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Abstract: In this paper, we present the character analogue of the Boole summation formula. Using this formula, an

integral representation is derived for the alternating Dirichlet L -function and its derivative is evaluated at s = 0. Some

applications of the character analogue of the Boole summation formula and the integral representation are given about

the alternating Dirichlet L -function. Moreover, the reciprocity formulas for two new arithmetic sums, arising from the

summation formulas, and for Hardy–Berndt sum Sp (b, c : χ) are proved.
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1. Introduction

The Euler–MacLaurin summation formula is a well-known formula from classical analysis giving a relation

between the finite sum of values of a function and its integral. One of the generalizations of the Euler–MacLaurin

summation formula is the character analogue due to Berndt [4], which is presented here in the following form:

Theorem 1.1 ([4, Theorem 4.1]) Let χ be a primitive character of modulus k with k > 1. For f ∈
C(l+1) [α, β] , −∞ < α < β <∞

∑
α≤n≤β

′
χ (n) f(n) = χ (−1)

l∑
j=0

(−1)
j+1

(j + 1)!

(
Bj+1,χ (β) f (j)(β)−Bj+1,χ(α)f

(j)(α)
)

+ χ (−1)
(−1)l

(l + 1)!

β∫
α

Bl+1,χ (u) f (l+1)(u)du,

where the dash indicates that if n = α or n = β , then only 1
2χ(α)f(α) or 1

2χ(β)f(β) is counted, respectively.

Also, Bp,χ (x) denotes the generalized Bernoulli function defined by (2.3).

The alternating version of the Euler–MacLaurin summation formula is known as the Boole summation

formula ([24, 24.17.1–2]), as pointed out by Nörlund [25], which was also formulated by Euler.
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Theorem 1.2 (Boole summation formula) For integers α, β , and l such that α < β and l > 0 ,

2

β−1∑
n=α

(−1)
n
f(n) =

l−1∑
j=0

Ej (0)

j!

(
(−1)

β−1
f (j)(β) + (−1)

α
f (j)(α)

)

+
1

(l − 1)!

β∫
α

f (l)(x)El−1 (−x) dx,

where f (l)(x) is absolutely integrable over [α, β] , and Ep (x) is the Euler function defined by (2.1).

To the authors’ knowledge, the character generalization of the Boole summation formula is not available.

In this paper, we first present the character analogue of the Boole summation formula as follows:

Theorem 1.3 Let χ be a primitive character of modulus k with k > 1 odd. If f ∈ C(l+1) [α, β] , −∞ < α <

β <∞, then

2
∑

α<n<β

(−1)
n
χ (n) f(n) = χ (−1)

l∑
j=0

(−1)
j

j!

(
Ej,χ (β) f (j)(β)− Ej,χ(α)f

(j)(α)
)

− χ (−1)
(−1)l

l!

β∫
α

El,χ (t) f (l+1)(t)dt,

where El,χ (t) is the generalized Euler function defined by (2.4).

Later, we give applications of this formula for two subjects. The first one is about the alternating Dirichlet

L -function. For a ̸= −1,−2,−3, . . . , let ℓ (s, a, χ) denote the alternating Dirichlet L-function

ℓ (s, a, χ) =
∞∑

n=1

(−1)
n χ (n)

(n+ a)
s , Re (s) > 0,

which can be written in terms of Hurwitz zeta function ζ (s, a) as

ℓ (s, a, χ) = (2k)
−s

2k−1∑
j=1

(−1)
j
χ (j) ζ

(
s,
a+ j

2k

)

for Re (s) > 1. Also let

ℓs (x, a, χ) =
∑

1≤n≤x

(−1)
n
χ (n) (n+ a)

s
, x ≥ 0.

Then the integral representations for ℓ (s, a, χ) and ℓs (x, a, χ) are derived as in the following.
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Theorem 1.4 Let χ be a primitive character of modulus k with k > 1 odd. For l ≥ 0 with l > Re (s) and for

any x ≥ 0, we have the integral representation

2ℓs (x, a, χ) = χ (−1)
l∑

j=0

(−1)
j (s)j
j!

Ej,χ (x) (x+ a)
s−j

+ 2ℓ (−s, a, χ)

−
(s)l+1

l!

∞∫
x

El,χ (−t) (t+ a)
s−l−1

dt,

where (s)j = s (s− 1) · · · (s− j + 1) with (s)0 = 1.

Moreover, for x = 0 we have

2ℓ (−s, a, χ) =
l∑

j=0

(s)j
j!

Ej,χ (0) as−j +
(s)l+1

l!

∞∫
0

El,χ (−t) (t+ a)
s−l−1

dt.

Furthermore, some formulas, such as the character analogue of Lerch’s formula for the Hurwitz zeta

function (see (4.9)) and the character analogues of Stirling’s formula for log Γ (a) and of the Weierstrass product

for Γ (a) (see Propositions 4.4 and 4.7 below, respectively) are deduced via Theorems 1.3 and 1.4.

