Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/
Research Article
Turk J Math
(2017) 41: $841-853$
© TÜBITAK
doi:10.3906/mat-1408-52

тївітак

Generalized *-Lie ideal of $*$-prime ring

Selin TÜRKMEN*, Neşet AYDIN
Department of Mathematics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey

Received: 22.08.2014 • Accepted/Published Online: 24.09.2016 \quad Final Version: 25.07 .2017

Abstract

Let R be a $*$-prime ring with characteristic not $2, \sigma, \tau: R \rightarrow R$ be two automorphisms, U be a nonzero *- (σ, τ)-Lie ideal of R such that τ commutes with $*$, and a, b be in R. (i) If $a \in S_{*}(R)$ and $[U, a]=0$, then $a \in Z(R)$ or $U \subset Z(R)$. (ii) If $a \in S_{*}(R)$ and $[U, a]_{\sigma, \tau} \subset C_{\sigma, \tau}$, then $a \in Z(R)$ or $U \subset Z(R)$. (iii) If $U \not \subset Z(R)$ and $U \not \subset C_{\sigma, \tau}$, then there exists a nonzero $*$-ideal M of R such that $[R, M]_{\sigma, \tau} \subset U$ but $[R, M]_{\sigma, \tau} \not \subset C_{\sigma, \tau}$. (iv) Let $U \not \subset Z(R)$ and $U \not \subset C_{\sigma, \tau}$. If $a U b=a^{*} U b=0$, then $a=0$ or $b=0$.

Key words: *-prime ring, $*-(\sigma, \tau)$-Lie ideal, (σ, τ)-derivation, derivation

1. Introduction

Let R be an associative ring with the center $Z(R)$. Recall that a ring R is prime if $a R b=0$ implies that $a=0$ or $b=0$. An involution $*$ of a ring R is an additive mapping satisfying $(x y)^{*}=y^{*} x^{*}$ and $\left(x^{*}\right)^{*}=x$ for all $x, y \in R$. A ring R equipped with an involution $*$ is said to be $*$-prime if $a R b=a^{*} R b=0$ or $a R b=a R b^{*}=0$ implies that $a=0$ or $b=0 . R$ is said to be 2 -torsion-free if whenever $2 x=0$ with $x \in R$ then $x=0 . S_{*}(R)$ will denote the set of symmetric and skew symmetric elements of R, i.e. $S_{*}(R)=\left\{x \in R \mid x^{*}= \pm x\right\}$. An ideal I of R is said to be a $*$-ideal if I is invariant under $*$, i.e. $I^{*}=I$. As usual the commutator $x y-y x$ will be denoted by $[x, y]$. An additive mapping $h: R \rightarrow R$ is called a derivation if $h(x y)=h(x) y+x h(y)$ holds for all $x, y \in R$. For a fixed $a \in R$, the mapping $I_{a}: R \rightarrow R$ is given by $I_{a}(x)=[a, x]$ for $x \in R$ is a derivation, which is said to be an inner derivation determined by a. Let σ, τ be two mappings on R. Set $C_{\sigma, \tau}=\{c \in R \mid c \sigma(r)=\tau(r) c$ for all $r \in R\}$ and it is known as the (σ, τ)-center of R. In particular, $C_{1,1}=Z(R)$ is the center of R where $1: R \rightarrow R$ is the identity map. As usual, the (σ, τ)-commutator $x \sigma(y)-\tau(y) x$ will be denoted by $[x, y]_{\sigma, \tau}$. An additive mapping $d: R \rightarrow R$ is called an (σ, τ)-derivation if $d(x y)=d(x) \sigma(y)+\tau(x) d(y)$ holds for all $x, y \in R$. For a fixed $a \in R$, the mapping $d_{a}: R \rightarrow R$ is given by $d_{a}(x)=[a, x]_{\sigma, \tau}$ for $x \in R$ is called a (σ, τ)-inner derivation determined by a. The definition of a (σ, τ)-Lie ideal was given in [4] as follows: let U be an additive subgroup of R. Then: (i) U is a (σ, τ)-right Lie ideal of R if $[U, R]_{\sigma, \tau} \subset U ;($ ii $) U$ is a (σ, τ)-left Lie ideal of R if $[R, U]_{\sigma, \tau} \subset U ;($ iii $)$ if U is both a (σ, τ)-right Lie ideal and a (σ, τ)-left Lie ideal of R then U is a (σ, τ)-Lie ideal of R. A (σ, τ)-Lie ideal of R is said to be a $*-(\sigma, \tau)$-Lie ideal if U is invariant under $*$, i.e. $U^{*}=U$. Every $*$-Lie ideal of R is a $*-(1,1)$-Lie ideal of R where $1: R \rightarrow R$ is the identity map but every $*-(\sigma, \tau)$-Lie ideal of R is in general not a $*$-Lie ideal of R.

[^0]Example. As an example, set $R=\left\{\left.\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right) \right\rvert\, x, y, z \in \mathbb{Z}\right\}$. We define a map $*: R \rightarrow R$ as follows: $\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right)^{*}=\left(\begin{array}{cc}z & -y \\ 0 & x\end{array}\right) . \operatorname{Let} \sigma\left(\begin{array}{cc}x & y \\ 0 & z\end{array}\right)=\left(\begin{array}{cc}x & 0 \\ 0 & 0\end{array}\right), \tau\left(\begin{array}{cc}x & y \\ 0 & z\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & z\end{array}\right)$ be two endomorphisms of R. It is easy to check that $U=\left\{\left.\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right) \right\rvert\, x, y \in \mathbb{Z}\right\}$ is $a *-(\sigma, \tau)$-Lie ideal of R but not $a *$-Lie ideal of R.

