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Abstract: Let R be a ∗ -prime ring with characteristic not 2, σ, τ : R → R be two automorphisms, U be a nonzero

∗ -(σ, τ)-Lie ideal of R such that τ commutes with ∗ , and a, b be in R. (i) If a ∈ S∗ (R) and [U, a] = 0, then a ∈ Z (R)

or U ⊂ Z (R) . (ii) If a ∈ S∗ (R) and [U, a]σ,τ ⊂ Cσ,τ , then a ∈ Z (R) or U ⊂ Z (R) . (iii) If U ̸⊂ Z (R) and

U ̸⊂ Cσ,τ , then there exists a nonzero ∗ -ideal M of R such that [R,M ]σ,τ ⊂ U but [R,M ]σ,τ ̸⊂ Cσ,τ . (iv) Let

U ̸⊂ Z (R) and U ̸⊂ Cσ,τ . If aUb = a∗Ub = 0, then a = 0 or b = 0.

Key words: ∗ -prime ring, ∗ -(σ, τ)-Lie ideal, (σ, τ)-derivation, derivation

1. Introduction

Let R be an associative ring with the center Z (R) . Recall that a ring R is prime if aRb = 0 implies that a = 0

or b = 0. An involution ∗ of a ring R is an additive mapping satisfying (xy)
∗
= y∗x∗ and (x∗)

∗
= x for all

x, y ∈ R. A ring R equipped with an involution ∗ is said to be ∗ -prime if aRb = a∗Rb = 0 or aRb = aRb∗ = 0

implies that a = 0 or b = 0. R is said to be 2-torsion-free if whenever 2x = 0 with x ∈ R then x = 0. S∗ (R)

will denote the set of symmetric and skew symmetric elements of R, i.e. S∗ (R) = {x ∈ R | x∗ = ±x} . An

ideal I of R is said to be a ∗ -ideal if I is invariant under ∗, i.e. I∗ = I. As usual the commutator xy − yx

will be denoted by [x, y]. An additive mapping h : R → R is called a derivation if h (xy) = h (x) y + xh (y)

holds for all x, y ∈ R. For a fixed a ∈ R, the mapping Ia : R → R is given by Ia (x) = [a, x] for x ∈ R

is a derivation, which is said to be an inner derivation determined by a. Let σ, τ be two mappings on R.

Set Cσ,τ = {c ∈ R | cσ (r) = τ (r) c for all r ∈ R} and it is known as the (σ, τ)-center of R. In particular,

C1,1 = Z (R) is the center of R where 1 : R → R is the identity map. As usual, the (σ, τ)-commutator

xσ (y) − τ (y)x will be denoted by [x, y]σ,τ . An additive mapping d : R → R is called an (σ, τ)-derivation if

d (xy) = d (x)σ (y) + τ (x) d (y) holds for all x, y ∈ R. For a fixed a ∈ R, the mapping da : R → R is given by

da (x) = [a, x]σ,τ for x ∈ R is called a (σ, τ)-inner derivation determined by a. The definition of a (σ, τ)-Lie

ideal was given in [4] as follows: let U be an additive subgroup of R. Then: (i) U is a (σ, τ)-right Lie ideal of

R if [U,R]σ,τ ⊂ U ; (ii) U is a (σ, τ)-left Lie ideal of R if [R,U ]σ,τ ⊂ U ; (iii) if U is both a (σ, τ)-right Lie

ideal and a (σ, τ)-left Lie ideal of R then U is a (σ, τ)-Lie ideal of R. A (σ, τ)-Lie ideal of R is said to be a

∗ -(σ, τ)-Lie ideal if U is invariant under ∗, i.e. U∗ = U. Every ∗ -Lie ideal of R is a ∗ -(1, 1)-Lie ideal of R

where 1 : R → R is the identity map but every ∗ -(σ, τ)-Lie ideal of R is in general not a ∗-Lie ideal of R.
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TÜRKMEN and AYDIN/Turk J Math

Example. As an example, set R =

{(
x y
0 z

)
| x, y, z ∈ Z

}
. We define a map ∗ : R → R as follows:(

x y
0 z

)∗

=

(
z −y
0 x

)
. Let σ

(
x y
0 z

)
=

(
x 0
0 0

)
, τ

(
x y
0 z

)
=

(
0 0
0 z

)
be two endomorphisms

of R. It is easy to check that U =

{(
x 0
0 y

)
| x, y ∈ Z

}
is a ∗-(σ, τ)-Lie ideal of R but not a ∗-Lie ideal

of R.