The second is about the Hardy–Berndt sums. Let us mention that, utilizing the summation formulas,

alternative proofs of the reciprocity formulas of certain Dedekind sums and their analogues were offered in

[9, 10, 14, 15, 18]. Here we reveal that new arithmetic sums obeying the reciprocity law may be defined by the

summation formulas mentioned above. We describe two such sums as

S(1)
p (b, c : χ) =

ck−1∑
n=0

(−1)
n
Ep,χ

(
bn

c

)
,

S(2)
p (b, c : χ) =

ck∑
n=1

(−1)
n
χ (n)Ep

(
bn

c

)

and prove the following reciprocity formula.

Theorem 1.5 Let b and c be positive integers with (b + c) odd and χ (−1) (−1)
p
= 1 . Then the following

reciprocity formula holds:

cpS(1)
p (b, c : χ) + bpS(2)

p (c, b : χ) = 2

p∑
j=0

(
p

j

)
cjbp−jEj,χ (0)Ep−j (0) .

In fact, these sums are generalizations of the Hardy–Berndt sum [5]

S (b, c) =
c−1∑
n=1

(−1)
n+1+[bn/c]

.

For various generalizations and properties of Hardy–Berndt sums, the reader may consult [5, 6, 8, 10, 13, 16,

17, 20, 21, 23, 26–30] and [29, 30] for the relation between S (b, c) and the Dirichlet L -function. One of the
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generalizations of S (b, c) has been given by [10]

Sp (b, c : χ) =

ck∑
n=1

χ (n)Bp,χ

(
b+ ck

2c
n

)
,

and the corresponding reciprocity formula is proved via transformation formulas. Here, utilizing Theorem 1.3,

we give a new proof for the following reciprocity formula by refining the conditions.

Theorem 1.6 Let p > 1 be odd and let b and c be positive integers with (b + c) odd. Then the following

reciprocity formula holds:

χ (−2) bcpSp (b, c : χ) + χ (−2) cbpSp (c, b : χ)

=
p

2p+1

p∑
j=1

(−1)
j

(
p− 1

j − 1

)
cjbp+1−jEj−1,χ (0)Ep−j,χ (0) .

The remainder of this paper is organized as follows: Section 2 is the preliminary section where we give

definitions and known results needed. In Section 3, we prove Theorem 1.3 and Theorem 1.4. Some applications

of the integral representation and the character analogue of the Boole summation formula are given in Section

4. The final section is devoted to proving the reciprocity formulas for the Hardy–Berndt sums mentioned above

via summation formulas.

2. Preliminaries

The Bernoulli and Euler polynomials Bn(x) and En(x) are defined by means of the generating functions [2]

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, (|t| < 2π) ,

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
, (|t| < π) ,

respectively. In particular, the rational numbers Bn = Bn(0) and integers En = 2nEn(1/2) are called classical

Bernoulli numbers and Euler numbers, respectively.

For 0 ≤ x < 1 and m ∈ Z , the Bernoulli functions Bn (x) are defined by

Bn (x+m) = Bn (x) when n ̸= 1 or x ̸= 0, and B1 (m) = B1 (0) = 0

and the Euler functions En (x) are defined by [11]

En (x+m) = (−1)
m
En (x) and En (x) = En(x). (2.1)

The Bernoulli functions satisfy the Raabe or multiplication formula

rn−1
r−1∑
j=0

Bn

(
x+

j

r

)
= Bn (rx)
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and also the following property is valid for even r :

rn−1
r−1∑
j=0

(−1)
j
Bn

(
x+ j

r

)
= −n

2
En−1 (x) . (2.2)

Bm,χ (x) denotes the generalized Bernoulli function, with period k, defined by Berndt [4]. We will often

use the following property that can confer as a definition:

Bm,χ (x) = km−1
k−1∑
j=0

χ (j)Bm

(
j + x

k

)
, m ≥ 1. (2.3)

For convenience with the definition of Bm,χ (x) , let the character Euler function Em,χ (x) be defined by

Em,χ (x) = km
k−1∑
j=0

(−1)
j
χ (j)Em

(
j + x

k

)
, m ≥ 0, (2.4)

for odd k, the modulus of χ.

We list some properties that we need in the sequel:

d

dx
Em (x) = mEm−1 (x) , m > 1, (2.5)

d

dx
Em,χ (x) = mEm−1,χ (x) , m ≥ 1, (2.6)

Em,χ (−x) = (−1)
m−1

χ (−1)Em,χ (x) , (2.7)

Em,χ (x+ nk) = (−1)
n
Em,χ (x) . (2.8)

In the sequel, unless otherwise stated, we assume that χ is a primitive character of modulus k with

k > 1 odd.

3. Proofs of Theorems 1.3 and 1.4

3.1. Proof of Theorem 1.3

First we write

∑
α<n<β

(−1)
n
χ (n) f(n) =

∑
α<2n<β

χ (2n) f(2n)−
∑

α<2n+1<β

χ (2n+ 1) f(2n+ 1)

= 2χ (2)
∑

α/2<n<β/2

χ (n) f(2n)−
∑

α<n<β

χ (n) f(n).
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Applying Theorem 1.1 on the right-hand side, one has∑
α<n<β

(−1)
n
χ (n) f(n)

= χ (−1)
l∑

j=0

(−1)
j+1

(j + 1)!