In [3], Bergen et al. proved the following results for a nonzero Lie ideal U such that $U \not \subset Z(R)$ of a prime ring R with characteristic not 2: (i) there exists a nonzero ideal M of R such that $[M, R] \subset U$ but $[M, R] \not \subset Z(R) ;(i i)$ if $a, b \in R$ such that $a U b=0$, then $a=0$ or $b=0$. In [2], Aydın and Kandamar generalized these results for a nonzero (σ, τ)-Lie ideal that is not included in $Z(R)$ and $C_{\sigma, \tau}$ of a prime ring. Oukhtite and Salhi [7] generalized these results, which were proved in [3] for a nonzero $*$-Lie ideal U such that $[U, U] \neq 0$ of a 2 -torsion-free $*$-prime ring R. In this paper our main goal will be to extend the above results to a nonzero $*-(\sigma, \tau)$-Lie ideal that is not included in $Z(R)$ and $C_{\sigma, \tau}$ of a $*$-prime ring with characteristic not 2.

Throughout the present paper R will be a $*$-prime ring, $Z(R)$ will be the center of $R, \sigma, \tau: R \rightarrow R$ will be two automorphisms, $C_{\sigma, \tau}$ will be the (σ, τ)-center of R, and $S_{*}(R)$ will be the set of symmetric and skew symmetric elements of R.

We will use the following basic commutator identities:

- $[x, y z]=y[x, z]+[x, y] z$,
- $[x y, z]=x[y, z]+[x, z] y$,
- $[[x, y], z]+[[y, z], x]+[[z, x], y]=0$,
- $[x y, z]_{\sigma, \tau}=x[y, z]_{\sigma, \tau}+[x, \tau(z)] y=x[y, \sigma(z)]+[x, z]_{\sigma, \tau} y$,
- $[x, y z]_{\sigma, \tau}=\tau(y)[x, z]_{\sigma, \tau}+[x, y]_{\sigma, \tau} \sigma(z)$,
- $\left[[x, y]_{\sigma, \tau}, z\right]_{\sigma, \tau}=\left[[x, z]_{\sigma, \tau}, y\right]_{\sigma, \tau}+[x,[y, z]]_{\sigma, \tau}$.

2. Results

For the proof of our results we need the following lemmas.
Lemma 2.1. [1, Lemma 5] Let R be a ring and U be a nonzero (σ, τ)-left Lie ideal of R and $T=$ $\left\{c \in R \mid[R, c]_{\sigma, \tau} \subset U\right\}$. Then the following hold:
i) T is a subring of R.
ii) If U is also a (σ, τ)-right Lie ideal of R then T is the largest Lie ideal of R such that $[R, T]_{\sigma, \tau} \subset U$ and $U \subset T$.

Lemma 2.2. [2, Lemma 4] Let R be a ring and U be a nonzero (σ, τ)-left Lie ideal of R. Then

$$
R[T(U), \sigma(T(U))] \subset T(U) \text { and }[T(U), \tau(T(U))] R \subset T(U)
$$

Lemma 2.3. [5, Lemma 4] Let R be a σ-prime ring with characteristic not 2 , d be a derivation of R satisfying $d \sigma= \pm \sigma d$, and I be a nonzero σ-ideal of R. If $d^{2}(I)=0$ then $d=0$.

Lemma 2.4. [6, Theorem 2.2] Let I be a nonzero σ-ideal of a σ-prime ring R. If a, b in R are such that $a I b=a I \sigma(b)=0$ then $a=0$ or $b=0$.

Lemma 2.5. [8, 2.3. Lemma] Let I be a nonzero σ-ideal of $a \sigma$-prime ring R and $a \in R$. If Ia $=0$ (or $a I=0$) then $a=0$.

Lemma 2.6. [8, 2.8. Theorem] Let R be a σ-prime ring with characteristic not 2, I be a nonzero σ-ideal of R, and d be a nonzero (α, β)-derivation of R such that β commutes with σ. If $d(I) \subset C_{\alpha, \beta}$ then R is commutative.

Lemma 2.7. [8, 2.9. Lemma] Let R be a σ-prime ring with characteristic not 2 , I be a nonzero σ-ideal of R, d be a (α, β)-derivation of R such that β commutes with σ, and h be a derivation of R satisfying $h \sigma= \pm \sigma h$. If $d h(I)=0$ and $h(I) \subset I$ then $d=0$ or $h=0$.

