25.07.2017

Abstract: Let R be a *-prime ring with characteristic not 2, $\sigma, \tau : R \to R$ be two automorphisms, U be a nonzero $*-(\sigma, \tau)$ -Lie ideal of R such that τ commutes with *, and a, b be in R. (i) If $a \in S_*(R)$ and [U, a] = 0, then $a \in Z(R)$ or $U \subset Z(R)$. (ii) If $a \in S_*(R)$ and $[U, a]_{\sigma,\tau} \subset C_{\sigma,\tau}$, then $a \in Z(R)$ or $U \subset Z(R)$. (iii) If $U \not\subset Z(R)$ and $[U \not\subset Z(R)]_{\sigma,\tau}$, then there exists a nonzero *-ideal M of R such that $[R, M]_{\sigma,\tau} \subset U$ but $[R, M]_{\sigma,\tau} \not\subset C_{\sigma,\tau}$. (iv) Let $U \not\subset Z(R)$ and $U \not\subset C_{\sigma,\tau}$. If $aUb = a^*Ub = 0$, then a = 0 or b = 0.

Key words: *-prime ring, *- (σ, τ) -Lie ideal, (σ, τ) -derivation, derivation

1. Introduction

Let R be an associative ring with the center Z(R). Recall that a ring R is prime if aRb = 0 implies that a = 0or b = 0. An involution * of a ring R is an additive mapping satisfying $(xy)^* = y^*x^*$ and $(x^*)^* = x$ for all x, $y \in R$. A ring R equipped with an involution * is said to be *-prime if $aRb = a^*Rb = 0$ or $aRb = aRb^* = 0$ implies that a = 0 or b = 0. R is said to be 2-torsion-free if whenever 2x = 0 with $x \in R$ then x = 0. $S_*(R)$ will denote the set of symmetric and skew symmetric elements of R, i.e. $S_*(R) = \{x \in R \mid x^* = \pm x\}$. An ideal I of R is said to be a *-ideal if I is invariant under *, i.e. $I^* = I$. As usual the commutator xy - yxwill be denoted by [x, y]. An additive mapping $h: R \to R$ is called a derivation if h(xy) = h(x)y + xh(y)holds for all $x, y \in R$. For a fixed $a \in R$, the mapping $I_a : R \to R$ is given by $I_a(x) = [a, x]$ for $x \in R$ is a derivation, which is said to be an inner derivation determined by a. Let σ , τ be two mappings on R. Set $C_{\sigma,\tau} = \{c \in R \mid c\sigma(r) = \tau(r) c \text{ for all } r \in R\}$ and it is known as the (σ,τ) -center of R. In particular, $C_{1,1} = Z(R)$ is the center of R where $1: R \to R$ is the identity map. As usual, the (σ, τ) -commutator $x\sigma(y) - \tau(y)x$ will be denoted by $[x, y]_{\sigma,\tau}$. An additive mapping $d: R \to R$ is called an (σ, τ) -derivation if $d(xy) = d(x)\sigma(y) + \tau(x)d(y)$ holds for all $x, y \in R$. For a fixed $a \in R$, the mapping $d_a: R \to R$ is given by $d_a(x) = [a, x]_{\sigma\tau}$ for $x \in R$ is called a (σ, τ) -inner derivation determined by a. The definition of a (σ, τ) -Lie ideal was given in [4] as follows: let U be an additive subgroup of R. Then: (i) U is a (σ, τ) -right Lie ideal of R if $[U,R]_{\sigma,\tau} \subset U$; (ii) U is a (σ,τ) -left Lie ideal of R if $[R,U]_{\sigma,\tau} \subset U$; (iii) if U is both a (σ,τ) -right Lie ideal and a (σ, τ) -left Lie ideal of R then U is a (σ, τ) -Lie ideal of R. A (σ, τ) -Lie ideal of R is said to be a *- (σ, τ) -Lie ideal if U is invariant under *, i.e. $U^* = U$. Every *-Lie ideal of R is a *-(1, 1)-Lie ideal of R where $1: R \to R$ is the identity map but every $*-(\sigma, \tau)$ -Lie ideal of R is in general not a *-Lie ideal of R.

^{*}Correspondence: selinvurkac@gmail.com.tr

²⁰¹⁰ AMS Mathematics Subject Classification: Primary 16N60; Secondary 16W25, 16U80.

Example. As an example, set $R = \left\{ \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \mid x, y, z \in \mathbb{Z} \right\}$. We define a map $* : R \to R$ as follows: $\begin{pmatrix} x & y \\ 0 & z \end{pmatrix}^* = \begin{pmatrix} z & -y \\ 0 & x \end{pmatrix}$. Let $\sigma \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} = \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$, $\tau \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & z \end{pmatrix}$ be two endomorphisms of R. It is easy to check that $U = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \mid x, y \in \mathbb{Z} \right\}$ is a $* -(\sigma, \tau)$ -Lie ideal of R but not a *-Lie ideal of R.