((
2j+1χ (2)Bj+1,χ

(
β

2

)
−Bj+1,χ (β)

)
f (j)(β) (3.1)

−
(
2j+1χ (2)Bj+1,χ

(α
2

)
−Bj+1,χ(α)

)
f (j)(α)

)

+ χ (−1)
(−1)l

(l + 1)!

β∫
α

(
2l+1χ (2)Bl+1,χ

(u
2

)
−Bl+1,χ (u)

)
f (l+1)(u)du.

On the other hand, taking x→ x/2 and r = 2 in

χ(r)r1−mBm,χ (rx) =
r−1∑
j=0

Bm,χ

(
x+

jk

r

)
, (r, k) = 1

([10, Eq. (3.13)]) gives

Bm,χ

(x
2

)
+Bm,χ

(
x+ k

2

)
= 21−mχ (2)Bm,χ (x) . (3.2)

By using (2.3) and (2.2) for r = 2, we can write

Bm,χ

(x
2

)
−Bm,χ

(
x+ k

2

)
= − m

2m
km−1

k−1∑
v=0

χ (v)Em−1

(
2v + x

k

)
. (3.3)

Employing basic manipulations, (3.3) becomes

km−1


k−1
2∑

v=0

χ (2v)Em−1

(
2v + x

k

)
+

k−1∑
v= k+1

2

χ (2v)Em−1

(
2v + x

k

)
= km−1


k−1
2∑

v=0

χ (2v)Em−1

(
2v + x

k

)
−

k−3
2∑

v=0

χ (2v + 1)Em−1

(
2v + 1 + x

k

)
= km−1

k−1∑
v=0

(−1)
v
χ (v)Em−1

(
v + x

k

)
= Em−1,χ (x) , (3.4)

where we have used (2.1) and (2.4). Thus, combining (3.2) and (3.4) leads to

2mχ (2)Bm,χ

(x
2

)
−Bm,χ (x) = −m

2
Em−1,χ (x) . (3.5)

Substituting (3.5) in (3.1) completes the proof.
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3.2. Proof of Theorem 1.4

The method used here have already been employed by Kanemitsu et al. [19] for the Euler–MacLaurin summation

formula to obtain integral representations for the Hurwitz zeta function and its partial sum.

For α = 0 and β = x, let f(t) = (t+ a)
s
in Theorem 1.3. Then, from (2.7),

2ℓs (x, a, χ) = 2
∑

0≤n≤x

′
(−1)

n
χ (n) (n+ a)

s

= χ (−1)
l∑

j=0

(−1)
j (s)j
j!

(
Ej,χ (x) (x+ a)

s−j − Ej,χ(0)a
s−j
)

+
(s)l+1

l!

x∫
0

El,χ (−t) (t+ a)
s−l−1

dt.

Since ∣∣El,χ (t)
∣∣ ≤ 4

l!

(π/k)
l+1

ζ (l + 1) , l ≥ 1,

the integral

∞∫
0

El,χ (−t) (t+ a)
s−l−1

dt

is absolutely convergent for Re(s) < l. Thus, we may write

2ℓs (x, a, χ)

= χ (−1)
l∑

j=0

(−1)
j (s)j
j!

Ej,χ (x) (x+ a)
s−j − χ (−1)

l∑
j=0

(−1)
j (s)j
j!

Ej,χ(0)a
s−j

+
(s)l+1

l!

∞∫
0

El,χ (−t) (t+ a)
s−l−1

dt− (s)l+1

l!

∞∫
x

El,χ (−t) (t+ a)
s−l−1

dt. (3.6)

Now, for Re(s) < 0, letting x tend to ∞ in (3.6), we arrive at

2ℓ (−s, a, χ) = −χ (−1)
l∑

j=0

(−1)
j (s)j
j!

Ej,χ(0)a
s−j

+
(s)l+1

l!

∞∫
0

El,χ (−t) (t+ a)
s−l−1

dt, (3.7)

where the integral converges absolutely for Re(s) < l and represents an analytic function. Substituting (3.7) in
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(3.6) gives

2ℓs (x, a, χ) = χ (−1)
l∑

j=0

(−1)
j (s)j
j!

Ej,χ (x) (x+ a)
s−j

+ 2ℓ (−s, a, χ)

− (s)l+1

l!

∞∫
x

El,χ (−t) (t+ a)
s−l−1

dt, (3.8)

for Re(s) < l and x ≥ 0.

Writing x = 0 in (3.8) yields

2ℓ (−s, a, χ) =
l∑

j=0

(s)j
j!

Ej,χ (0) as−j +
(s)l+1

l!

∞∫
0

El,χ (−t)
(t+ a)

l+1−s
dt, (3.9)

which is valid for Re(s) < l .

4. Some consequences

This section is concerned with some formulas about the alternating Dirichlet L-function and counterparts of

Examples 6–10 of [4].

4.1. Around the alternating Dirichlet L-function

It is clear from (3.9) that for l = p and s = p− 1 with 0 < a < 1,

2ℓ (1− p, a, χ) =

p−1∑
j=0

(
p− 1

j

)
Ej,χ (0) ap−1−j = Ep−1,χ (a) , p ≥ 1.