Lemma 2.8. Let U be a nonzero $*-(\sigma, \tau)$-left Lie ideal of R such that τ commutes with $*$. If $U \subset C_{\sigma, \tau}$ then $U \subset Z(R)$.
Proof For any $u \in U, r \in R$, we have $[r \sigma(u), u]_{\sigma, \tau}=[r, u]_{\sigma, \tau} \sigma(u) \in U$. From the hypothesis, it holds that $\left[[r, u]_{\sigma, \tau} \sigma(u), s\right]_{\sigma, \tau}=0$ for all $u \in U, r, s \in R$. Expanding this equation and using the hypothesis

$$
\begin{aligned}
0 & =\left[[r, u]_{\sigma, \tau} \sigma(u), s\right]_{\sigma, \tau}=[r, u]_{\sigma, \tau} \sigma([u, s])+\left[[r, u]_{\sigma, \tau}, s\right]_{\sigma, \tau} \sigma(u) \\
& =[r, u]_{\sigma, \tau} \sigma([u, s])
\end{aligned}
$$

so it implies that

$$
[r, u]_{\sigma, \tau} \sigma([u, s])=0, \forall r, s \in R, u \in U
$$

In this equation, taking $\tau(r) k$ instead of r where $k \in R$, it follows that

$$
\begin{equation*}
\tau([r, u]) R \sigma([u, s])=0, \forall r, s \in R, u \in U \tag{2.1}
\end{equation*}
$$

Assume that $u \in U \cap S_{*}(R)$. In (2.1), replacing r by r^{*} and using that $\tau *=* \tau$, we get

$$
\tau^{*}([r, u]) R \sigma([u, s])=0, \forall r, s \in R
$$

Thus,

$$
\tau([r, u]) R \sigma([u, s])=\tau^{*}([r, u]) R \sigma([u, s])=0, \forall r, s \in R
$$

is obtained. By the $*$-primeness of R, we have

$$
u \in Z(R), \forall u \in U \cap S_{*}(R)
$$

Thus, it holds that

$$
\begin{equation*}
U \cap S_{*}(R) \subset Z(R) \tag{2.2}
\end{equation*}
$$

Now, for all $u \in U$, we know that $u-u^{*} \in U \cap S_{*}(R)$. From (2.2), it implies $u-u^{*} \in Z(R)$. This means that $[u, r]=\left[u^{*}, r\right]$ for all $r \in R$. In (2.1), taking r^{*} instead of r, and using that $\tau *=* \tau$ and $[u, r]=\left[u^{*}, r\right]$ for all $r \in R$, we get

$$
\tau^{*}([r, u]) R \sigma([u, s])=0, \forall r, s \in R, u \in U
$$

By the $*$-primeness of R, we have

$$
u \in Z(R), \forall u \in U
$$

which implies that

$$
U \subset Z(R)
$$

Lemma 2.9. Let U be a nonzero $*-(\sigma, \tau)$-left Lie ideal of R such that τ commutes with $*$ and $a \in R$. If $U a=0$, then $a=0$ or $U \subset Z(R)$.
Proof Since U is a $*-(\sigma, \tau)$-left Lie ideal of R, we know that $[r, u]_{\sigma, \tau} a=0$ for all $r \in R, u \in U$. Replacing r by $r s$ where $s \in R$ in the last equality, we get $[r s, u]_{\sigma, \tau} a=0$ for all $r, s \in R, u \in U$. Expanding this equation,

$$
0=[r s, u]_{\sigma, \tau} a=r[s, u]_{\sigma, \tau} a+[r, \tau(u)] s a
$$

and using the hypothesis, we have

$$
[r, \tau(u)] R a=0, \forall r \in R, u \in U
$$

In the last equation, taking r^{*}, u^{*} instead of r, u respectively and using that τ commutes with $*$, we get

$$
([r, \tau(u)])^{*} R a=0, \forall r \in R, u \in U
$$

Thus,

$$
[r, \tau(u)] R a=([r, \tau(u)])^{*} R a=0, \forall r \in R, u \in U
$$

is obtained. From the $*$-primeness of R, it yields

$$
a=0 \text { or }[R, \tau(U)]=0
$$

Since τ is an automorphism, we arrive at $a=0$ or $U \subset Z(R)$.
Lemma 2.10. Let U be a nonzero $*-(\sigma, \tau)$-left Lie ideal of R such that τ commutes with $*$. If $a \in R$ and $[U, a]=0$, then $[\sigma(U), a]=0$.
Proof Since U is a $*-(\sigma, \tau)$-left Lie ideal of R, we know that $[r \sigma(u), u]_{\sigma, \tau}=[r, u]_{\sigma, \tau} \sigma(u) \in U$ for all $u \in U$, $r \in R$. From the hypothesis, it holds that

$$
\left[[r, u]_{\sigma, \tau} \sigma(u), a\right]=0
$$

Expanding this equation,

$$
0=[r, u]_{\sigma, \tau}[\sigma(u), a]+\left[[r, u]_{\sigma, \tau}, a\right] \sigma(u)
$$

and using the hypothesis,

$$
[r, u]_{\sigma, \tau}[\sigma(u), a]=0, \forall u \in U, r \in R
$$

is obtained. In the last equation, replacing r by $\tau(s) r$ where $s \in R$, it implies

$$
\begin{equation*}
\tau([s, u]) R[\sigma(u), a]=0, \forall u \in U, s \in R . \tag{2.3}
\end{equation*}
$$

Suppose that $u \in U \cap S_{*}(R)$. Taking s^{*} instead of s in (2.3) and using that τ commutes with $*$, it follows that

$$
\tau^{*}([s, u]) R[\sigma(u), a]=0, \forall s \in R, u \in U \cap S_{*}(R)
$$

Thus,

$$
\tau([s, u]) R[\sigma(u), a]=\tau^{*}([s, u]) R[\sigma(u), a]=0, \forall s \in R, u \in U \cap S_{*}(R)
$$