In [3], Bergen et al. proved the following results for a nonzero Lie ideal U such that $U \not\subset Z(R)$ of a prime ring R with characteristic not 2: (i) there exists a nonzero ideal M of R such that $[M, R] \subset U$ but $[M, R] \not\subset Z(R)$; (ii) if $a, b \in R$ such that aUb = 0, then a = 0 or b = 0. In [2], Aydın and Kandamar generalized these results for a nonzero (σ, τ) -Lie ideal that is not included in Z(R) and $C_{\sigma,\tau}$ of a prime ring. Oukhtite and Salhi [7] generalized these results, which were proved in [3] for a nonzero *-Lie ideal U such that $[U, U] \neq 0$ of a 2-torsion-free *-prime ring R. In this paper our main goal will be to extend the above results to a nonzero *- (σ, τ) -Lie ideal that is not included in Z(R) and $C_{\sigma,\tau}$ of a *-prime ring with characteristic not 2.

Throughout the present paper R will be a *-prime ring, Z(R) will be the center of R, $\sigma, \tau : R \to R$ will be two automorphisms, $C_{\sigma,\tau}$ will be the (σ, τ) -center of R, and $S_*(R)$ will be the set of symmetric and skew symmetric elements of R.

We will use the following basic commutator identities:

- [x, yz] = y [x, z] + [x, y] z,
- [xy, z] = x [y, z] + [x, z] y,
- [[x, y], z] + [[y, z], x] + [[z, x], y] = 0,
- $\bullet \ \left[xy,z \right]_{\sigma,\tau} = x \left[y,z \right]_{\sigma,\tau} + \left[x,\tau \left(z \right) \right] y = x \left[y,\sigma \left(z \right) \right] + \left[x,z \right]_{\sigma,\tau} y,$
- $[x, yz]_{\sigma, \tau} = \tau (y) [x, z]_{\sigma, \tau} + [x, y]_{\sigma, \tau} \sigma (z)$,
- $\left[[x, y]_{\sigma, \tau}, z \right]_{\sigma, \tau} = \left[[x, z]_{\sigma, \tau}, y \right]_{\sigma, \tau} + [x, [y, z]]_{\sigma, \tau}$

2. Results

For the proof of our results we need the following lemmas.

Lemma 2.1. [1, Lemma 5] Let R be a ring and U be a nonzero (σ, τ) -left Lie ideal of R and T = $\left\{c \in R \mid [R, c]_{\sigma, \tau} \subset U\right\}$. Then the following hold:

- i) T is a subring of R.
- ii) If U is also a (σ, τ) -right Lie ideal of R then T is the largest Lie ideal of R such that $[R, T]_{\sigma, \tau} \subset U$ and $U \subset T$.

Lemma 2.2. [2, Lemma 4] Let R be a ring and U be a nonzero (σ, τ) -left Lie ideal of R. Then

 $R\left[T\left(U\right),\sigma\left(T\left(U\right)\right)\right]\subset T\left(U\right) \ and \ \left[T\left(U\right),\tau\left(T\left(U\right)\right)\right]R\subset T\left(U\right).$

Lemma 2.3. [5, Lemma 4] Let R be a σ -prime ring with characteristic not 2, d be a derivation of R satisfying $d\sigma = \pm \sigma d$, and I be a nonzero σ -ideal of R. If $d^2(I) = 0$ then d = 0.

Lemma 2.4. [6, Theorem 2.2] Let I be a nonzero σ -ideal of a σ -prime ring R. If a, b in R are such that $aIb = aI\sigma$ (b) = 0 then a = 0 or b = 0.

Lemma 2.5. [8, 2.3. Lemma] Let I be a nonzero σ -ideal of a σ -prime ring R and $a \in R$. If Ia = 0 (or aI = 0) then a = 0.

Lemma 2.6. [8, 2.8. Theorem] Let R be a σ -prime ring with characteristic not 2, I be a nonzero σ -ideal of R, and d be a nonzero (α, β) -derivation of R such that β commutes with σ . If $d(I) \subset C_{\alpha,\beta}$ then R is commutative.

Lemma 2.7. [8, 2.9. Lemma] Let R be a σ -prime ring with characteristic not 2, I be a nonzero σ -ideal of R, d be a (α, β) -derivation of R such that β commutes with σ , and h be a derivation of R satisfying $h\sigma = \pm \sigma h$. If dh(I) = 0 and $h(I) \subset I$ then d = 0 or h = 0.

Lemma 2.8. Let U be a nonzero $* -(\sigma, \tau)$ -left Lie ideal of R such that τ commutes with *. If $U \subset C_{\sigma,\tau}$ then $U \subset Z(R)$.

Proof For any $u \in U$, $r \in R$, we have $[r\sigma(u), u]_{\sigma,\tau} = [r, u]_{\sigma,\tau} \sigma(u) \in U$. From the hypothesis, it holds that $[[r, u]_{\sigma,\tau} \sigma(u), s]_{\sigma,\tau} = 0$ for all $u \in U$, $r, s \in R$. Expanding this equation and using the hypothesis

$$\begin{aligned} 0 &= \left[\left[r, u \right]_{\sigma, \tau} \sigma \left(u \right), s \right]_{\sigma, \tau} = \left[r, u \right]_{\sigma, \tau} \sigma \left(\left[u, s \right] \right) + \left[\left[r, u \right]_{\sigma, \tau}, s \right]_{\sigma, \tau} \sigma \left(u \right) \\ &= \left[r, u \right]_{\sigma, \tau} \sigma \left(\left[u, s \right] \right), \end{aligned}$$

