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Abstract: In this paper, we consider a condition on subspaces in order to improve bounds given in Bernstein’s lethargy

theorem for Banach spaces. Let d1 ≥ d2 ≥ . . . dn ≥ · · · > 0 be an infinite sequence of numbers converging to 0, and let

Y1 ⊂ Y2 ⊂ · · · ⊂ Yn ⊂ · · · ⊂ X be a sequence of closed nested subspaces in a Banach space X with the property that

Y n ⊂ Yn+1 for all n ≥ 1. We prove that for any c ∈ (0, 1] there exists an element xc ∈ X such that

cdn ≤ ρ(xc, Yn) ≤ min(4, ã)c dn.

Here, ρ(x, Yn) = inf{||x− y|| : y ∈ Yn} ,

ã = sup
i≥1

sup
{qi}

{
a−3
ni+1−1

}
where the sequence {an} is defined as: for all n ≥ 1,

an = inf
l≥n

inf
q∈⟨ql,ql+1,... ⟩

ρ(q, Yl)

||q||

in which each point qn is taken from Yn+1 \ Yn , and satisfies inf
n≥1

an > 0. The sequence {ni}i≥1 is given by

n1 = 1; ni+1 = min

{
n ≥ 1 :

dn
a2
n

≤ dni

}
, i ≥ 1.
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1. Introduction

Bernstein’s lethargy theorem (BLT) [7] involves finding approximations of an element in a space X when those

approximations are limited to some sequence of subspaces. Before we can compare approximations, we need a

function to determine how close an approximation is to the desired target. In the following we define a distance

function, which we call the ρ -function:

Definition 1 Let (X, ∥ · ∥) be a Banach space and let S be a subspace of X . Then, for any point x ∈ X , we

can define the distance from x to S as

dist(x, S) = ρ(x, S) = inf
y∈S

||x− y||.
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If Y1 ⊂ Y2 ⊂ . . . is a sequence of strictly embedded linear subspaces of X , then for each x ∈ X there exists a

nonincreasing sequence of best approximation errors

ρ(x, Y1) ≥ ρ(x, Y2) ≥ . . . .

The general objective is to characterize these sequences of best approximation errors. For example, one can ask

if it is true that for any nonincreasing sequence {dn} with lim
n→∞

dn = 0 there exists an element x ∈ X such

that

ρ(x, Yn) = dn for all n = 1, 2, . . . .

Bernstein [7] proved that in the case X = C[a, b] and Yn = Pn , the space of polynomials of degree at most n ,

any sequence converging to zero is a sequence of best approximations. This theorem is sometimes referred to as

Bernstein’s Lethargy Theorem or in short BLT and it has been applied to the theory of quasi analytic functions

in several complex variables [13] and used in the constructive theory of functions [16]. Note that the density of

polynomials in C[0, 1] (Weierstrass approximation theorem [9]) implies that lim
n→∞

ρ(f, Pn) = 0. However, the

Weierstrass approximation theorem gives no information about the speed of convergence for ρ(f, Yn). Following

the proof given by Bernstein, Timan [17] extended his result to an arbitrary system of strictly embedded finite-

dimensional subspaces Yn . Later Shapiro [15], replacing C[0, 1] with an arbitrary infinite-dimensional Banach

space (X, ∥ · ∥) and the sequence of n -dimensional subspaces of polynomials of degree ≤ n by a sequence {Yn}
where Y1 ⊂ Y2 ⊂ · · · are strictly embedded closed subspaces of X , showed that in this setting, for each null

sequence {dn} of nonnegative numbers, there is a vector x ∈ X such that

ρ(x, Yn) ̸= O(dn), as n → ∞.