Since R is a $*$-prime ring and τ is an automorphism, we obtain $u \in Z(R)$ or $[\sigma(u), a]=0$ for all $u \in U \cap S_{*}(R)$. That is,

$$
\begin{equation*}
[\sigma(u), a]=0, \quad \forall u \in U \cap S_{*}(R) \tag{2.4}
\end{equation*}
$$

Now, suppose that $u \in U$. In this case, we know $u-u^{*} \in U \cap S_{*}(R)$. It follows that $\left[\sigma\left(u-u^{*}\right), a\right]=0$ from (2.4) . Thus, we have

$$
\begin{equation*}
[\sigma(u), a]=\left[\sigma\left(u^{*}\right), a\right], \quad \forall u \in U . \tag{2.5}
\end{equation*}
$$

In (2.3), replacing s, u by s^{*}, u^{*}, respectively, and using that τ commutes with $*$ and (2.5), we get

$$
\tau^{*}([s, u]) R[\sigma(u), a]=0, \forall u \in U, s \in R .
$$

Thus,

$$
\tau([s, u]) R[\sigma(u), a]=\tau^{*}([s, u]) R[\sigma(u), a]=0, \forall u \in U, s \in R .
$$

Since R is a $*$-prime ring and τ is an automorphism, it implies that $u \in Z(R)$ or $[\sigma(u), a]=0$ for all $u \in U$. This means

$$
[\sigma(U), a]=0
$$

Theorem 2.11. Let R be a*-prime ring with characteristic not 2 , and let U be a nonzero $*-(\sigma, \tau)$-Lie ideal of R such that τ commutes with $*$. If $a \in S_{*}(R)$ and $[U, a]=0$, then $a \in Z(R)$ or $U \subset Z(R)$.
Proof Let

$$
T(U)=\left\{c \in R \mid[R, c]_{\sigma, \tau} \subset U\right\}
$$

Since U is a (σ, τ)-Lie ideal of R, from Lemma 2.1, $T(U)$ is a Lie ideal of R such that $U \subset T(U)$. Hence, it follows that

$$
[R, U] \subset[R, T(U)] \subset T(U)
$$

From the definition of $T(U)$, we have

$$
[R,[R, U]]_{\sigma, \tau} \subset[R, T(U)]_{\sigma, \tau} \subset U
$$

From the hypothesis, we have $\left[[R,[R, U]]_{\sigma, \tau}, a\right]=0$. For any $r, s \in R$ and $u \in U$, it holds that

$$
\begin{equation*}
\left[[r,[s, u]]_{\sigma, \tau}, a\right]=0 \tag{2.6}
\end{equation*}
$$

TÜRKMEN and AYDIN/Turk J Math

Replacing r by $r a$ in (2.6) and expanding by using (2.6),

$$
\begin{aligned}
0= & {\left[[r a,[s, u]]_{\sigma, \tau}, a\right]=[r[a, \sigma([s, u])], a]+\left[[r,[s, u]]_{\sigma, \tau} a, a\right] } \\
= & r[[a, \sigma([s, u])], a]+[r, a][a, \sigma([s, u])]+[r,[s, u]]_{\sigma, \tau}[a, a] \\
& +\left[[r,[s, u]]_{\sigma, \tau}, a\right] a \\
= & r[[a, \sigma([s, u])], a]+[r, a][a, \sigma([s, u])]
\end{aligned}
$$

is obtained. It follows that

$$
\begin{equation*}
r[[a, \sigma([s, u])], a]+[r, a][a, \sigma([s, u])]=0, \forall r, s \in R, u \in U \tag{2.7}
\end{equation*}
$$

In (2.7), taking $r m$ instead of r where $m \in R$ and expanding by using (2.7),

$$
\begin{aligned}
0 & =\operatorname{rm}[[a, \sigma([s, u])], a]+[r m, a][a, \sigma([s, u])] \\
& =\operatorname{rm}[[a, \sigma([s, u])], a]+r[m, a][a, \sigma([s, u])]+[r, a] m[a, \sigma([s, u])] \\
& =r(m[[a, \sigma([s, u])], a]+[m, a][a, \sigma([s, u])])+[r, a] m[a, \sigma([s, u])] \\
& =[r, a] m[a, \sigma([s, u])]
\end{aligned}
$$

is obtained. This implies that

$$
[r, a] R[a, \sigma([s, u])]=0, \forall r, s \in R, u \in U
$$

Replacing r by r^{*} and using $a \in S_{*}(R)$ in the last equation, we have

$$
[r, a]^{*} R[a, \sigma([s, u])]=0, \forall r, s \in R, u \in U
$$

It holds that

$$
[r, a] R[a, \sigma([s, u])]=[r, a]^{*} R[a, \sigma([s, u])]=0, \forall r, s \in R, u \in U
$$

By the $*$-primeness of R, we get

$$
a \in Z(R) \text { or }[a, \sigma([s, u])]=0, \forall s \in R, u \in U
$$

That is,

$$
[\sigma([s, u]), a]=0, \forall s \in R, u \in U
$$

Since σ is an automorphism, it implies

$$
[[R, \sigma(u)], a]=0, \forall u \in U
$$

Thus, we have $[[r, \sigma(u)], a]=0$ for all $r \in R, u \in U$. Using the identity $[[x, y], z]=[[x, z], y]+[x,[y, z]]$ for all $x, y, z \in R$,

$$
0=[[r, \sigma(u)], a]=[[r, a], \sigma(u)]+[r,[\sigma(u), a]]
$$

is obtained. From Lemma 2.10, we know that $[\sigma(U), a]=0$. It holds that

$$
\begin{equation*}
[[r, a], \sigma(u)]=0, \forall r \in R, u \in U \tag{2.8}
\end{equation*}
$$