In [3], Bergen et al. proved the following results for a nonzero Lie ideal U such that U ̸⊂ Z (R) of a

prime ring R with characteristic not 2: (i) there exists a nonzero ideal M of R such that [M,R] ⊂ U but

[M,R] ̸⊂ Z (R) ; (ii) if a, b ∈ R such that aUb = 0, then a = 0 or b = 0. In [2] , Aydın and Kandamar

generalized these results for a nonzero (σ, τ)-Lie ideal that is not included in Z (R) and Cσ,τ of a prime ring.

Oukhtite and Salhi [7] generalized these results, which were proved in [3] for a nonzero ∗-Lie ideal U such that

[U,U ] ̸= 0 of a 2-torsion-free ∗ -prime ring R . In this paper our main goal will be to extend the above results

to a nonzero ∗ -(σ, τ)-Lie ideal that is not included in Z (R) and Cσ,τ of a ∗ -prime ring with characteristic not

2.

Throughout the present paper R will be a ∗-prime ring, Z (R) will be the center of R, σ, τ : R → R

will be two automorphisms, Cσ,τ will be the (σ, τ)-center of R , and S∗ (R) will be the set of symmetric and

skew symmetric elements of R.

We will use the following basic commutator identities:

• [x, yz] = y [x, z] + [x, y] z,

• [xy, z] = x [y, z] + [x, z] y,

• [[x, y] , z] + [[y, z] , x] + [[z, x] , y] = 0,

• [xy, z]σ,τ = x [y, z]σ,τ + [x, τ (z)] y = x [y, σ (z)] + [x, z]σ,τ y,

• [x, yz]σ,τ = τ (y) [x, z]σ,τ + [x, y]σ,τ σ (z) ,

•
[
[x, y]σ,τ , z

]
σ,τ

=
[
[x, z]σ,τ , y

]
σ,τ

+ [x, [y, z]]σ,τ .

2. Results

For the proof of our results we need the following lemmas.

Lemma 2.1. [1, Lemma 5] Let R be a ring and U be a nonzero (σ, τ)-left Lie ideal of R and T ={
c ∈ R | [R, c]σ,τ ⊂ U

}
. Then the following hold:

i) T is a subring of R.

ii) If U is also a (σ, τ)-right Lie ideal of R then T is the largest Lie ideal of R such that [R, T ]σ,τ ⊂ U and

U ⊂ T.
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Lemma 2.2. [2, Lemma 4] Let R be a ring and U be a nonzero (σ, τ)-left Lie ideal of R. Then

R [T (U) , σ (T (U))] ⊂ T (U) and [T (U) , τ (T (U))]R ⊂ T (U) .

Lemma 2.3. [5, Lemma 4] Let R be a σ -prime ring with characteristic not 2, d be a derivation of R satisfying

dσ = ±σd , and I be a nonzero σ -ideal of R. If d2 (I) = 0 then d = 0.

Lemma 2.4. [6, Theorem 2.2] Let I be a nonzero σ -ideal of a σ -prime ring R. If a, b in R are such that

aIb = aIσ (b) = 0 then a = 0 or b = 0.

Lemma 2.5. [8, 2.3. Lemma] Let I be a nonzero σ -ideal of a σ -prime ring R and a ∈ R. If Ia = 0

(or aI = 0) then a = 0.

Lemma 2.6. [8, 2.8. Theorem] Let R be a σ -prime ring with characteristic not 2, I be a nonzero σ -ideal

of R , and d be a nonzero (α, β)-derivation of R such that β commutes with σ. If d (I) ⊂ Cα,β then R is

commutative.

Lemma 2.7. [8, 2.9. Lemma] Let R be a σ -prime ring with characteristic not 2, I be a nonzero σ -ideal of R,

d be a (α, β)-derivation of R such that β commutes with σ , and h be a derivation of R satisfying hσ = ±σh.

If dh (I) = 0 and h (I) ⊂ I then d = 0 or h = 0.

Lemma 2.8. Let U be a nonzero ∗-(σ, τ)-left Lie ideal of R such that τ commutes with ∗. If U ⊂ Cσ,τ then

U ⊂ Z (R) .