so it implies that

$$[r, u]_{\sigma, \tau} \sigma ([u, s]) = 0, \ \forall r, s \in R, \ u \in U$$

In this equation, taking $\tau(r) k$ instead of r where $k \in R$, it follows that

$$\tau\left([r,u]\right)R\sigma\left([u,s]\right) = 0, \ \forall r,s \in R, \ u \in U.$$

$$(2.1)$$

Assume that $u \in U \cap S_*(R)$. In (2.1), replacing r by r^* and using that $\tau^* = *\tau$, we get

$$\tau^*\left([r,u]\right)R\sigma\left([u,s]\right) = 0, \ \forall r,s \in R$$

Thus,

$$\tau\left([r,u]\right)R\sigma\left([u,s]\right) = \tau^*\left([r,u]\right)R\sigma\left([u,s]\right) = 0, \ \forall r,s \in R$$

is obtained. By the *-primeness of R, we have

$$u \in Z(R), \forall u \in U \cap S_*(R).$$

Thus, it holds that

$$U \cap S_*(R) \subset Z(R). \tag{2.2}$$

Now, for all $u \in U$, we know that $u - u^* \in U \cap S_*(R)$. From (2.2), it implies $u - u^* \in Z(R)$. This means that $[u, r] = [u^*, r]$ for all $r \in R$. In (2.1), taking r^* instead of r, and using that $\tau^* = *\tau$ and $[u, r] = [u^*, r]$ for all $r \in R$, we get

$$\tau^*\left([r,u]\right)R\sigma\left([u,s]\right) = 0, \ \forall r,s \in R, \ u \in U.$$

By the *-primeness of R, we have

$$u \in Z(R), \forall u \in U,$$

which implies that

$$U \subset Z(R)$$
.

Lemma 2.9. Let U be a nonzero $* - (\sigma, \tau)$ -left Lie ideal of R such that τ commutes with * and $a \in R$. If Ua = 0, then a = 0 or $U \subset Z(R)$.

Proof Since U is a $*-(\sigma, \tau)$ -left Lie ideal of R, we know that $[r, u]_{\sigma, \tau} a = 0$ for all $r \in R, u \in U$. Replacing r by rs where $s \in R$ in the last equality, we get $[rs, u]_{\sigma, \tau} a = 0$ for all $r, s \in R, u \in U$. Expanding this equation,

$$0 = [rs, u]_{\sigma, \tau} a = r [s, u]_{\sigma, \tau} a + [r, \tau(u)] sa,$$

and using the hypothesis, we have

$$[r, \tau(u)] Ra = 0, \ \forall r \in R, u \in U.$$

In the last equation, taking r^*, u^* instead of r, u respectively and using that τ commutes with *, we get

$$\left(\left[r,\tau\left(u\right)\right]\right)^{*}Ra=0, \ \forall r\in R, u\in U.$$

Thus,

$$[r, \tau(u)] Ra = ([r, \tau(u)])^* Ra = 0, \ \forall r \in R, u \in U$$

is obtained. From the *-primeness of R, it yields

$$a = 0$$
 or $[R, \tau(U)] = 0$.

Since τ is an automorphism, we arrive at a = 0 or $U \subset Z(R)$.

Lemma 2.10. Let U be a nonzero $* \cdot (\sigma, \tau)$ -left Lie ideal of R such that τ commutes with *. If $a \in R$ and [U, a] = 0, then $[\sigma(U), a] = 0$.

Proof Since U is a $* - (\sigma, \tau)$ -left Lie ideal of R, we know that $[r\sigma(u), u]_{\sigma,\tau} = [r, u]_{\sigma,\tau} \sigma(u) \in U$ for all $u \in U$, $r \in R$. From the hypothesis, it holds that

$$\left[\left[r,u\right]_{\sigma,\tau}\sigma\left(u\right),a\right]=0.$$

Expanding this equation,

$$0 = [r, u]_{\sigma, \tau} [\sigma(u), a] + \left[[r, u]_{\sigma, \tau}, a \right] \sigma(u),$$

and using the hypothesis,

$$[r, u]_{\sigma, \tau} [\sigma(u), a] = 0, \ \forall u \in U, r \in \mathbb{R}$$

is obtained. In the last equation, replacing r by $\tau(s)r$ where $s \in R$, it implies

$$\tau\left([s,u]\right)R\left[\sigma\left(u\right),a\right]=0,\;\forall u\in U,s\in R.$$
(2.3)

Suppose that $u \in U \cap S_*(R)$. Taking s^* instead of s in (2.3) and using that τ commutes with *, it follows that

$$\tau^{*}\left([s,u]\right)R\left[\sigma\left(u\right),a\right]=0,\;\forall s\in R,u\in U\cap S_{*}\left(R\right).$$

Thus,

$$\tau([s,u]) R[\sigma(u), a] = \tau^*([s,u]) R[\sigma(u), a] = 0, \ \forall s \in R, u \in U \cap S_*(R)$$