From (2.8), it implies

$$
\left(I_{\sigma(u)} I_{a}\right)(R)=0, \forall u \in U
$$

Since $a \in S_{*}(R)$, we know that $I_{a} *= \pm * I_{a}$. Hence, according to Lemma 2.7, we have

$$
a \in Z(R) \text { or } \sigma(u) \in Z(R), \forall u \in U
$$

which implies that

$$
a \in Z(R) \text { or } U \subset Z(R)
$$

Corollary 2.12. Let R be $a *$-prime ring with characteristic not 2 , and let U be a nonzero $*-(\sigma, \tau)$-Lie ideal of R such that τ commutes with $*$. If $U \subset S_{*}(R)$ and $[U, U]=0$, then $U \subset Z(R)$.

Theorem 2.13. Let R be $a *$-prime ring with characteristic not 2 , and let U be a nonzero $*-(\sigma, \tau)$-Lie ideal of R such that τ commutes with $*$. If $a \in S_{*}(R)$ and $[U, a]_{\sigma, \tau}=0$, then $a \in Z(R)$ or $U \subset Z(R)$.
Proof Since U is a $*-(\sigma, \tau)$-Lie ideal of R, we have $[r \sigma(u), u]_{\sigma, \tau}=[r, u]_{\sigma, \tau} \sigma(u) \in U$ for all $r \in R, u \in U$. From the hypothesis, we have $\left[[r, u]_{\sigma, \tau} \sigma(u), a\right]_{\sigma, \tau}=0$ for all $r \in R, u \in U$. Expanding this equation by using the hypothesis,

$$
\begin{aligned}
0 & =\left[[r, u]_{\sigma, \tau} \sigma(u), a\right]_{\sigma, \tau}=\left[[r, u]_{\sigma, \tau}, a\right]_{\sigma, \tau} \sigma(u)+[r, u]_{\sigma, \tau} \sigma([u, a]) \\
& =[r, u]_{\sigma, \tau} \sigma([u, a])
\end{aligned}
$$

is obtained. Thus, we have

$$
[r, u]_{\sigma, \tau} \sigma([u, a])=0, \forall u \in U, r \in R
$$

In the last equality, replacing r by $\tau(s) r$ where $s \in R$, it implies that

$$
\begin{equation*}
\tau([s, u]) R \sigma([u, a])=0, \forall u \in U, s \in R \tag{2.9}
\end{equation*}
$$

Suppose that $u \in U \cap S_{*}(R)$. In (2.9), replacing s by s^{*} and using that τ commutes with $*$, we have

$$
\tau^{*}([s, u]) R \sigma([u, a])=0, \forall s \in R, u \in U \cap S_{*}(R)
$$

It follows that

$$
\tau([s, u]) R \sigma([u, a])=\tau^{*}([s, u]) R \sigma([u, a])=0, \forall s \in R, u \in U \cap S_{*}(R)
$$

Since R is a $*$-prime ring and σ, τ are automorphisms, we get $u \in Z(R)$ or $[u, a]=0$ for all $u \in U \cap S_{*}(R)$. Hence, we get

$$
[u, a]=0, \forall u \in U \cap S_{*}(R)
$$

Now, suppose that $u \in U$. In this case, we know that $u-u^{*} \in U \cap S_{*}(R)$. It follows that $\left[u-u^{*}, a\right]=0$ from the above equation. Thus, we have

$$
\begin{equation*}
[u, a]=\left[u^{*}, a\right], \forall u \in U . \tag{2.10}
\end{equation*}
$$

In (2.9), replacing s, u by s^{*}, u^{*}, respectively, and using that τ commutes with $*$ and (2.10), we get

$$
\tau^{*}([s, u]) R \sigma([u, a])=0, \forall u \in U, s \in R
$$

Thus,

$$
\tau^{*}([s, u]) R \sigma([u, a])=\tau([s, u]) R \sigma([u, a])=0, \forall u \in U, s \in R
$$

is obtained. Since R is a $*$-prime ring and σ, τ are automorphisms, it implies that

$$
u \in Z(R) \text { or }[u, a]=0, \forall u \in U
$$

That is,

$$
[U, a]=0
$$

Therefore, according to Theorem 2.11,

$$
a \in Z(R) \text { or } U \subset Z(R)
$$

is obtained.
Corollary 2.14. Let R be $a *$-prime ring with characteristic not 2 , and let U be a nonzero $*-(\sigma, \tau)$-Lie ideal of R such that τ commutes with $*$. If $U \subset S_{*}(R)$ and $[U, U]_{\sigma, \tau}=0$, then $U \subset Z(R)$.

Theorem 2.15. Let R be a*-prime ring with characteristic not 2 , and let U be a nonzero $*-(\sigma, \tau)$-Lie ideal of R such that τ commutes with $*$. If $a \in S_{*}(R)$ and $[U, a]_{\sigma, \tau} \subset C_{\sigma, \tau}$, then $a \in Z(R)$ or $U \subset Z(R)$.