Also, for Re(s) > 0 = l

2ℓ (s, a, χ) = −χ (−1)E0,χ (0) a−s + χ (−1) s

∞∫
0

E0,χ (t)

(t+ a)
1+s dt

and for Re(s) > −1, (l = 1)

2ℓ (s, a, χ) = E0,χ (0) a−s − sE1,χ (0) a−s−1 + s (s+ 1)χ (−1)

∞∫
0

E1,χ (t)

(t+ a)
2+s dt. (4.1)

Differentiating both sides of (4.1) with respect to s at s = 0 gives

2
d

ds
ℓ (s, a, χ) |s=0 = 2ℓ′ (0, a, χ)

= −E0,χ (0) log a− 1

a
E1,χ (0) + χ (−1)

∞∫
0

E1,χ (x)

(x+ a)
2 dx. (4.2)
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Similar results for ℓ (s, χ) = ℓ (s, 0, χ) can be achieved by applying Theorem 1.3 to f(x) = x−s,

Re (s) > 0, where α = 1 and β = 2kN , N ∈ N . Following the arguments in the proof of (3.9) and then

letting N → ∞ give rise to

2ℓ (s, χ) + 2 = −χ (−1)
l∑

j=0

s (s+ 1) ... (s+ j − 1)

j!
Ej,χ (1)

+ χ (−1)
s (s+ 1) ... (s+ l)

l!

∞∫
1

El,χ (x)

xs+l+1
dx,

where the integral is analytic for Re (s) > −l . In particular, for l = 1,

2ℓ (s, χ) = −2− χ (−1)E0,χ (1)− χ (−1) sE1,χ (1) + χ (−1) s (s+ 1)

∞∫
1

E1,χ (x)

xs+2
dx.

Differentiating both sides of the equality above with respect to s at s = 0 gives

2ℓ′ (0, χ) = −χ (−1)E1,χ (1) + χ (−1)

∞∫
1

E1,χ (x)

x2
dx. (4.3)

Observe that the integrals in (4.2) and (4.3) can be obtained from Theorem 1.3 by taking the logarithm

function. Thus, we may establish a connection between generalized Euler functions and some identities for

logarithmic means.

Proposition 4.1 As t tends to +∞, we have the following asymptotic expansion:

2
∑

1≤n<t

(−1)
n
χ (n) log (t/n) ∼ 2ℓ′ (0, χ) + ℓ (0, χ) log t+ χ (−1)

∞∑
j=1

Ej,χ (t)

jtj
.

Proof Let f(x) = log (t/x) , α = 1 and β = t and l = 1 in Theorem 1.3. Then

2χ (−1)
∑

1<n<t

(−1)
n
χ (n) log (t/n)

= 2χ (−1)
∑

1≤n<t

(−1)
n
χ (n) log (t/n) + 2χ (−1) log t

= −E1,χ (1)− E0,χ (1) log t+
E1,χ (t)

t
+

t∫
1

E1,χ (x)

x2
dx

= 2χ (−1) ℓ′ (0, χ)− E0,χ (1) log t+
E1,χ (t)

t
−

∞∫
t

E1,χ (x)

x2
dx, (4.4)

where we have used (4.3). Using that E0,χ (1) = E0,χ (0)− 2χ (−1) and ℓ (0, χ) = E0,χ (0) , and integrating by

parts repeatedly with the use of (4.4), one arrives at the asymptotic formula. 2
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Remark 4.2 The trivial estimate [4, Eq. (5.28)]

∣∣Bl,χ (x)
∣∣ ≤ 2

l!ζ (l)
√
k (2π/k)

l

with (3.5) leads to ∣∣El,χ (x)
∣∣ ≤ 4

l!ζ (l + 1)

(π/k)
l+1

,

and thus, we have ∣∣∣∣E1,χ (N)

N

∣∣∣∣ ≤ 4
ζ (2)

N (π/k)
2 =

2k2

3N
and

∣∣∣∣∣∣−
∞∫

N

E1,χ (x)

x2
dx

∣∣∣∣∣∣ ≤ 2k2

3N
.

Here ζ (z) denotes the Riemann zeta function. Using these in (4.4) for t = N ∈ N gives

N−1∑
n=1

(−1)
n
χ (n) log (N/n) = ℓ′ (0, χ) +

1

2
ℓ (0, χ) logN +O

(
1

N

)
, as N → ∞. (4.5)

By setting 2kN instead of N, (4.5) may be stated as follows:

2kN−1∑
n=1

(−1)
n
χ (n) log n = −ℓ′ (0, χ) + 1

2
ℓ (0, χ) log (2kN) +O

(
1

N

)
, as N → ∞.