Proof For any u ∈ U, r ∈ R, we have [rσ (u) , u]σ,τ = [r, u]σ,τ σ (u) ∈ U. From the hypothesis, it holds that[
[r, u]σ,τ σ (u) , s

]
σ,τ

= 0 for all u ∈ U, r, s ∈ R. Expanding this equation and using the hypothesis

0 =
[
[r, u]σ,τ σ (u) , s

]
σ,τ

= [r, u]σ,τ σ ([u, s]) +
[
[r, u]σ,τ , s

]
σ,τ

σ (u)

= [r, u]σ,τ σ ([u, s]) ,

so it implies that

[r, u]σ,τ σ ([u, s]) = 0, ∀r, s ∈ R, u ∈ U.

In this equation, taking τ (r) k instead of r where k ∈ R, it follows that

τ ([r, u])Rσ ([u, s]) = 0, ∀r, s ∈ R, u ∈ U. (2.1)

Assume that u ∈ U ∩ S∗ (R) . In (2.1) , replacing r by r∗ and using that τ∗ = ∗τ, we get

τ∗ ([r, u])Rσ ([u, s]) = 0, ∀r, s ∈ R.

Thus,

τ ([r, u])Rσ ([u, s]) = τ∗ ([r, u])Rσ ([u, s]) = 0, ∀r, s ∈ R

is obtained. By the ∗ -primeness of R, we have

u ∈ Z (R) , ∀u ∈ U ∩ S∗ (R) .
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Thus, it holds that

U ∩ S∗ (R) ⊂ Z (R) . (2.2)

Now, for all u ∈ U, we know that u − u∗ ∈ U ∩ S∗ (R) . From (2.2) , it implies u − u∗ ∈ Z (R) . This means

that [u, r] = [u∗, r] for all r ∈ R. In (2.1) , taking r∗ instead of r , and using that τ∗ = ∗τ and [u, r] = [u∗, r]

for all r ∈ R, we get

τ∗ ([r, u])Rσ ([u, s]) = 0, ∀r, s ∈ R, u ∈ U.

By the ∗ -primeness of R, we have

u ∈ Z (R) , ∀u ∈ U,

which implies that

U ⊂ Z (R) .

Lemma 2.9. Let U be a nonzero ∗-(σ, τ)-left Lie ideal of R such that τ commutes with ∗ and a ∈ R. If

Ua = 0 , then a = 0 or U ⊂ Z (R) .

Proof Since U is a ∗ -(σ, τ)-left Lie ideal of R, we know that [r, u]σ,τ a = 0 for all r ∈ R, u ∈ U. Replacing r

by rs where s ∈ R in the last equality, we get [rs, u]σ,τ a = 0 for all r, s ∈ R, u ∈ U. Expanding this equation,

0 = [rs, u]σ,τ a = r [s, u]σ,τ a+ [r, τ(u)] sa,

and using the hypothesis, we have

[r, τ (u)]Ra = 0, ∀r ∈ R, u ∈ U.

In the last equation, taking r∗, u∗ instead of r, u respectively and using that τ commutes with ∗, we get

([r, τ (u)])
∗
Ra = 0, ∀r ∈ R, u ∈ U.

Thus,

[r, τ (u)]Ra = ([r, τ (u)])
∗
Ra = 0, ∀r ∈ R, u ∈ U

is obtained. From the ∗ -primeness of R, it yields

a = 0 or [R, τ (U)] = 0.

Since τ is an automorphism, we arrive at a = 0 or U ⊂ Z (R) .

Lemma 2.10. Let U be a nonzero ∗-(σ, τ)-left Lie ideal of R such that τ commutes with ∗. If a ∈ R and

[U, a] = 0 , then [σ (U) , a] = 0.

Proof Since U is a ∗ -(σ, τ)-left Lie ideal of R, we know that [rσ (u) , u]σ,τ = [r, u]σ,τ σ (u) ∈ U for all u ∈ U,

r ∈ R. From the hypothesis, it holds that [
[r, u]σ,τ σ (u) , a

]
= 0.