Since R is a *-prime ring and τ is an automorphism, we obtain $u \in Z(R)$ or $[\sigma(u), a] = 0$ for all $u \in U \cap S_*(R)$. That is,

$$[\sigma(u), a] = 0, \ \forall u \in U \cap S_*(R).$$

$$(2.4)$$

Now, suppose that $u \in U$. In this case, we know $u - u^* \in U \cap S_*(R)$. It follows that $[\sigma(u - u^*), a] = 0$ from (2.4). Thus, we have

$$[\sigma(u), a] = [\sigma(u^*), a], \ \forall u \in U.$$

$$(2.5)$$

In (2.3), replacing s, u by s^*, u^* , respectively, and using that τ commutes with * and (2.5), we get

$$\tau^*\left([s,u]\right)R\left[\sigma\left(u\right),a\right]=0, \ \forall u\in U, s\in R.$$

Thus,

$$\tau\left(\left[s,u\right]\right)R\left[\sigma\left(u\right),a\right]=\tau^{*}\left(\left[s,u\right]\right)R\left[\sigma\left(u\right),a\right]=0,\;\forall u\in U,s\in R$$

Since R is a *-prime ring and τ is an automorphism, it implies that $u \in Z(R)$ or $[\sigma(u), a] = 0$ for all $u \in U$. This means

$$\left[\sigma\left(U\right),a\right]=0.$$

Theorem 2.11. Let R be a *-prime ring with characteristic not 2, and let U be a nonzero $*-(\sigma, \tau)$ -Lie ideal of R such that τ commutes with *. If $a \in S_*(R)$ and [U, a] = 0, then $a \in Z(R)$ or $U \subset Z(R)$.

Proof Let

$$T(U) = \left\{ c \in R \mid [R, c]_{\sigma, \tau} \subset U \right\}.$$

Since U is a (σ, τ) -Lie ideal of R, from Lemma 2.1, T(U) is a Lie ideal of R such that $U \subset T(U)$. Hence, it follows that

$$[R, U] \subset [R, T(U)] \subset T(U)$$

From the definition of T(U), we have

$$[R, [R, U]]_{\sigma, \tau} \subset [R, T(U)]_{\sigma, \tau} \subset U$$

From the hypothesis, we have $\left[[R, [R, U]]_{\sigma, \tau}, a \right] = 0$. For any $r, s \in R$ and $u \in U$, it holds that

$$\left[[r, [s, u]]_{\sigma, \tau}, a \right] = 0.$$
(2.6)

845

Replacing r by ra in (2.6) and expanding by using (2.6),

$$\begin{aligned} 0 &= \left[\left[ra, [s, u] \right]_{\sigma, \tau}, a \right] = \left[r \left[a, \sigma \left([s, u] \right) \right], a \right] + \left[\left[r, [s, u] \right]_{\sigma, \tau} a, a \right] \\ &= r \left[\left[a, \sigma \left([s, u] \right) \right], a \right] + \left[r, a \right] \left[a, \sigma \left([s, u] \right) \right] + \left[r, [s, u] \right]_{\sigma, \tau} \left[a, a \right] \\ &+ \left[\left[r, [s, u] \right]_{\sigma, \tau}, a \right] a \\ &= r \left[\left[a, \sigma \left([s, u] \right) \right], a \right] + \left[r, a \right] \left[a, \sigma \left([s, u] \right) \right] \end{aligned}$$

is obtained. It follows that

$$r[[a,\sigma([s,u])],a] + [r,a][a,\sigma([s,u])] = 0, \ \forall r, s \in R, u \in U.$$
(2.7)

In (2.7), taking rm instead of r where $m \in R$ and expanding by using (2.7),

$$\begin{aligned} 0 &= rm\left[[a, \sigma\left([s, u]\right)\right], a] + [rm, a] \left[a, \sigma\left([s, u]\right)\right] \\ &= rm\left[[a, \sigma\left([s, u]\right)\right], a] + r\left[m, a\right] \left[a, \sigma\left([s, u]\right)\right] + [r, a] m\left[a, \sigma\left([s, u]\right)\right] \\ &= r\left(m\left[[a, \sigma\left([s, u]\right)\right], a\right] + [m, a] \left[a, \sigma\left([s, u]\right)\right]\right) + [r, a] m\left[a, \sigma\left([s, u]\right)\right] \\ &= [r, a] m\left[a, \sigma\left([s, u]\right)\right] \end{aligned}$$

is obtained. This implies that

$$[r,a] R [a, \sigma ([s,u])] = 0, \ \forall r, s \in R, u \in U.$$

Replacing r by r^* and using $a \in S_*(R)$ in the last equation, we have

$$[r,a]^* R [a, \sigma ([s,u])] = 0, \ \forall r, s \in R, u \in U.$$

It holds that

$$[r, a] R [a, \sigma ([s, u])] = [r, a]^* R [a, \sigma ([s, u])] = 0, \ \forall r, s \in R, u \in U.$$