We now apply Theorem 1.3 to the function f(x) = log (x+ a) , −π < arg a < π, where α = 0, β = 2kN,

N ∈ N , and l = 1 to obtain

2
2kN∑
n=1

(−1)
n
χ (n) log (n+ a)

= −E0,χ (0) log (2kN + a)− E1,χ (0)

2kN + a

+ E0,χ (0) log a+ χ (−1)
E1,χ (0)

a
− χ (−1)

2Nk∫
0

E1,χ (x)

(x+ a)
2 dx. (4.6)

Gathering (4.4) and (4.6) for t = 2kN, N ∈ N , then letting N → ∞ and using (4.3), we find that

− 2
∞∑

n=1

(−1)
n
χ (n) (log n− log (n+ a))

= 2ℓ′ (0, χ) + χ (−1)
E1,χ (0)

a
+ E0,χ (0) log a− χ (−1)

∞∫
0

E1,χ (x)

(x+ a)
2 dx. (4.7)

Note that the sum in (4.7) is reminiscent of the definition of the character analogue of the gamma function

defined by Berndt [4, Definition 4]. This motivates us to give the following definition.
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Definition 4.3 Let χ be a real primitive character. Define

Γ∗ (a, χ) =
∞∏

n=1

(
n

n+ a

)(−1)nχ(n)

.

In light of this definition, (4.7) becomes

2 log Γ∗ (a, χ) = −E0,χ (0) log a− 2ℓ′ (0, χ)− χ (−1)
E1,χ (0)

a
+ χ (−1)

∞∫
0

E1,χ (x)

(x+ a)
2 dx, (4.8)

which shows that Γ∗ (a, χ) is well defined and analytic for −π < arg a < π.

Combining (4.2) and (4.8), we infer Lerch’s formula for ℓ (s, a, χ) as

ℓ′ (0, a, χ) = log Γ∗ (a, χ) + ℓ′ (0, χ) , (4.9)

which is the character analogue of the familiar formula

ζ ′ (0, z) = log Γ (z) + ζ ′ (0) ,

where Γ (z) is the Euler gamma function.

Furthermore, in (4.8), integrating by parts repeatedly in view of (2.6), we arrive at the following

asymptotic formula, the counterpart of [4, Proposition 5.3].

Proposition 4.4 (Stirling’s formula for log Γ∗ (a, χ)) For −π < arg a < π, as a tends to ∞,

log Γ∗ (a, χ) ∼ −1

2
ℓ (0, χ) log a− ℓ′ (0, χ)− χ (−1)

2

∞∑
j=1

Ej,χ (0)

jaj
,

where the principal branch of the logarithm is taken.

Next we write the integral in (4.2) as in the form

∞∫
0

E1,χ (x)

(x+ a)
2 dx =

∞∑
n=0

2(n+1)k∫
2nk

E1,χ (x)

(x+ a)
2 dx

=
1

(2k)
2

2k∫
0

E1,χ (t)
∞∑

n=0

(
n+

t+ a

2k

)−2

dt

=
1

(2k)
2

2k∫
0

E1,χ (t) ζ

(
2,
t+ a

2k

)
dt.

Therefore, (4.2) becomes

2ℓ′ (0, a, χ) = −E0,χ (0) log a− 1

a
E1,χ (0) +

χ (−1)

(2k)
2

2k∫
0

E1,χ (t) ζ

(
2,
t+ a

2k

)
dt. (4.10)
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Since

d2

dz2
log Γ (z) =

d

dz
ψ (z) = ζ (2, z) , (4.11)

where ψ (z) is the digamma function, the integral in (4.10) may be obtained from Theorem 1.3 by setting

f(x) = log Γ ((x+ a) /2k) , α = 0, β = 2k , and l = 1. Under these circumstances,

2
2k−1∑
n=0

(−1)
n
χ (n) log Γ

(
n+ a

2k

)

= −E0,χ (0) log
a

2k
− 1

a
E1,χ (0) +

χ (−1)

(2k)
2

2k∫
0

E1,χ (x) ζ

(
2,
x+ a

2k

)
dx, (4.12)

where we have used that Γ (z + 1) = zΓ (z) and ψ (z + 1)−ψ (z) = 1/z. Assembling (4.10) and (4.12), we have

2ℓ′ (0, a, χ) = −E0,χ (0) log (2k) + 2
2k−1∑
n=1

(−1)
n
χ (n) log Γ

(
n+ a

2k

)
. (4.13)

The following proposition shows that Γ∗ (a, χ) is a quotient of ordinary gamma functions.

Proposition 4.5 We have

Γ∗ (a, χ) =
2k−1∏
n=1

(
Γ ((n+ a) /2k)

Γ (n/2k)

)(−1)nχ(n)

.

Proof From

ℓ (s, 2k, χ) = ℓ (s, χ)−
2k−1∑
n=1

(−1)
n
χ (n)n−s,

it is seen that

ℓ′ (0, 2k, χ) = ℓ′ (0, χ) +

2k−1∑
n=1

(−1)
n
χ (n) log n. (4.14)

Setting a = 2k in (4.13) and then comparing with (4.14) gives

ℓ′ (0, χ) = −1

2
ℓ (0, χ) log (2k) +

2k−1∑
n=1

(−1)
n
χ (n) log Γ

( n
2k

)
.

Substituting this in (4.9) and then combining with (4.13) leads to

log Γ∗ (a, χ) =
2k−1∑
n=1

(−1)
n
χ (n)

(
log Γ

(
n+ a

2k

)
− log Γ

( n
2k

))
(4.15)

=
2k−1∑
n=1

(−1)
n
χ (n) log

(
Γ ((n+ a) /2k)

Γ (n/2k)

)
,

which is the desired result. 2
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Let us continue by differentiating both sides of (4.15) with respect to a . Then we have

d

da
log Γ∗ (a, χ) =

1

2k

2k−1∑
n=1

(−1)
n
χ (n)ψ

(
n+ a

2k

)
, (4.16)

by (4.11). For convenience with (4.11), the right-hand side of (4.16) can be denoted by ψ∗ (a, χ) , i.e.