Expanding this equation,

0 = [r, u]σ,τ [σ (u) , a] +
[
[r, u]σ,τ , a

]
σ (u) ,
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and using the hypothesis,

[r, u]σ,τ [σ (u) , a] = 0, ∀u ∈ U, r ∈ R

is obtained. In the last equation, replacing r by τ (s) r where s ∈ R, it implies

τ ([s, u])R [σ (u) , a] = 0, ∀u ∈ U, s ∈ R. (2.3)

Suppose that u ∈ U ∩ S∗ (R) . Taking s∗ instead of s in (2.3) and using that τ commutes with ∗, it follows
that

τ∗ ([s, u])R [σ (u) , a] = 0, ∀s ∈ R, u ∈ U ∩ S∗ (R) .

Thus,

τ ([s, u])R [σ (u) , a] = τ∗ ([s, u])R [σ (u) , a] = 0, ∀s ∈ R, u ∈ U ∩ S∗ (R) .

Since R is a ∗ -prime ring and τ is an automorphism, we obtain u ∈ Z (R) or [σ (u) , a] = 0 for all u ∈ U∩S∗ (R) .

That is,

[σ (u) , a] = 0, ∀u ∈ U ∩ S∗ (R) . (2.4)

Now, suppose that u ∈ U. In this case, we know u− u∗ ∈ U ∩ S∗ (R) . It follows that [σ (u− u∗) , a] = 0 from

(2.4) . Thus, we have

[σ (u) , a] = [σ (u∗) , a] , ∀u ∈ U. (2.5)

In (2.3) , replacing s, u by s∗, u∗ , respectively, and using that τ commutes with ∗ and (2.5), we get

τ∗ ([s, u])R [σ (u) , a] = 0, ∀u ∈ U, s ∈ R.

Thus,

τ ([s, u])R [σ (u) , a] = τ∗ ([s, u])R [σ (u) , a] = 0, ∀u ∈ U, s ∈ R.

Since R is a ∗-prime ring and τ is an automorphism, it implies that u ∈ Z (R) or [σ (u) , a] = 0 for all u ∈ U.

This means
[σ (U) , a] = 0.

Theorem 2.11. Let R be a ∗-prime ring with characteristic not 2, and let U be a nonzero ∗-(σ, τ)-Lie ideal

of R such that τ commutes with ∗. If a ∈ S∗ (R) and [U, a] = 0 , then a ∈ Z (R) or U ⊂ Z (R) .

Proof Let

T (U) =
{
c ∈ R | [R, c]σ,τ ⊂ U

}
.

Since U is a (σ, τ)-Lie ideal of R, from Lemma 2.1, T (U) is a Lie ideal of R such that U ⊂ T (U) . Hence, it

follows that
[R,U ] ⊂ [R, T (U)] ⊂ T (U) .

From the definition of T (U) , we have

[R, [R,U ]]σ,τ ⊂ [R, T (U)]σ,τ ⊂ U.

From the hypothesis, we have
[
[R, [R,U ]]σ,τ , a

]
= 0. For any r, s ∈ R and u ∈ U, it holds that

[
[r, [s, u]]σ,τ , a

]
= 0. (2.6)
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Replacing r by ra in (2.6) and expanding by using (2.6),

0 =
[
[ra, [s, u]]σ,τ , a

]
= [r [a, σ ([s, u])] , a] +

[
[r, [s, u]]σ,τ a, a

]
= r [[a, σ ([s, u])] , a] + [r, a] [a, σ ([s, u])] + [r, [s, u]]σ,τ [a, a]

+
[
[r, [s, u]]σ,τ , a

]
a

= r [[a, σ ([s, u])] , a] + [r, a] [a, σ ([s, u])]

is obtained. It follows that

r [[a, σ ([s, u])] , a] + [r, a] [a, σ ([s, u])] = 0, ∀r, s ∈ R, u ∈ U. (2.7)

In (2.7) , taking rm instead of r where m ∈ R and expanding by using (2.7),

0 = rm [[a, σ ([s, u])] , a] + [rm, a] [a, σ ([s, u])]

= rm [[a, σ ([s, u])] , a] + r [m, a] [a, σ ([s, u])] + [r, a]m [a, σ ([s, u])]

= r (m [[a, σ ([s, u])] , a] + [m, a] [a, σ ([s, u])]) + [r, a]m [a, σ ([s, u])]

= [r, a]m [a, σ ([s, u])]

is obtained. This implies that

[r, a]R [a, σ ([s, u])] = 0, ∀r, s ∈ R, u ∈ U.

Replacing r by r∗ and using a ∈ S∗ (R) in the last equation, we have

[r, a]
∗
R [a, σ ([s, u])] = 0, ∀r, s ∈ R, u ∈ U.