Thus, there is no M > 0 such that ρ(x, Yn) ≤ Mdn for all n . In other words, ρ(x, Yn) can decay arbitrarily

slowly. This result was strengthened by Tyuriemskih [18], who established that the sequence of best approx-

imations may converge to zero at an arbitrary slow rate; for any expanding sequence {Yn} of subspaces and

for any sequence {dn} of positive numbers converging to zero, he constructed an element x ∈ X such that

lim
n→∞

ρ(x, Yn) = 0 and ρ(x, Yn) ≥ dn for all n. For a generalization of Shapiro’s theorem we refer the reader

to [6]. For an application of Tyuriemskih’s theorem to convergence of a sequence of bounded linear operators,

consult [10]. For other versions of BLT, see [1–3, 5, 12, 14].

We now consider the following well-known BLT [7], stated for the case of finite-dimensional subspaces of

a Banach space X .

Theorem 2 (Lethargy) Given a Banach space X and a series of nested finite-dimensional subspaces Y1 ⊂
Y2 ⊂ · · · ⊂ X . If {dk}k≥1 is a monotone decreasing sequence converging to 0 , then there exists a point x ∈ X

such that ρ(x, Yk) = dk for all k ≥ 1 .

The above theorem can be extended to infinite-dimensional subspaces, by considering some extra condi-

tions. Borodin [8] has provided two sets of conditions. One condition is on the sequence {dn} and the other on

both the subspaces {Yn} and the sequence {dn} . In both cases, he proves the existence of an element x ∈ X

with ρ(x, Yk) = dk, k ≥ 1. These two results are explicitly presented as follows.
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Theorem 3 (see [8]) Let X be an arbitrary infinite-dimensional Banach space, Y1 ⊂ Y2 ⊂ . . . be an arbitrary

system of strictly embedded subspaces in X , and the number sequence {dn} be such that

dn >

∞∑
k=n+1

dk (1)

for every positive integer n ≥ n0 for which dn > 0 . Then there exists an element x ∈ X such that ρ(x, Yn) = dn

for n ≥ 1 .

Theorem 4 (see [8]) Let d0 ≥ d1 ≥ d2 ≥ · · · > 0 be a nonincreasing sequence converging to 0 and Y1 ⊂
Y2 ⊂ · · · ⊂ X be a system of strictly nested subspaces of an infinite-dimensional Banach space X that meets

the following property: there exists a series of nonzero elements qn such that qn ∈ Yn+1 \Yn , and the following

inequality

∥q∥ ≤ dk−1

dk
ρ(q, Yk) (2)

holds for all k ∈ N and any nonzero element q in the linear span ⟨qk, qk+1, . . . ⟩ . Then there is some element

x in the closed linear span ⟨q1, q2, . . . ⟩ satisfying

ρ(x, Yn) = dn for all n ≥ 1.

Recently Konyagin [11] showed that under the same assumptions in Theorem 3, except that the sequence {dn}
can go to 0 with arbitrary rate, there is x ∈ X such that

dn ≤ ρ(x, Yn) ≤ 8dn, for n ≥ 1 . (3)

The proof is based on Theorem 3. Note that the statements in Theorem 4 are similar to that of Theorem 3.

We can now adapt the idea of the proof of Konyagin’s [11] with Borodin’s theorem [8] to improve the bounds

of ρ(x, Yn) in (3).

In Konyagin’s paper [11], it is assumed that Yn are closed and strictly increasing. In Borodin’s paper, this

is not specified, but from the proof of his theorem it is clear that his proof works only under the assumption that

Yn is strictly included in Yn+1 . The necessity of this assumption on subspaces is illustrated by the following:

Example 5 Let X = L∞[0, 1] and consider C[0, 1] ⊂ L∞[0, 1] . Define the subspaces of X as follows:

• Y1 = all polynomials

• Y2 = span [Y1 ∪ f1], where f1 ∈ C[0, 1] \ Y1 ,

• Yn+1 =span [Yn ∪ fn] , where fn ∈ C[0, 1] \ Yn .

Observe that by Weierstrass theorem, Yn = C[0, 1] for any n ≥ 1 . Take any f ∈ L∞[0, 1] and consider the

following cases:

1. If f ∈ C[0, 1] , then

dist(f, Yn) = dist(f, C[0, 1]) = 0 for any n ≥ 1.
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2. If f ∈ L∞[0, 1] \ C[0, 1] , then

dist(f, Yn) = dist(f, C[0, 1]) = d > 0 (independent of n).