By the *-primeness of R, we get

$$a \in Z(R)$$
 or $[a, \sigma([s, u])] = 0, \forall s \in R, u \in U.$

That is,

$$\left[\sigma\left([s,u]\right),a\right]=0, \ \forall s\in R, u\in U.$$

Since σ is an automorphism, it implies

$$\left[\left[R,\sigma\left(u\right)\right],a\right]=0, \ \forall u\in U.$$

Thus, we have $[[r, \sigma(u)], a] = 0$ for all $r \in R, u \in U$. Using the identity [[x, y], z] = [[x, z], y] + [x, [y, z]] for all $x, y, z \in R$,

$$0 = \left[\left[r, \sigma\left(u\right)\right], a\right] = \left[\left[r, a\right], \sigma\left(u\right)\right] + \left[r, \left[\sigma\left(u\right), a\right]\right]$$

is obtained. From Lemma 2.10, we know that $[\sigma(U), a] = 0$. It holds that

$$[[r, a], \sigma(u)] = 0, \ \forall r \in R, u \in U.$$

$$(2.8)$$

From (2.8), it implies

$$(I_{\sigma(u)}I_a)(R) = 0, \ \forall u \in U.$$

Since $a \in S_*(R)$, we know that $I_a * = \pm * I_a$. Hence, according to Lemma 2.7, we have

$$a \in Z(R)$$
 or $\sigma(u) \in Z(R)$, $\forall u \in U$.

which implies that

$$a \in Z(R)$$
 or $U \subset Z(R)$.

Corollary 2.12. Let R be a *-prime ring with characteristic not 2, and let U be a nonzero $* - (\sigma, \tau)$ -Lie ideal of R such that τ commutes with *. If $U \subset S_*(R)$ and [U, U] = 0, then $U \subset Z(R)$.

Theorem 2.13. Let R be a *-prime ring with characteristic not 2, and let U be a nonzero *- (σ, τ) -Lie ideal of R such that τ commutes with *. If $a \in S_*(R)$ and $[U, a]_{\sigma, \tau} = 0$, then $a \in Z(R)$ or $U \subset Z(R)$.

Proof Since U is a *- (σ, τ) -Lie ideal of R, we have $[r\sigma(u), u]_{\sigma,\tau} = [r, u]_{\sigma,\tau} \sigma(u) \in U$ for all $r \in R, u \in U$. From the hypothesis, we have $[[r, u]_{\sigma,\tau} \sigma(u), a]_{\sigma,\tau} = 0$ for all $r \in R, u \in U$. Expanding this equation by using the hypothesis,

$$0 = \left[[r, u]_{\sigma, \tau} \sigma(u), a \right]_{\sigma, \tau} = \left[[r, u]_{\sigma, \tau}, a \right]_{\sigma, \tau} \sigma(u) + [r, u]_{\sigma, \tau} \sigma([u, a])$$
$$= [r, u]_{\sigma, \tau} \sigma([u, a])$$

is obtained. Thus, we have

$$[r,u]_{\sigma,\tau} \sigma ([u,a]) = 0, \ \forall u \in U, r \in R.$$

In the last equality, replacing r by $\tau(s)r$ where $s \in R$, it implies that

$$\tau\left([s,u]\right)R\sigma\left([u,a]\right) = 0, \ \forall u \in U, s \in R.$$
(2.9)

Suppose that $u \in U \cap S_*(R)$. In (2.9), replacing s by s^* and using that τ commutes with *, we have

$$\tau^*\left([s,u]\right)R\sigma\left([u,a]\right) = 0, \ \forall s \in R, u \in U \cap S_*\left(R\right)$$

It follows that

$$\tau\left([s,u]\right)R\sigma\left([u,a]\right) = \tau^*\left([s,u]\right)R\sigma\left([u,a]\right) = 0, \; \forall s \in R, u \in U \cap S_*\left(R\right)$$

Since R is a *-prime ring and σ, τ are automorphisms, we get $u \in Z(R)$ or [u, a] = 0 for all $u \in U \cap S_*(R)$. Hence, we get

$$[u,a] = 0, \ \forall u \in U \cap S_*(R)$$

Now, suppose that $u \in U$. In this case, we know that $u - u^* \in U \cap S_*(R)$. It follows that $[u - u^*, a] = 0$ from the above equation. Thus, we have

$$[u, a] = [u^*, a], \ \forall u \in U.$$
(2.10)

In (2.9), replacing s, u by s^*, u^* , respectively, and using that τ commutes with * and (2.10), we get

$$\tau^*\left([s,u]\right)R\sigma\left([u,a]\right)=0,\;\forall u\in U,s\in R.$$

Thus,

$$\tau^{*}\left([s,u]\right)R\sigma\left([u,a]\right) = \tau\left([s,u]\right)R\sigma\left([u,a]\right) = 0, \ \forall u \in U, s \in R$$

is obtained. Since R is a *-prime ring and σ, τ are automorphisms, it implies that

$$u \in Z(R)$$
 or $[u, a] = 0, \forall u \in U$.

That is,

[U,a] = 0.

Therefore, according to Theorem 2.11,

$$a \in Z(R)$$
 or $U \subset Z(R)$

is obtained.

Corollary 2.14. Let R be a *-prime ring with characteristic not 2, and let U be a nonzero $*-(\sigma, \tau)$ -Lie ideal of R such that τ commutes with *. If $U \subset S_*(R)$ and $[U, U]_{\sigma, \tau} = 0$, then $U \subset Z(R)$.

Theorem 2.15. Let R be a *-prime ring with characteristic not 2, and let U be a nonzero *- (σ, τ) -Lie ideal of R such that τ commutes with *. If $a \in S_*(R)$ and $[U, a]_{\sigma, \tau} \subset C_{\sigma, \tau}$, then $a \in Z(R)$ or $U \subset Z(R)$.