It holds that

[r, a]R [a, σ ([s, u])] = [r, a]
∗
R [a, σ ([s, u])] = 0, ∀r, s ∈ R, u ∈ U.

By the ∗ -primeness of R, we get

a ∈ Z (R) or [a, σ ([s, u])] = 0, ∀s ∈ R, u ∈ U.

That is,

[σ ([s, u]) , a] = 0, ∀s ∈ R, u ∈ U.

Since σ is an automorphism, it implies

[[R, σ (u)] , a] = 0, ∀u ∈ U.

Thus, we have [[r, σ (u)] , a] = 0 for all r ∈ R, u ∈ U. Using the identity [[x, y] , z] = [[x, z] , y] + [x, [y, z]] for all

x, y, z ∈ R ,

0 = [[r, σ (u)] , a] = [[r, a] , σ (u)] + [r, [σ (u) , a]]

is obtained. From Lemma 2.10, we know that [σ (U) , a] = 0. It holds that

[[r, a] , σ (u)] = 0, ∀r ∈ R, u ∈ U. (2.8)
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From (2.8), it implies (
Iσ(u)Ia

)
(R) = 0, ∀u ∈ U.

Since a ∈ S∗ (R) , we know that Ia∗ = ± ∗ Ia. Hence, according to Lemma 2.7, we have

a ∈ Z (R) or σ (u) ∈ Z (R) , ∀u ∈ U,

which implies that

a ∈ Z (R) or U ⊂ Z (R) .

Corollary 2.12. Let R be a ∗-prime ring with characteristic not 2, and let U be a nonzero ∗-(σ, τ)-Lie ideal

of R such that τ commutes with ∗. If U ⊂ S∗ (R) and [U,U ] = 0 , then U ⊂ Z (R) .

Theorem 2.13. Let R be a ∗-prime ring with characteristic not 2, and let U be a nonzero ∗-(σ, τ)-Lie ideal

of R such that τ commutes with ∗. If a ∈ S∗ (R) and [U, a]σ,τ = 0 , then a ∈ Z (R) or U ⊂ Z (R) .

Proof Since U is a ∗ -(σ, τ)-Lie ideal of R, we have [rσ (u) , u]σ,τ = [r, u]σ,τ σ (u) ∈ U for all r ∈ R, u ∈ U.

From the hypothesis, we have
[
[r, u]σ,τ σ (u) , a

]
σ,τ

= 0 for all r ∈ R, u ∈ U. Expanding this equation by using

the hypothesis,

0 =
[
[r, u]σ,τ σ (u) , a

]
σ,τ

=
[
[r, u]σ,τ , a

]
σ,τ

σ (u) + [r, u]σ,τ σ ([u, a])

= [r, u]σ,τ σ ([u, a])

is obtained. Thus, we have

[r, u]σ,τ σ ([u, a]) = 0, ∀u ∈ U, r ∈ R.

In the last equality, replacing r by τ (s) r where s ∈ R, it implies that

τ ([s, u])Rσ ([u, a]) = 0, ∀u ∈ U, s ∈ R. (2.9)

Suppose that u ∈ U ∩ S∗ (R) . In (2.9) , replacing s by s∗ and using that τ commutes with ∗, we have

τ∗ ([s, u])Rσ ([u, a]) = 0, ∀s ∈ R, u ∈ U ∩ S∗ (R) .

It follows that
τ ([s, u])Rσ ([u, a]) = τ∗ ([s, u])Rσ ([u, a]) = 0, ∀s ∈ R, u ∈ U ∩ S∗ (R) .

Since R is a ∗-prime ring and σ, τ are automorphisms, we get u ∈ Z (R) or [u, a] = 0 for all u ∈ U ∩ S∗ (R) .

Hence, we get

[u, a] = 0, ∀u ∈ U ∩ S∗ (R) .

Now, suppose that u ∈ U. In this case, we know that u− u∗ ∈ U ∩ S∗ (R) . It follows that [u− u∗, a] = 0 from

the above equation. Thus, we have

[u, a] = [u∗, a] , ∀u ∈ U. (2.10)

In (2.9), replacing s, u by s∗, u∗ , respectively, and using that τ commutes with ∗ and (2.10), we get

τ∗ ([s, u])Rσ ([u, a]) = 0, ∀u ∈ U, s ∈ R.
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Thus,

τ∗ ([s, u])Rσ ([u, a]) = τ ([s, u])Rσ ([u, a]) = 0, ∀u ∈ U, s ∈ R

is obtained. Since R is a ∗ -prime ring and σ, τ are automorphisms, it implies that

u ∈ Z (R) or [u, a] = 0, ∀u ∈ U.