Proof From the hypothesis, we know that $\left[[u, a]_{\sigma, \tau}, r\right]_{\sigma, \tau}=0$ for all $u \in U, r \in R$. Using the identity $\left[[x, y]_{\sigma, \tau}, z\right]_{\sigma, \tau}=\left[[x, z]_{\sigma, \tau}, y\right]_{\sigma, \tau}+[x,[y, z]]_{\sigma, \tau}$ for all $x, y, z \in R$, for any $r \in R$ and $u \in U$

$$
0=\left[[u, a]_{\sigma, \tau}, r\right]_{\sigma, \tau}=\left[[u, r]_{\sigma, \tau}, a\right]_{\sigma, \tau}+[u,[a, r]]_{\sigma, \tau}
$$

is obtained. Since $\left[[u, r]_{\sigma, \tau}, a\right]_{\sigma, \tau} \in C_{\sigma, \tau}$, from the last equation, we have

$$
[u,[a, r]]_{\sigma, \tau} \in C_{\sigma, \tau}, \forall u \in U, r \in R .
$$

In this case, we get $\left[[u,[a, r]]_{\sigma, \tau}, s\right]_{\sigma, \tau}=0$ for all $s \in R$. Replacing r by $r a$ in this equality, we have $\left[[u,[a, r a]]_{\sigma, \tau}, s\right]_{\sigma, \tau}=0$ for all $r, s \in R$ and $u \in U$. Expanding this equation,

$$
\begin{aligned}
0 & =\left[[u,[a, r a]]_{\sigma, \tau}, s\right]_{\sigma, \tau} \\
& =\left[\tau([a, r])[u, a]_{\sigma, \tau}, s\right]_{\sigma, \tau}+\left[[u,[a, r]]_{\sigma, \tau} \sigma(a), s\right]_{\sigma, \tau} \\
& =\tau([a, r])\left[[u, a]_{\sigma, \tau}, s\right]_{\sigma, \tau}+\tau([[a, r], s])[u, a]_{\sigma, \tau}+ \\
& {\left[[u,[a, r]]_{\sigma, \tau}, s\right]_{\sigma, \tau} \sigma(a)+[u,[a, r]]_{\sigma, \tau} \sigma([a, s]) }
\end{aligned}
$$

is obtained. Using that $[u, a]_{\sigma, \tau},[u,[a, r]]_{\sigma, \tau} \in C_{\sigma, \tau}$, it holds that

$$
\tau([[a, r], s])[u, a]_{\sigma, \tau}+[u,[a, r]]_{\sigma, \tau} \sigma([a, s])=0, \forall u \in U, r, s \in R
$$

In the last equation, taking a instead of s, we have

$$
\tau([[a, r], a])[u, a]_{\sigma, \tau}=0, \forall u \in U, r \in R .
$$

Since $[u, a]_{\sigma, \tau} \in C_{\sigma, \tau}$, it implies

$$
\tau([[a, r], a]) R[u, a]_{\sigma, \tau}=0, \forall u \in U, r \in R
$$

In the above equality, replacing r by r^{*} and using that $a \in S_{*}(R)$ and τ commutes with $*$, we get

$$
(\tau([[a, r], a]))^{*} R[u, a]_{\sigma, \tau}=0, \forall u \in U, r \in R
$$

Thus,

$$
\tau([[a, r], a]) R[u, a]_{\sigma, \tau}=(\tau([[a, r], a]))^{*} R[u, a]_{\sigma, \tau}=0, \forall u \in U, r \in R
$$

Since R is a *-prime ring and τ is an automorphism,

$$
\begin{equation*}
[[r, a], a]=0 \text { or }[u, a]_{\sigma, \tau}=0, \forall u \in U, r \in R \tag{2.11}
\end{equation*}
$$

is obtained. From (2.11), it follows that

$$
I_{a}^{2}(R)=0 \text { or }[U, a]_{\sigma, \tau}=0
$$

Since $a \in S_{*}(R)$, we know that $I_{a} *= \pm * I_{a}$. According to Lemma 2.3 and Theorem 2.13,

$$
a \in Z(R) \text { or } U \subset Z(R)
$$

is obtained.
Corollary 2.16. Let R be $a *$-prime ring with characteristic not 2 , and let U be a nonzero $*-(\sigma, \tau)$-Lie ideal of R such that τ commutes with $*$. If $U \subset S_{*}(R)$ and $[U, U]_{\sigma, \tau} \subset C_{\sigma, \tau}$, then $U \subset Z(R)$.

Theorem 2.17. Let R be $a *$-prime ring with characteristic not 2 , and let U be a nonzero $*-(\sigma, \tau)$-Lie ideal of R such that τ commutes with $*$. If $U \not \subset Z(R)$ and $U \not \subset C_{\sigma, \tau}$, then there exists a nonzero $*$-ideal M of R such that $[R, M]_{\sigma, \tau} \subset U$ but $[R, M]_{\sigma, \tau} \not \subset C_{\sigma, \tau}$.
Proof It follows from Lemma 2.1 that $T(U)=\left\{c \in R \mid[R, c]_{\sigma, \tau} \subset U\right\}$ is a subring and Lie ideal of R. Moreover, $U \subset T(U)$. On the other hand, it follows from Lemma 2.2 that $[T(U), \tau(T(U))] R \subset T(U)$. Since $U \subset T(U)$, it implies that