ψ∗ (a, χ) =
1

2k

2k−1∑
n=1

(−1)
n
χ (n)ψ

(
n+ a

2k

)
.

On the other hand, in light of (4.9), differentiating both sides of (4.2) with respect to a and then comparing

with (4.1) for s = 1, we see that

ℓ (1, a, χ) = −ψ∗ (a, χ) = − 1

2k

2k−1∑
n=1

(−1)
n
χ (n)ψ

(
n+ a

2k

)
. (4.17)

In general, for m ≥ 0 we have

dm

dam
ψ∗ (a, χ) = (−1)

m+1
m!ℓ (m+ 1, a, χ) , (4.18)

which implies the following identity, viewed as the Taylor expansion of ℓ (s, a, χ) in the second variable a .

Proposition 4.6 For |z| < 1 we have

∞∑
m=2

ℓ (m, a, χ) zm−1 = ψ∗ (a, χ)− ψ∗ (a− z, χ) . (4.19)

Proof The statement follows from the Taylor expansion of ψ∗ (z, χ) at z = a. 2

The character analogue of the Weierstrass product representation of Γ (s) can be derived from Definition

4.3 and also from Proposition 4.6.

Proposition 4.7 We have for all s

Γ∗ (s, χ) = e−sℓ(1,χ)
∞∏

n=1

[
(1 + s/n)

−1
es/n

](−1)nχ(n)

, (4.20)

where the product converges uniformly on any compact set S that avoids the points s = −n , where n is a

positive integer and (−1)
n
χ (n) = 1 .

Proof The proof from Definition 4.3 is exactly like the proof of Berndt [4, Proposition 5.4], so we omit it.

For the proof via Proposition 4.6, integrating (4.19) from 0 to s , we see that

∞∑
m=2

ℓ (m, a, χ)
sm

m
= log Γ∗ (a− s, χ)− log Γ∗ (a, χ) + sψ∗ (a, χ) .
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Taking s→ −s and a = 0, we have

∞∑
m=2

ℓ (m, 0, χ)
(−s)m

m
= log Γ∗ (s, χ)− log Γ∗ (0, χ)− sψ∗ (0, χ)

= log Γ∗ (s, χ) + sℓ (1, χ) . (4.21)

The left-hand side of (4.21) is

∞∑
n=1

(−1)
n
χ (n)

∞∑
m=2

1

m

(
− s

n

)m
=

∞∑
n=1

(−1)
n
χ (n)

[ s
n
− log

(
1 +

s

n

)]
, (4.22)

where we have used that
∞∑

m=2

rm

m
= −r − log (1− r) , for |r| < 1.

Combining (4.21) and (4.22) gives (4.20). 2

Note that another consequence of (4.17) with ψ (1− x)− ψ (x) = π cotπx is

2ℓ (m+ 1, χ) = − (−π/2k)m+1

m!

2k−1∑
n=1

(−1)
n
χ (n) cot(m)

(πn
2k

)
, m ≥ 0, (4.23)

when χ (−1) (−1)
m+1

= 1. Indeed, it is easy to see that for 0 ≤ a < 1,

ℓ (1, a, χ)− χ (−1) ℓ (1,−a, χ)

= − 1

2k

2k−1∑
n=1

(−1)
n
χ (n)

{
ψ

(
n+ a

2k

)
− ψ

(
1− n+ a

2k

)}

=
π

2k

2k−1∑
n=1

(−1)
n
χ (n) cot

(
π
n+ a

2k

)
. (4.24)

Now (4.23) follows from (4.18) and (4.24) for χ (−1) (−1)
m+1

= 1 and a = 0. In particular,

2ℓ (1, χ) =
π

2k

2k−1∑
n=1

(−1)
n
χ (n) cot

(πn
2k

)
, for odd χ,

2ℓ (2, χ) =
( π
2k

)2 2k−1∑
n=1

(−1)
n χ (n)

sin2
(
πn
2k

) , for even χ,
2ℓ (3, χ) =

( π
2k

)3 2k−1∑
n=1

(−1)
n
χ (n)

cos
(
πn
2k

)
sin3

(
πn
2k

) , for odd χ,
2ℓ (4, χ) =

1

3

( π
2k

)4 2k−1∑
n=1

(−1)
n
χ (n)

(
2

sin4
(
πn
2k

) + cos
(
πn
k

)
sin4

(
πn
2k

)) , for even χ,
which are analogues of Eqs. (5.9)–(5.12) of Alkan [1]. Such sums and many other ones can be found in [3, 7, 22].
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4.2. Counterparts of Examples 6–10 of [4]

In this part, we constitute f (x) in Theorem 1.3 in order to give some formulas, the counterparts of Examples

6–10 of [4].

• Let f(x) = ext, α = 0 and β = k . Then

2

k∑
n=0

(−1)
n
χ (n) ent = χ (−1)

l∑
j=0

(−1)
j+1

Ej,χ (0)
tj

j!