Hence in this case BLT does not hold. (Note that in the above, we used the fact that dist(f, Y ) = dist(f, Y ) .)

Note that Borodin’s condition on sequence {dn} , namely dn >
∞∑

k=n+1

dk is not satisfied when dn =
1

2n
; however,

it is satisfied when dn =
1

(2 + ϵ)n
for ϵ > 0. Thus, it is natural to ask whether the condition (1) is necessary

for the results in Theorem 3 to hold?

In [4] , it is shown that weakening the condition (1) in Theorem 3 above yields an improvement in the

bounds in the inequality (3) in Konyagin’s theorem. In this paper, we take a different approach. We concentrate

on Borodin’s second condition on subspaces, namely on the inequality (2) of Theorem 4 above and obtain better

bounds for the inequalities in (3). The statements in Theorem 4 are similar to that of Theorem 3; thus, we

can now adapt the idea of the proof of Konyagin’s [11] with Borodin’s theorem [8] to improve the bounds of

ρ(x, Yn) in (3).

2. Main result

Let X be an arbitrary infinite-dimensional Banach space. Given Y1 ⊂ Y2 ⊂ · · · ⊂ X , an arbitrary system of

strictly embedded closed subspaces and d1 ≥ d2 ≥ · · · ≥ 0, a nonincreasing sequence converging to 0. The goal

of this paper is to improve Konyagin’s result (3) under conditions on subspaces {Yn} and {dn} . It is worth

noting that if {Yn} and {dn} are finite sequences, we have the best approximations of the sequence dn in terms

of the distances ρ(x, Yn), i.e. the following lemma holds:

Lemma 6 Let d1 > d2 > · · · > dn > 0 be a finite decreasing sequence and Y1 ⊂ Y2 ⊂ · · · ⊂ Yn be a system of

strictly nested closed subspaces of Banach space X . Then for any c ∈ (0, 1] , there exists an element xc ∈ X

such that ρ(xc, Yk) = cdk , for k = 1, . . . n .

Proof First, from [8] and [17], we see Lemma 6 is true for c = 1. Next for any c ∈ (0, 1], let d̃k = cdk . It

is easy to see the sequence of numbers {d̃k} satisfies Lemma 6; therefore there exists an element xc ∈ X such

that ρ(x, Yk) = d̃k , for k = 1, . . . , n . 2

Now we consider the case when {Yn} and {dn} are infinite sequences and state our main result.

Theorem 7 Let X be an arbitrary infinite-dimensional Banach space, and let Y1 ⊂ Y2 ⊂ · · · ⊂ X be an

arbitrary system of strictly embedded closed linear subspaces. Let {dn} be a nonincreasing sequence of real

numbers converging to 0 . Assume that, for any sequence of elements qi such that qn ∈ Yn+1 \ Yn for all n , we

have that
inf
n≥1

an > 0, (4)

where for each n ≥ 1 , an is defined by

an = inf
l≥n

inf
q∈⟨ql,ql+1,... ⟩

ρ(q, Yl)

||q||
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for these elements qi . Then for any constant c ∈ (0, 1] there exists an element xc ∈ X such that

cdn ≤ ρ(xc, Yn) ≤ min(4, ã)cdn, (5)

where

ã = sup
i≥1

sup
{qi}

{
a−3
ni+1−1

}
and ni satisfies

n1 = 1;

ni+1 = min

{
n ≥ 1 :

dn
a2n

≤ dni

}
, i ≥ 1. (6)

Proof If dn = 0 for some n , then Theorem 7 holds by using Lemma 1 in [8] and Lemma 6. Thus, we will

assume that dn > 0 for all n ≥ 1. Take the sequence {ni} defined in (6). Define a sequence of positive integers

{ji} such that

j1 = 1, ji+1 =

{
ji + 1 if ni+1 = ni + 1;
ji + 2 if ni+1 > ni + 1,

for i ≥ 1 .