That is,

[U, a] = 0.

Therefore, according to Theorem 2.11,

a ∈ Z (R) or U ⊂ Z (R)

is obtained.

Corollary 2.14. Let R be a ∗-prime ring with characteristic not 2, and let U be a nonzero ∗-(σ, τ)-Lie ideal

of R such that τ commutes with ∗. If U ⊂ S∗ (R) and [U,U ]σ,τ = 0 , then U ⊂ Z (R) .

Theorem 2.15. Let R be a ∗-prime ring with characteristic not 2, and let U be a nonzero ∗-(σ, τ)-Lie ideal

of R such that τ commutes with ∗. If a ∈ S∗ (R) and [U, a]σ,τ ⊂ Cσ,τ , then a ∈ Z (R) or U ⊂ Z (R) .

Proof From the hypothesis, we know that
[
[u, a]σ,τ , r

]
σ,τ

= 0 for all u ∈ U, r ∈ R. Using the identity[
[x, y]σ,τ , z

]
σ,τ

=
[
[x, z]σ,τ , y

]
σ,τ

+ [x, [y, z]]σ,τ for all x, y, z ∈ R, for any r ∈ R and u ∈ U

0 =
[
[u, a]σ,τ , r

]
σ,τ

=
[
[u, r]σ,τ , a

]
σ,τ

+ [u, [a, r]]σ,τ

is obtained. Since
[
[u, r]σ,τ , a

]
σ,τ

∈ Cσ,τ , from the last equation, we have

[u, [a, r]]σ,τ ∈ Cσ,τ , ∀u ∈ U, r ∈ R.

In this case, we get
[
[u, [a, r]]σ,τ , s

]
σ,τ

= 0 for all s ∈ R. Replacing r by ra in this equality, we have[
[u, [a, ra]]σ,τ , s

]
σ,τ

= 0 for all r, s ∈ R and u ∈ U. Expanding this equation,

0 =
[
[u, [a, ra]]σ,τ , s

]
σ,τ

=
[
τ ([a, r]) [u, a]σ,τ , s

]
σ,τ

+
[
[u, [a, r]]σ,τ σ (a) , s

]
σ,τ

= τ ([a, r])
[
[u, a]σ,τ , s

]
σ,τ

+ τ ([[a, r] , s]) [u, a]σ,τ +[
[u, [a, r]]σ,τ , s

]
σ,τ

σ (a) + [u, [a, r]]σ,τ σ ([a, s])

is obtained. Using that [u, a]σ,τ , [u, [a, r]]σ,τ ∈ Cσ,τ , it holds that

τ ([[a, r] , s]) [u, a]σ,τ + [u, [a, r]]σ,τ σ ([a, s]) = 0, ∀u ∈ U, r, s ∈ R.
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In the last equation, taking a instead of s, we have

τ ([[a, r] , a]) [u, a]σ,τ = 0, ∀u ∈ U, r ∈ R.

Since [u, a]σ,τ ∈ Cσ,τ , it implies

τ ([[a, r] , a])R [u, a]σ,τ = 0, ∀u ∈ U, r ∈ R.

In the above equality, replacing r by r∗ and using that a ∈ S∗ (R) and τ commutes with ∗ , we get

(τ ([[a, r] , a]))
∗
R [u, a]σ,τ = 0, ∀u ∈ U, r ∈ R.

Thus,

τ ([[a, r] , a])R [u, a]σ,τ = (τ ([[a, r] , a]))
∗
R [u, a]σ,τ = 0, ∀u ∈ U, r ∈ R.

Since R is a ∗ -prime ring and τ is an automorphism,

[[r, a] , a] = 0 or [u, a]σ,τ = 0, ∀u ∈ U, r ∈ R (2.11)

is obtained. From (2.11), it follows that

I2a (R) = 0 or [U, a]σ,τ = 0.

Since a ∈ S∗ (R) , we know that Ia∗ = ± ∗ Ia. According to Lemma 2.3 and Theorem 2.13,

a ∈ Z (R) or U ⊂ Z (R)

is obtained.