(
ekt + 1

)
−Rl,

where

|Rl| ≤
∣∣tl+1

∣∣
l!

k∫
0

∣∣El,χ (x) ext
∣∣ dx

≤ 4kekt
∣∣tl+1

∣∣
(π/k)

l+1
ζ (l + 1) → 0 as l → ∞ for |t| < π/k. (4.25)

Thus, we have the generating function for the number Ej,χ (0) as

k−1∑
n=0

(−1)
n
χ (n)

2ent

ekt + 1
=

∞∑
j=0

Ej,χ (0)
tj

j!
.

• Let f(x) = cos(xt), α = 0 and β = k . It is obvious from (2.7) that Ej,χ (0) = 0 if χ and j have the

same parity. If χ is odd, then

2

k−1∑
n=0

(−1)
n
χ (n) cos (nt) = χ (−1)

l∑
j=0

(−1)
2j+1

(2j)!
E2j,χ (0) (cos (kt) + 1) t2j(−1)j −Rl

where, as in (4.25), Rl tends to 0 as l → ∞ for |t| < π/k . Therefore, we have

2
∑k−1

n=1 (−1)
n
χ (n) cos (nt)

cos (kt) + 1
=

∞∑
j=0

(−1)
j
E2j,χ (0)

t2j

(2j)!
, for |t| < π

k
.

If χ is even, then similarly

2
∑k−1

n=1 (−1)
n
χ (n) cos (nt)

sin (kt)
= −

∞∑
j=0

(−1)
j
E2j+1,χ (0)

t2j+1

(2j + 1)!
, for |t| < π

k
.

• Let f(x) = sin(xt), α = 0 and β = k . If χ is odd, then for |t| < π/k

2
∑k−1

n=1 (−1)
n
χ (n) sin (nt)

sin (kt)
=

∞∑
j=0

(−1)jE2j,χ (0)
t2j

(2j)!

and if χ is even

2
∑k−1

n=1 (−1)
n
χ (n) sin (nt)

cos (kt) + 1
=

∞∑
j=0

(−1)jE2j+1,χ (0)
t2j+1

(2j + 1)!
.
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• In a similar way, it can be seen that if χ is odd, then for |t| < π/k

2
∑k

n=0 (−1)
n
χ (n) cosh (nt)

cosh(kt) + 1
=

2
∑k−1

n=1 (−1)
n
χ (n) sinh (nt)

sinh(kt)

=
∞∑
j=0

E2j,χ (0)
t2j

(2j)!

and if χ is even

2
∑k

n=0 (−1)
n
χ (n) cosh (nt)

sinh(kt)
=

2
∑k

n=0 (−1)
n
χ (n) sinh (nt)

cosh(kt) + 1

=
∞∑
j=0

E2j+1,χ (0)
t2j+1

(2j + 1)!
.

5. Proofs of reciprocity theorems

Proof [Proof of Theorem 1.5]Let f(x) = Ep,χ (xb/c) , α = 0, and β = ck in Theorem 1.2. By virtue of (2.6),

for 1 ≤ l ≤ p, one has

2
ck−1∑
n=0

(−1)
n
Ep,χ

(
n
b

c

)
=

l−1∑
j=0

Ej (0)

j!

(
b

c

)j
p!

(p− j)!

(
(−1)

ck−1
Ep−j,χ (bk) + Ep−j,χ (0)

)

+
p!

(l − 1)!(p− l)!

(
b

c

)l
ck∫
0

Ep−l,χ

(
b

c
x

)
El−1 (−x) dx.

For odd b+ c, with the use of (2.8), one can write

2
ck−1∑
n=0

(−1)
n
Ep,χ

(
n
b

c

)
= 2

l−1∑
j=0

(
b

c

)j (
p

j

)
Ej (0)Ep−j,χ (0) (5.1)

+ l

(
p

l

)(
b

c

)l

(−1)
l
c

k∫
0

Ep−l,χ (bx)El−1 (cx) dx.
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Now, let f(x) = Ep (xc/b) , α = 0, and β = bk in Theorem 1.3. Using (2.5),

2χ (−1)

bk∑
n=0

(−1)
n
χ (n)Ep

(
n
c

b

)

=
l∑

j=0

(−1)
j

j!

(c
b

)j p!

(p− j)!

(
Ej,χ (bk)Ep−j (ck)− Ej,χ(0)Ep−j (0)

)

− (−1)l

l!

p!

(p− l − 1)!

(c
b

)l+1
bk∫
0

El,χ (x)Ep−l−1

(
x
c

b

)
dx

=

l∑
j=0

(−1)
j

(
p

j

)(c
b

)j
Ej,χ (0)Ep−j (0) ((−1)b+c − 1)

− (−1)lp

(
p− 1

l

)(c
b

)l+1

b

k∫
0

El,χ (bx)Ep−l−1 (cx) dx,

for 0 ≤ l ≤ p− 2. Then, for odd b+ c, we have

2χ (−1)

bk∑
n=0

(−1)
n
χ (n)Ep

(
n
c

b

)
= 2

l∑
j=0

(−1)
j+1

(
p

j

)(c
b

)j
Ej,χ (0)Ep−j (0) (5.2)

− (−1)lp

(
p− 1

l

)(c
b

)l+1

b

k∫
0

El,χ (bx)Ep−l−1 (cx) dx.