$$
[U, \tau(U)] R \subset[T(U), \tau(T(U))] R \subset T(U)
$$

That is,

$$
[U, \tau(U)] R \subset T(U)
$$

Since $T(U)$ is a Lie ideal of R, it holds that $[R,[U, \tau(U)] R] \subset T(U)$. Thus, for any $s, r \in R, u, v \in U$

$$
[s,[u, \tau(v)] r]=[u, \tau(v)][s, r]+[s,[u, \tau(v)]] r \in T(U) .
$$

Using that $[U, \tau(U)] R \subset T(U)$, we have $[s,[u, \tau(v)]] r \in T(U)$ for all $u, v \in U, r, s \in R$. Expanding this equation,

$$
[s,[u, \tau(v)]] r=s[u, \tau(v)] r-[u, \tau(v)] s r \in T(U)
$$

and using that $[U, \tau(U)] R \subset T(U)$,

$$
s[u, \tau(v)] r \in T(U), \forall u, v \in U, r, s \in R
$$

is obtained. It holds that

$$
\begin{equation*}
R[U, \tau(U)] R \subset T(U) . \tag{2.12}
\end{equation*}
$$

Set $M=R[U, \tau(U)] R$. Thus, M is an ideal of R. Now, assume that $M=0$. It follows that $R[U, \tau(U)] R=0$. Since R is a $*$-ideal of R, according to Lemma 2.5, it holds that

$$
[U, \tau(U)]=0 .
$$

On the other hand, we know that $\tau(U) \cap S_{*}(R) \subset S_{*}(R)$ and $\tau(U) \cap S_{*}(R) \subset \tau(U)$. It follows that $\left[U, \tau(U) \cap S_{*}(R)\right] \subset[U, \tau(U)]=0$. Therefore, it implies

$$
\left[U, \tau(U) \cap S_{*}(R)\right]=0 .
$$

That is, we have $\tau(U) \cap S_{*}(R) \subset S_{*}(R)$ and $\left[U, \tau(U) \cap S_{*}(R)\right]=0$. Since $U \not \subset Z(R)$, it holds from Theorem 2.11 that

$$
\tau(U) \cap S_{*}(R) \subset Z(R) .
$$

Now, for any $u \in U$, we get $\tau\left(u-u^{*}\right), \tau\left(u+u^{*}\right) \in \tau(U) \cap S_{*}(R) \subset Z(R)$. It yields $2 \tau(u) \in Z(R)$. Since the characteristic is not 2 , we obtain $u \in Z(R)$ for all $u \in U$. This is a contradiction, which implies $M \neq 0$. Moreover, we have

$$
M^{*}=(R[U, \tau(U)] R)^{*}=R[U, \tau(U)] R=M .
$$

Thus, M is a nonzero $*$-ideal of R. It also follows from (2.12) that $0 \neq M \subset T(U)$. From the definition of $T(U)$, we get

$$
[R, M]_{\sigma, \tau} \subset[R, T(U)]_{\sigma, \tau} \subset U,
$$

which implies that

$$
[R, M]_{\sigma, \tau} \subset U .
$$

Suppose that $[R, M]_{\sigma, \tau} \subset C_{\sigma, \tau}$. From the assumption, $d_{r}(M) \subset C_{\sigma, \tau}$ for all $r \in R$. According to Lemma 2.6, R is commutative. This is a contradiction, so we have

$$
[R, M]_{\sigma, \tau} \not \subset C_{\sigma, \tau} .
$$

Theorem 2.18. Let R be $a *$-prime ring with characteristic not 2 , and let U be a nonzero $*-(\sigma, \tau)$-Lie ideal of R such that τ commutes with $*$ and $a, b \in R$. If $U \not \subset Z(R)$ and $U \not \subset C_{\sigma, \tau}$ such that $a U b=a^{*} U b=0$, then $a=0$ or $b=0$.

Proof Since $U \not \subset Z(R)$ and $U \not \subset C_{\sigma, \tau}$, by Theorem 2.17, there exists a nonzero $*$-ideal M of R such that $[R, M]_{\sigma, \tau} \subset U$ but $[R, M]_{\sigma, \tau} \not \subset C_{\sigma, \tau}$. Since $[R, M]_{\sigma, \tau} \subset U$, using the hypothesis, we have $a[R, M]_{\sigma, \tau} b=$ $a^{*}[R, M]_{\sigma, \tau} b=0$. For any $m \in M$ and $u \in U$, it implies $a\left[a^{*} u, m\right]_{\sigma, \tau} b=0$. Expanding this equation,

$$
0=a\left[a^{*} u, m\right]_{\sigma, \tau} b=a a^{*}[u, m]_{\sigma, \tau} b+a\left[a^{*}, \tau(m)\right] u b,
$$

and using the hypothesis,

$$
a\left[a^{*}, \tau(m)\right] u b=0
$$

is obtained. Expanding this by using the hypothesis, it yields

$$
\begin{aligned}
0 & =a a^{*} \tau(m) u b-a \tau(m) a^{*} u b \\
& =a a^{*} \tau(m) u b
\end{aligned}
$$

That is,

$$
a a^{*} \tau(M) u b=0, \forall u \in U
$$

Since $\left(a a^{*}\right)^{*}=a a^{*}$, it also holds that

$$
a a^{*} \tau(M) u b=\left(a a^{*}\right)^{*} \tau(M) u b=0, \forall u \in U
$$