Proof From the hypothesis, we know that $\left[[u, a]_{\sigma, \tau}, r \right]_{\sigma, \tau} = 0$ for all $u \in U, r \in R$. Using the identity $\left[[x, y]_{\sigma, \tau}, z \right]_{\sigma, \tau} = \left[[x, z]_{\sigma, \tau}, y \right]_{\sigma, \tau} + [x, [y, z]]_{\sigma, \tau}$ for all $x, y, z \in R$, for any $r \in R$ and $u \in U$

$$0 = \left[\left[u, a \right]_{\sigma, \tau}, r \right]_{\sigma, \tau} = \left[\left[u, r \right]_{\sigma, \tau}, a \right]_{\sigma, \tau} + \left[u, \left[a, r \right] \right]_{\sigma, \tau}$$

is obtained. Since $\left[[u, r]_{\sigma, \tau}, a \right]_{\sigma, \tau} \in C_{\sigma, \tau}$, from the last equation, we have

$$[u, [a, r]]_{\sigma, \tau} \in C_{\sigma, \tau}, \ \forall u \in U, r \in R$$

In this case, we get $\left[[u, [a, r]]_{\sigma, \tau}, s \right]_{\sigma, \tau} = 0$ for all $s \in R$. Replacing r by ra in this equality, we have $\left[[u, [a, ra]]_{\sigma, \tau}, s \right]_{\sigma, \tau} = 0$ for all $r, s \in R$ and $u \in U$. Expanding this equation,

$$\begin{split} 0 &= \left[\left[u, \left[a, ra \right] \right]_{\sigma, \tau}, s \right]_{\sigma, \tau} \\ &= \left[\tau \left(\left[a, r \right] \right) \left[u, a \right]_{\sigma, \tau}, s \right]_{\sigma, \tau} + \left[\left[u, \left[a, r \right] \right]_{\sigma, \tau} \sigma \left(a \right), s \right]_{\sigma, \tau} \\ &= \tau \left(\left[a, r \right] \right) \left[\left[u, a \right]_{\sigma, \tau}, s \right]_{\sigma, \tau} + \tau \left(\left[\left[a, r \right], s \right] \right) \left[u, a \right]_{\sigma, \tau} + \left[\left[u, \left[a, r \right] \right]_{\sigma, \tau}, s \right]_{\sigma, \tau} \sigma \left(a \right) + \left[u, \left[a, r \right] \right]_{\sigma, \tau} \sigma \left(\left[a, s \right] \right) \end{split}$$

is obtained. Using that $[u, a]_{\sigma, \tau}$, $[u, [a, r]]_{\sigma, \tau} \in C_{\sigma, \tau}$, it holds that

 $\tau\left(\left[\left[a,r\right],s\right]\right)\left[u,a\right]_{\sigma,\tau}+\left[u,\left[a,r\right]\right]_{\sigma,\tau}\sigma\left(\left[a,s\right]\right)=0,\;\forall u\in U,\;r,s\in R.$

In the last equation, taking a instead of s, we have

$$\tau\left(\left[\left[a,r\right],a\right]\right)\left[u,a\right]_{\sigma,\tau}=0, \ \forall u \in U, \ r \in R.$$

Since $[u, a]_{\sigma, \tau} \in C_{\sigma, \tau}$, it implies

$$\tau\left(\left[\left[a,r\right],a\right]\right)R\left[u,a\right]_{\sigma,\tau}=0, \ \forall u \in U, \ r \in R$$

In the above equality, replacing r by r^* and using that $a \in S_*(R)$ and τ commutes with *, we get

$$(\tau([[a,r],a]))^* R[u,a]_{\sigma,\tau} = 0, \ \forall u \in U, \ r \in R.$$

Thus,

$$\tau\left(\left[\left[a,r\right],a\right]\right)R\left[u,a\right]_{\sigma,\tau} = \left(\tau\left(\left[\left[a,r\right],a\right]\right)\right)^{*}R\left[u,a\right]_{\sigma,\tau} = 0, \; \forall u \in U, \; r \in R.$$

Since R is a *-prime ring and τ is an automorphism,

$$[[r, a], a] = 0 \text{ or } [u, a]_{\sigma, \tau} = 0, \ \forall u \in U, \ r \in R$$
(2.11)

is obtained. From (2.11), it follows that

$$I_a^2(R) = 0 \text{ or } [U, a]_{\sigma, \tau} = 0$$

Since $a \in S_*(R)$, we know that $I_a * = \pm * I_a$. According to Lemma 2.3 and Theorem 2.13,

$$a \in Z(R)$$
 or $U \subset Z(R)$

is obtained.

Corollary 2.16. Let R be a *-prime ring with characteristic not 2, and let U be a nonzero $* - (\sigma, \tau)$ -Lie ideal of R such that τ commutes with *. If $U \subset S_*(R)$ and $[U, U]_{\sigma, \tau} \subset C_{\sigma, \tau}$, then $U \subset Z(R)$.

Theorem 2.17. Let R be a *-prime ring with characteristic not 2, and let U be a nonzero *- (σ, τ) -Lie ideal of R such that τ commutes with *. If $U \not\subset Z(R)$ and $U \not\subset C_{\sigma,\tau}$, then there exists a nonzero *-ideal M of R such that $[R, M]_{\sigma,\tau} \subset U$ but $[R, M]_{\sigma,\tau} \not\subset C_{\sigma,\tau}$.