Let

mj =

{
ni if j = ji;
ni+1 − 1 if ji < j < ji+1.

Clearly the sequence {mj}j≥1 is strictly increasing. Now we define the sequences of subspaces {Zj}j≥1 and

numbers {ej}j≥1 to be

Zj = Ymj ,

ej =

{
c

amj+1
dni if j = ji for some i;

cdni if ji < j < ji+1 for some i.

Hence, for any j ≥ 1, 3 cases follow:

Case 1:
if ji < j < ji+1 for some i , then j + 1 = ji+1 . By the definition of ej , the facts that ni+1 = mj+1 and {an}n
is increasing, we obtain

ej+1 =
c

amj+2

dni+1 ≤ c

amj+2

a2ni+1
dni =

c

amj+2

a2mj+1
dni ≤ amj+1ej .

Case 2:
if j = ji for some i and j + 1 < ji+1 , then

ej+1 = cdni = amj+1ej .

Case 3:
if j = ji for some i and j + 1 = ji+1 , then

ej+1 =
c

amj+2

dni+1 ≤ c

amj+2

a2ni+1
dni =

amj+1a
2
ni+1

amj+2

ej ≤ amj+1ej .
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Thus, we conclude that

ej+1 ≤ amj+1ej , for all j ≥ 1.

Note that for all q ∈ ⟨qmj+1 , qmj+1+1, . . .⟩ ,

ej+1

ej
≤ amj+1 ≤

ρ(q, Ymj+1)

||q||
=

ρ(q, Zj+1)

||q||
.

Therefore, we can apply Theorem 4 to the sequence {Zj}j≥1 of subspaces and the sequence of numbers {ej}j≥1 ,

to obtain the existence of an element x′
c ∈ < q1, q2, . . . > such that

ρ(x′
c, Zj) = ej , for j ≥ 1.

If n = ni for some i , then for j = ji we have n = mj , Yn = Zj and

ρ(x′
c, Yn) = ρ(x′

c, Zj) = ej =
c

amj+1

dn.

Now let ni < n < ni+1 for some i and j = ji. Then

mj = ni < n ≤ ni+1 − 1 = mj+1. (7)

It leads to the lower bound of ρ(x′
c, Yn) in terms of dn :

ρ(x′
c, Yn) ≥ ρ(x′

c, Zj+1) = ej+1 = cdni ≥ cdn. (8)

To obtain the upper bound of ρ(x′
c, Yn) we observe from (7) that

ρ(x′
c, Yn) ≤ ρ(x′

c, Yni) = ρ(x′
c, Zj) = ej =

c
amj+1

dni .

Since ni < ni+1 − 1 < ni+1 , then we have

a2ni+1−1dni ≤ dni+1−1 ≤ dn.

Consequently,

ρ(x′
c, Yn) ≤

c

amj+1

dni
≤ c

a2ni+1−1amj+1

dn ≤ c

a3ni+1−1

dn. (9)

It follows from (8) and (9) that

cdn ≤ cdni ≤ ρ(x′
c, Yn) ≤

c

a3ni+1−1

dn.

Notice that ani+1−1 only depends on the sequences {ni} and {qi} . Therefore, by taking supremum over {qi}
and {ni} we proved

cdn ≤ ρ(x′
c, Yn) ≤ ãcdn. (10)

Also note that in [4] it is shown that, for the same sequences {dn} and {Yn} as in Theorem 7, there is another

element x′′
c ∈ X such that

cdn ≤ ρ(x′′
c , Yn) ≤ 4cdn. (11)
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Therefore if ã ≤ 4,

cdn ≤ ρ(x′
c, Yn) ≤ ãcdn = min(4, ã)cdn;

if ã > 4,

cdn ≤ ρ(x′′
c , Yn) ≤ 4cdn = min(4, ã)cdn.

Thus by taking

xc =

{
x′
c if ã ≤ 4;

x′′
c if ã > 4,

we have proven Theorem 7. 2

Remark 8 One can observe that the inequalities in (5) are stronger than the inequalities given by Konyagin in

[11].
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