Since M is a nonzero $*$-ideal of R and τ commutes with $*, \tau(M)$ is a nonzero $*$-ideal of R. By Lemma 2.4 and Lemma 2.9, it follows that

$$
a a^{*}=0 \text { or } b=0 .
$$

Assume that $b \neq 0$. In this case $a a^{*}=0$. Since $[R, M]_{\sigma, \tau} \subset U$, we get $a\left[a^{*} n, m\right]_{\sigma, \tau} b=0$ for all $n, m \in M$. Expanding this equation by using the assumption,

$$
\begin{aligned}
0 & =a\left[a^{*} n, m\right]_{\sigma, \tau} b=a a^{*} n \sigma(m) b-a \tau(m) a^{*} n b \\
& =a \tau(m) a^{*} n b
\end{aligned}
$$

is obtained, so it holds that

$$
a \tau(M) a^{*} M b=0
$$

Since $\left(a \tau(M) a^{*}\right)^{*}=a \tau(M) a^{*}$, we have

$$
a \tau(M) a^{*} M b=\left(a \tau(M) a^{*}\right)^{*} M b=0 .
$$

According to Lemma 2.4, since $b \neq 0$, it follows that

$$
\begin{equation*}
a \tau(M) a^{*}=0 \tag{2.13}
\end{equation*}
$$

On the other hand, since $[R, M]_{\sigma, \tau} \subset U$, we have $a[a u, m]_{\sigma, \tau} b=0$ for all $u \in U, m \in M$. Expanding this equation by using hypothesis, we have

$$
\begin{aligned}
0 & =a[a u, m]_{\sigma, \tau} b=a a[u, m]_{\sigma, \tau} b+a[a, \tau(m)] u b \\
& =a[a, \tau(m)] u b \\
& =a^{2} \tau(m) u b-a \tau(m) a u b \\
& =a^{2} \tau(m) u b
\end{aligned}
$$

That is,

$$
a^{2} \tau(M) u b=0, \forall u \in U
$$

Similarly, $a^{*}\left[a^{*} u, m\right]_{\sigma, \tau} b=0$ for all $u \in U, m \in M$. Expanding this equation by using the hypothesis, we get

$$
\left(a^{2}\right)^{*} \tau(M) u b=0, \forall u \in U
$$

This implies that

$$
a^{2} \tau(M) u b=\left(a^{2}\right)^{*} \tau(M) u b=0, \forall u \in U
$$

Since $b \neq 0$, by Lemma 2.4 and Lemma 2.9, we get

$$
a^{2}=0
$$

Moreover, for any $n, m \in M$, we have $a[a n, m]_{\sigma, \tau} b=0$ from the hypothesis. Expanding this equation by using that $a^{2}=0$,

$$
\begin{aligned}
0 & =a[a n, m]_{\sigma, \tau} b=a^{2} n \sigma(m) b-a \tau(m) a n b \\
& =a \tau(m) a n b
\end{aligned}
$$

is obtained. Thus, we have

$$
a \tau(M) a M b=0 .
$$

Similarly, we know that $a^{*}\left[a^{*} n, m\right]_{\sigma, \tau} b=0$ for all $n, m \in M$. Using that $a^{2}=0$, we get

$$
a^{*} \tau(M) a^{*} M b=0
$$

Since $(a \tau(M) a)^{*}=a^{*} \tau(M) a^{*}$, it holds that

$$
(a \tau(M) a)^{*} M b=0
$$

Thus,

$$
a \tau(M) a M b=(a \tau(M) a)^{*} M b=0
$$

is obtained. By Lemma 2.4, we have

$$
\begin{equation*}
a \tau(M) a=0 \tag{2.14}
\end{equation*}
$$

From (2.13) and (2.14), we obtain

$$
a \tau(M) a^{*}=a \tau(M) a=0
$$

According to Lemma 2.4, it is implied that $a=0$.

Acknowledgment

The first author thanks the Scientific and Technological Research Council of Turkey (TÜBİTAK) for financial support via the BİDEB 2211 National Research Fellowship. The material presented here was a part of the first author's PhD work, which was supervised by the second author.

TÜRKMEN and AYDIN/Turk J Math

References

[1] Aydın N. Notes on generalized Lie ideals. Analele
[2] Aydın N, Kandamar H. (σ, τ)-Lie ideals in prime rings. Turk J Math 1994; 18: 143-148.
[3] Bergen J, Herstein IN, Kerr JW. Lie ideals and derivations of prime rings. J Algebra 1981; 71: 259-267.
[4] Kaya K. (σ, τ)-Lie ideals in prime rings. An Univ Timisoara Ser Stiinte Math 1992; 30: 251-255.
[5] Oukhtite L, Salhi S. Derivations and commutativity of σ-prime rings. Int J Contemp Math Sci 2006; 1: 439-448.
[6] Oukhtite L, Salhi S. σ-Prime rings with a special kind of automorphism. Int J Contemp Math Sci 2007; 2: 127-133.
[7] Oukhtite L, Salhi S. Centralizing automorphisms and Jordan left derivations of σ-prime rings. Advances in Algebra 2008; 1: 19-26.
[8] Türkmen S, Aydın N. Some results on σ-ideal of σ-prime ring. Hacettepe J Math Stat 2015; 44: 1147-1156.

[^0]: *Correspondence: selinvurkac@gmail.com.tr
 2010 AMS Mathematics Subject Classification: Primary 16N60; Secondary 16W25, 16U80.