Proof It follows from Lemma 2.1 that $T(U) = \left\{ c \in R \mid [R, c]_{\sigma,\tau} \subset U \right\}$ is a subring and Lie ideal of R. Moreover, $U \subset T(U)$. On the other hand, it follows from Lemma 2.2 that $[T(U), \tau(T(U))] R \subset T(U)$. Since $U \subset T(U)$, it implies that

$$[U, \tau(U)] R \subset [T(U), \tau(T(U))] R \subset T(U).$$

That is,

$$[U, \tau(U)] R \subset T(U).$$

Since T(U) is a Lie ideal of R, it holds that $[R, [U, \tau(U)] R] \subset T(U)$. Thus, for any $s, r \in R, u, v \in U$

$$[s, [u, \tau(v)] r] = [u, \tau(v)] [s, r] + [s, [u, \tau(v)]] r \in T(U).$$

Using that $[U, \tau(U)] R \subset T(U)$, we have $[s, [u, \tau(v)]] r \in T(U)$ for all $u, v \in U, r, s \in R$. Expanding this equation,

$$[s, [u, \tau(v)]] r = s [u, \tau(v)] r - [u, \tau(v)] sr \in T(U)$$

and using that $[U, \tau(U)] R \subset T(U)$,

$$s[u, \tau(v)] r \in T(U), \ \forall u, v \in U, r, s \in R$$

is obtained. It holds that

$$R[U, \tau(U)] R \subset T(U).$$
(2.12)

Set $M = R[U, \tau(U)]R$. Thus, M is an ideal of R. Now, assume that M = 0. It follows that $R[U, \tau(U)]R = 0$. Since R is a *-ideal of R, according to Lemma 2.5, it holds that

$$[U,\tau\left(U\right)]=0.$$

On the other hand, we know that $\tau(U) \cap S_*(R) \subset S_*(R)$ and $\tau(U) \cap S_*(R) \subset \tau(U)$. It follows that $[U, \tau(U) \cap S_*(R)] \subset [U, \tau(U)] = 0$. Therefore, it implies

$$[U, \tau(U) \cap S_*(R)] = 0.$$

That is, we have $\tau(U) \cap S_*(R) \subset S_*(R)$ and $[U, \tau(U) \cap S_*(R)] = 0$. Since $U \not\subset Z(R)$, it holds from Theorem 2.11 that

$$\tau\left(U\right)\cap S_{*}\left(R\right)\subset Z\left(R\right).$$

Now, for any $u \in U$, we get $\tau (u - u^*), \tau (u + u^*) \in \tau (U) \cap S_*(R) \subset Z(R)$. It yields $2\tau (u) \in Z(R)$. Since the characteristic is not 2, we obtain $u \in Z(R)$ for all $u \in U$. This is a contradiction, which implies $M \neq 0$. Moreover, we have

$$M^{*} = (R[U, \tau(U)]R)^{*} = R[U, \tau(U)]R = M.$$

Thus, M is a nonzero *-ideal of R. It also follows from (2.12) that $0 \neq M \subset T(U)$. From the definition of T(U), we get

$$\left[R,M\right]_{\sigma,\tau} \subset \left[R,T\left(U\right)\right]_{\sigma,\tau} \subset U,$$

which implies that

 $[R,M]_{\sigma,\tau} \subset U.$

Suppose that $[R, M]_{\sigma,\tau} \subset C_{\sigma,\tau}$. From the assumption, $d_r(M) \subset C_{\sigma,\tau}$ for all $r \in R$. According to Lemma 2.6, R is commutative. This is a contradiction, so we have

$$[R,M]_{\sigma,\tau} \not\subset C_{\sigma,\tau}.$$

Theorem 2.18. Let R be a *-prime ring with characteristic not 2, and let U be a nonzero *- (σ, τ) -Lie ideal of R such that τ commutes with * and $a, b \in R$. If $U \not\subset Z(R)$ and $U \not\subset C_{\sigma,\tau}$ such that $aUb = a^*Ub = 0$, then a = 0 or b = 0.

Proof Since $U \not\subset Z(R)$ and $U \not\subset C_{\sigma,\tau}$, by Theorem 2.17, there exists a nonzero *-ideal M of R such that $[R, M]_{\sigma,\tau} \subset U$ but $[R, M]_{\sigma,\tau} \not\subset C_{\sigma,\tau}$. Since $[R, M]_{\sigma,\tau} \subset U$, using the hypothesis, we have $a[R, M]_{\sigma,\tau} b = a^*[R, M]_{\sigma,\tau} b = 0$. For any $m \in M$ and $u \in U$, it implies $a[a^*u, m]_{\sigma,\tau} b = 0$. Expanding this equation,

$$0 = a [a^*u, m]_{\sigma, \tau} b = aa^* [u, m]_{\sigma, \tau} b + a [a^*, \tau (m)] ub,$$

and using the hypothesis,

 $a\left[a^{*},\tau\left(m\right)\right]ub=0$

is obtained. Expanding this by using the hypothesis, it yields

$$0 = aa^{*}\tau(m) ub - a\tau(m) a^{*}ub$$
$$= aa^{*}\tau(m) ub.$$

That is,

$$aa^*\tau(M) ub = 0, \ \forall u \in U.$$

Since $(aa^*)^* = aa^*$, it also holds that

$$aa^{*}\tau\left(M\right)ub = \left(aa^{*}\right)^{*}\tau\left(M\right)ub = 0, \ \forall u \in U.$$