Corollary 2.16. Let R be a ∗-prime ring with characteristic not 2, and let U be a nonzero ∗-(σ, τ)-Lie ideal

of R such that τ commutes with ∗. If U ⊂ S∗ (R) and [U,U ]σ,τ ⊂ Cσ,τ , then U ⊂ Z (R) .

Theorem 2.17. Let R be a ∗-prime ring with characteristic not 2, and let U be a nonzero ∗-(σ, τ)-Lie ideal

of R such that τ commutes with ∗. If U ̸⊂ Z (R) and U ̸⊂ Cσ,τ , then there exists a nonzero ∗-ideal M of R

such that [R,M ]σ,τ ⊂ U but [R,M ]σ,τ ̸⊂ Cσ,τ .

Proof It follows from Lemma 2.1 that T (U) =
{
c ∈ R | [R, c]σ,τ ⊂ U

}
is a subring and Lie ideal of R.

Moreover, U ⊂ T (U) . On the other hand, it follows from Lemma 2.2 that [T (U) , τ (T (U))]R ⊂ T (U) . Since

U ⊂ T (U) , it implies that

[U, τ (U)]R ⊂ [T (U) , τ (T (U))]R ⊂ T (U) .

That is,

[U, τ (U)]R ⊂ T (U) .

Since T (U) is a Lie ideal of R, it holds that [R, [U, τ (U)]R] ⊂ T (U) . Thus, for any s, r ∈ R, u, v ∈ U

[s, [u, τ (v)] r] = [u, τ (v)] [s, r] + [s, [u, τ (v)]] r ∈ T (U) .
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Using that [U, τ (U)]R ⊂ T (U) , we have [s, [u, τ (v)]] r ∈ T (U) for all u, v ∈ U, r, s ∈ R. Expanding this

equation,

[s, [u, τ (v)]] r = s [u, τ (v)] r − [u, τ (v)] sr ∈ T (U)

and using that [U, τ (U)]R ⊂ T (U) ,

s [u, τ (v)] r ∈ T (U) , ∀u, v ∈ U, r, s ∈ R

is obtained. It holds that

R [U, τ (U)]R ⊂ T (U) . (2.12)

Set M = R [U, τ (U)]R. Thus, M is an ideal of R. Now, assume that M = 0. It follows that R [U, τ (U)]R = 0.

Since R is a ∗ -ideal of R, according to Lemma 2.5 , it holds that

[U, τ (U)] = 0.

On the other hand, we know that τ (U) ∩ S∗ (R) ⊂ S∗ (R) and τ (U) ∩ S∗ (R) ⊂ τ (U) . It follows that

[U, τ (U) ∩ S∗ (R)] ⊂ [U, τ (U)] = 0. Therefore, it implies

[U, τ (U) ∩ S∗ (R)] = 0.

That is, we have τ (U)∩S∗ (R) ⊂ S∗ (R) and [U, τ (U) ∩ S∗ (R)] = 0. Since U ̸⊂ Z (R) , it holds from Theorem

2.11 that

τ (U) ∩ S∗ (R) ⊂ Z (R) .

Now, for any u ∈ U, we get τ (u− u∗) , τ (u+ u∗) ∈ τ (U) ∩ S∗ (R) ⊂ Z (R) . It yields 2τ (u) ∈ Z(R). Since

the characteristic is not 2, we obtain u ∈ Z(R) for all u ∈ U. This is a contradiction, which implies M ̸= 0.

Moreover, we have

M∗ = (R [U, τ (U)]R)
∗
= R [U, τ (U)]R = M.

Thus, M is a nonzero ∗ -ideal of R. It also follows from (2.12) that 0 ̸= M ⊂ T (U) . From the definition of

T (U) , we get

[R,M ]σ,τ ⊂ [R, T (U)]σ,τ ⊂ U,

which implies that

[R,M ]σ,τ ⊂ U.

Suppose that [R,M ]σ,τ ⊂ Cσ,τ . From the assumption, dr (M) ⊂ Cσ,τ for all r ∈ R. According to Lemma 2.6,

R is commutative. This is a contradiction, so we have

[R,M ]σ,τ ̸⊂ Cσ,τ .