Taking χ→ χ and l = 2 in (5.1) leads to

S(1)
p (b, c : χ) = 2

ck−1∑
n=0

(−1)
n
Ep,χ

(
n
b

c

)

= 2E0 (0)Ep,χ (0) + 2
bp

c
E1 (0)Ep−1,χ (0)

+ p(p− 1)

(
b

c

)2

c

k∫
0

Ep−2,χ (bx)E1 (cx) dx. (5.3)

Taking l = p− 2 in (5.2) yields

S(2)
p (c, b : χ) = 2

bk∑
n=1

(−1)
n
χ (n)Ep

(
n
c

b

)

= 2χ (−1)

p−2∑
j=0

(−1)
j+1

(
p

j

)(c
b

)j
Ej,χ (0)Ep−j (0)

− (−1)pχ (−1) p(p− 1)
(c
b

)p−1

b

k∫
0

Ep−2,χ (bx)E1 (cx) dx. (5.4)

1220
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Combining (5.3) and (5.4), one obtains that

cpS(1)
p (b, c : χ) + bpS(2)

p (c, b : χ) = 2

p∑
j=0

(
p

j

)
cjbp−jEj,χ (0)Ep−j (0) ,

for odd (b+ c) and (−1)pχ (−1) = 1. 2

Proof [Proof of Theorem 1.6]The definition

Sp (b, c : χ) =
ck∑

n=1

χ (n)Bp,χ

(
b+ ck

2c
n

)

in this form is not convenient to prove the reciprocity formula by aid of the Euler–MacLaurin or Boole summation

formula. Thus, Sp (b, c : χ) should be modified to apply summation formulas. For this, using (3.5) in the

definition of Sp (b, c : χ), and then [12, Lemma 5.5], we see that

Sp (b, c : χ) = 2−pχ (2)
ck∑

n=1

χ (n)Bp,χ

(
bn

c

)
− p

χ (2)

2p+1

ck∑
n=1

χ (n)Ep−1,χ

(
bn

c
+ kn

)

=
χ (2c)χ (−b)

2pcp−1
(kp − 1)Bp (0)− p

χ (2)

2p+1

ck∑
n=1

(−1)
n
χ (n)Ep−1,χ

(
bn

c

)
. (5.5)

Now let f (x) = Ep−1,χ (xb/c) , α = 0, and β = ck in Theorem 1.3. Then, in the light of (2.6), we can write

ck∑
n=0

(−1)
n
χ (n)Ep−1,χ

(
n
b

c

)

=
χ (−1)

2

l∑
j=0

(−1)
j

(
p− 1

j

)(
b

c

)j {(
(−1)

(b+c) − 1
)
Ej,χ (0)Ep−1−j,χ (0)

}

− χ (−1)

2
(−1)

l
(p− 1)

(
p− 2

l

)(
b

c

)l+1
ck∫
0

El,χ (x)Ep−2−l,χ

(
b

c
x

)
dx. (5.6)

Following precisely the method in the proof of Theorem 1.5 and using that Bp (0) = 0 for odd p yields

χ (−2) bcpSp (b, c : χ) + χ (−2) cbpSp (c, b : χ)

=
p

2p+1

p∑
j=1

(−1)
j

(
p− 1

j − 1

)
cjbp+1−jEj−1,χ (0)Ep−j,χ (0) .

2

Remark 5.1 Taking into consideration (3.5), this formula coincides with [10, Corollary 4.3] wherein there is

the condition b or c ≡ 0 (mod k) .
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We conclude the study with some results for the integral involving character Euler functions in conse-

quence of (5.6) and (5.5). We first note that the sum on the left-hand side of (5.6) is zero when p and (b+ c)

have opposite parity. Therefore, if p > 1 is odd and (b+ c) is even, then

k∫
0

El,χ (x)Ep−2−l,χ

(
b

c
x

)
dx = 0

and if p is even and (b+ c) is odd, then

k∫
0

El,χ (cx)Ep−2−l,χ (bx) dx

=
2 (−c/b)l+1

c (p− 1)
(
p−2
l

) l∑
j=0

(−1)
j

(
p− 1

j

)(
b

c

)j

Ej,χ (0)Ep−1−j,χ (0) .

Let p and (b+ c) be even. Gathering Sp(b, c : χ) = c1−pχ (2c)χ (−b) (kp − 1)Bp (0) ([10, Proposition

5.7]) and (5.5), one arrives at

ck∑
n=1

(−1)
n
χ (n)Ep−1,χ

(
bn

c

)
=

1

p
2 (1− 2p) c1−pχ (c)χ (−b) (kp − 1)Bp.

Thus, from the fact that 2 (2p − 1)Bp = −pEp−1 (0) , we have

k∫
0

El,χ (cx)Ep−2−l,χ (bx) dx = 2 (−1)
l+1 χ (c)χ (b)

cp−l−1bl+1

(kp − 1)(
p−2
l

) Ep−1 (0)

p− 1
.
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