Since M is a nonzero *-ideal of R and τ commutes with *, $\tau(M)$ is a nonzero *-ideal of R. By Lemma 2.4 and Lemma 2.9, it follows that

$$aa^* = 0 \text{ or } b = 0.$$

Assume that $b \neq 0$. In this case $aa^* = 0$. Since $[R, M]_{\sigma,\tau} \subset U$, we get $a [a^*n, m]_{\sigma,\tau} b = 0$ for all $n, m \in M$. Expanding this equation by using the assumption,

$$0 = a [a^*n, m]_{\sigma,\tau} b = aa^*n\sigma(m) b - a\tau(m) a^*nb$$
$$= a\tau(m) a^*nb$$

is obtained, so it holds that

 $a\tau\left(M\right)a^{*}Mb=0.$

Since $(a\tau(M) a^*)^* = a\tau(M) a^*$, we have

$$a\tau(M) a^*Mb = (a\tau(M) a^*)^*Mb = 0.$$

According to Lemma 2.4, since $b \neq 0$, it follows that

$$a\tau(M) a^* = 0. (2.13)$$

On the other hand, since $[R, M]_{\sigma,\tau} \subset U$, we have $a [au, m]_{\sigma,\tau} b = 0$ for all $u \in U$, $m \in M$. Expanding this equation by using hypothesis, we have

$$\begin{aligned} 0 &= a \, [au, m]_{\sigma, \tau} \, b = aa \, [u, m]_{\sigma, \tau} \, b + a \, [a, \tau \, (m)] \, ub \\ &= a \, [a, \tau \, (m)] \, ub \\ &= a^2 \tau \, (m) \, ub - a\tau \, (m) \, aub \\ &= a^2 \tau \, (m) \, ub. \end{aligned}$$

That is,

$$a^{2}\tau\left(M\right)ub=0, \ \forall u\in U.$$

Similarly, $a^* [a^*u, m]_{\sigma, \tau} b = 0$ for all $u \in U, m \in M$. Expanding this equation by using the hypothesis, we get

$$(a^2)^* \tau (M) ub = 0, \ \forall u \in U.$$

This implies that

$$a^{2}\tau\left(M
ight)ub = \left(a^{2}
ight)^{*}\tau\left(M
ight)ub = 0, \ \forall u \in U.$$

Since $b \neq 0$, by Lemma 2.4 and Lemma 2.9, we get

 $a^2 = 0.$

Moreover, for any $n, m \in M$, we have $a [an, m]_{\sigma, \tau} b = 0$ from the hypothesis. Expanding this equation by using that $a^2 = 0$,

$$0 = a [an, m]_{\sigma, \tau} b = a^2 n \sigma (m) b - a \tau (m) anb$$
$$= a \tau (m) anb$$

is obtained. Thus, we have

$$a\tau\left(M\right)aMb=0.$$

Similarly, we know that $a^* [a^*n, m]_{\sigma,\tau} b = 0$ for all $n, m \in M$. Using that $a^2 = 0$, we get

$$a^*\tau\left(M\right)a^*Mb = 0.$$

Since $(a\tau(M)a)^* = a^*\tau(M)a^*$, it holds that

$$\left(a\tau\left(M\right)a\right)^{*}Mb=0.$$

Thus,

 $a\tau(M) aMb = (a\tau(M) a)^* Mb = 0$

is obtained. By Lemma 2.4, we have

$$a\tau\left(M\right)a = 0.\tag{2.14}$$

From (2.13) and (2.14), we obtain

$$a\tau\left(M\right)a^{*} = a\tau\left(M\right)a = 0.$$

According to Lemma 2.4, it is implied that a = 0.

Acknowledgment

The first author thanks the Scientific and Technological Research Council of Turkey (TÜBİTAK) for financial support via the BİDEB 2211 National Research Fellowship. The material presented here was a part of the first author's PhD work, which was supervised by the second author.

References

- [1] Aydın N. Notes on generalized Lie ideals. Analele
- [2] Aydın N, Kandamar H. (σ, τ) -Lie ideals in prime rings. Turk J Math 1994; 18: 143-148.
- [3] Bergen J, Herstein IN, Kerr JW. Lie ideals and derivations of prime rings. J Algebra 1981; 71: 259-267.
- [4] Kaya K. (σ, τ) -Lie ideals in prime rings. An Univ Timisoara Ser Stiinte Math 1992; 30: 251-255.
- [5] Oukhtite L, Salhi S. Derivations and commutativity of σ -prime rings. Int J Contemp Math Sci 2006; 1: 439-448.
- [6] Oukhtite L, Salhi S. σ-Prime rings with a special kind of automorphism. Int J Contemp Math Sci 2007; 2: 127-133.
- [7] Oukhtite L, Salhi S. Centralizing automorphisms and Jordan left derivations of σ -prime rings. Advances in Algebra 2008; 1: 19-26.
- [8] Türkmen S, Aydın N. Some results on σ -ideal of σ -prime ring. Hacettepe J Math Stat 2015; 44: 1147-1156.