Theorem 2.18. Let R be a ∗-prime ring with characteristic not 2, and let U be a nonzero ∗-(σ, τ)-Lie ideal

of R such that τ commutes with ∗ and a, b ∈ R. If U ̸⊂ Z (R) and U ̸⊂ Cσ,τ such that aUb = a∗Ub = 0 , then

a = 0 or b = 0.
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Proof Since U ̸⊂ Z (R) and U ̸⊂ Cσ,τ , by Theorem 2.17, there exists a nonzero ∗ -ideal M of R such

that [R,M ]σ,τ ⊂ U but [R,M ]σ,τ ̸⊂ Cσ,τ . Since [R,M ]σ,τ ⊂ U, using the hypothesis, we have a [R,M ]σ,τ b =

a∗ [R,M ]σ,τ b = 0. For any m ∈ M and u ∈ U, it implies a [a∗u,m]σ,τ b = 0. Expanding this equation,

0 = a [a∗u,m]σ,τ b = aa∗ [u,m]σ,τ b+ a [a∗, τ (m)]ub,

and using the hypothesis,

a [a∗, τ (m)]ub = 0

is obtained. Expanding this by using the hypothesis, it yields

0 = aa∗τ (m)ub− aτ (m) a∗ub

= aa∗τ (m)ub.

That is,

aa∗τ (M)ub = 0, ∀u ∈ U.

Since (aa∗)
∗
= aa∗, it also holds that

aa∗τ (M)ub = (aa∗)
∗
τ (M)ub = 0, ∀u ∈ U.

Since M is a nonzero ∗ -ideal of R and τ commutes with ∗, τ (M) is a nonzero ∗ -ideal of R. By Lemma 2.4

and Lemma 2.9, it follows that

aa∗ = 0 or b = 0.

Assume that b ̸= 0. In this case aa∗ = 0. Since [R,M ]σ,τ ⊂ U, we get a [a∗n,m]σ,τ b = 0 for all n,m ∈ M.

Expanding this equation by using the assumption,

0 = a [a∗n,m]σ,τ b = aa∗nσ (m) b− aτ (m) a∗nb

= aτ (m) a∗nb

is obtained, so it holds that

aτ (M) a∗Mb = 0.

Since (aτ (M) a∗)
∗
= aτ (M) a∗, we have

aτ (M) a∗Mb = (aτ (M) a∗)
∗
Mb = 0.

According to Lemma 2.4, since b ̸= 0, it follows that

aτ (M) a∗ = 0. (2.13)

On the other hand, since [R,M ]σ,τ ⊂ U, we have a [au,m]σ,τ b = 0 for all u ∈ U, m ∈ M. Expanding this

equation by using hypothesis, we have

0 = a [au,m]σ,τ b = aa [u,m]σ,τ b+ a [a, τ (m)]ub

= a [a, τ (m)]ub

= a2τ (m)ub− aτ (m) aub

= a2τ (m)ub.
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That is,

a2τ (M)ub = 0, ∀u ∈ U.

Similarly, a∗ [a∗u,m]σ,τ b = 0 for all u ∈ U,m ∈ M. Expanding this equation by using the hypothesis, we get

(
a2
)∗

τ (M)ub = 0, ∀u ∈ U.

This implies that

a2τ (M)ub =
(
a2
)∗

τ (M)ub = 0, ∀u ∈ U.

Since b ̸= 0, by Lemma 2.4 and Lemma 2.9, we get

a2 = 0.

Moreover, for any n,m ∈ M, we have a [an,m]σ,τ b = 0 from the hypothesis. Expanding this equation by using

that a2 = 0,

0 = a [an,m]σ,τ b = a2nσ (m) b− aτ (m) anb

= aτ (m) anb

is obtained. Thus, we have

aτ (M) aMb = 0.

Similarly, we know that a∗ [a∗n,m]σ,τ b = 0 for all n,m ∈ M. Using that a2 = 0, we get

a∗τ (M) a∗Mb = 0.

Since (aτ (M) a)
∗
= a∗τ (M) a∗, it holds that

(aτ (M) a)
∗
Mb = 0.

Thus,

aτ (M) aMb = (aτ (M) a)
∗
Mb = 0

is obtained. By Lemma 2.4, we have

aτ (M) a = 0. (2.14)

From (2.13) and (2.14), we obtain

aτ (M) a∗ = aτ (M) a = 0.

According to Lemma 2.4, it is implied that a = 0.
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