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Abstract: In this paper, an approach for studying inverse Sturm–Liouville problems with integrable potentials on finite

intervals is presented. We find the relations between Weyl solutions and mj -functions of Sturm–Liouville problems, and

by finding the connection between these and the solutions of second-order partial differential equations for transformation

kernels associated with Sturm–Liouville operators, we prove the uniqueness of the solution of inverse problems.
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1. Introduction

We consider the following Sturm–Liouville differential equations:

ℓj(y) := −y′′(x) + qj(kx/2)y(x) = λy(x), j = 1, 2, x ∈ [a, b], (1.1)

with the boundary conditions y(a, λ) = 0 = y′(b, λ), where −∞ < a ≤ 0 < b < ∞ , k ≥ 2 is constant, and qj ,

j = 1, 2, are real-valued.

Let yj be the solution of the Problem Lj consisting of the equation (1.1) together with the conditions

yj(a, λ) = 0, y′j(a, λ) = 1. (1.2)

Also, let ỹj(x, λ) ∈ L2([a, b]) , j = 1, 2, be the unique solutions of (1.1) satisfying

ỹj(a, λ) = A, ỹj(b, λ) = 0, (1.3)

which are the so-called Weyl solutions of (1.1). Here, A ̸= 0 is constant.

We denote the mj -functions associated with (1.1) for j = 1, 2, by

mj(λ) = m(λ; qj) =
1

A
ỹ′j(a, λ), (1.4)

for λ ∈ C\σ(ℓj), where σ(ℓj) is the spectrum of ℓj . Letting for j = 1, 2, qj ∈ L1([a, b]) , then we know from [8]

that σ(ℓj) is real and bounded. Hence, it follows from [14] that there is a positive constant h0 such that the

mj -functions are defined for each λ ∈ C\[−h0,∞). Moreover, it can be shown that letting qj ∈ L1([a, b−a/2]),

j = 1, 2, and supposing qj,n ∈ L1([a, b− a/2]), ||qj,n − qj || → 0 for n → ∞ , then
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m(λ, qj,n) → m(λ, qj) (1.5)

for n → ∞ pointwise for each
√
λ ∈ C , Im(

√
λ) > 0.

By a method similar to that used in [7,11], we can prove the following theorem.

Theorem 1.1 Let y1, y2 be the solutions of Sturm–Liouville problems L1, L2 , respectively. Then there exists

a unique transformation kernel H independent of λ such that

y2(x, λ) = y1(x, λ) +

∫ x

a

H(x, t)y1(t, λ)dt, a ≤ x ≤ b. (1.6)

In the last two decades, several subjects in the inverse Sturm–Liouville problems were investigated, where the

uniqueness and the stability of the solutions of inverse problems with multiple conditions received more attention

(for example, see [1–4,9,10,12,13,15–17]).

In [14], the author introduced a new object in Sturm–Liouville problems with differential operators on

either L2(0, b), b < ∞ , or L2(0,∞) and proved a local version of the Borg–Marchenko uniqueness theorem

by this new formalism. He investigated necessary and sufficient conditions on the associated m -function for

determining the potential of a Sturm–Liouville operator. For another example, in [5], the author proved

the existence of a transmutation operator between two Schrödinger equations with perturbed exactly solvable

potential. Moreover, by using Varsha and Jafari’s method, an explicit formula for the solution of the nucleus

function was provided.

In the present paper, we present a new approach (distinct from [14]) to prove the uniqueness theorem

for regular Sturm–Liouville problems on the finite interval [a, b] , −∞ < a ≤ 0 < b < ∞ . The main role in our

approach is played by the transformation kernel H(x, t) (which is defined in Theorem 1.1) and its associated

second-order partial differential equation in two variables. In Section 2, we prove several estimates for the kernel

H and some its associated operators. In Section 3, we obtain the relations between the Weyl solutions ỹj , mj -

functions, and transformation kernels. These relations play important roles in the proof of the uniqueness

theorem. Then, by a relation between the different kernels, we prove the uniqueness theorem (see Section 4).

2. Transformation kernels and preliminary results

It follows from substituting (1.6) into (1.1) that for (x, t) ∈ Γ, the kernel H solves the following problem:

∂2H

∂x2
− ∂2H

∂t2
+

k2

4
(q1(kt/2)− q2(kx/2))H(x, t) = 0, (2.1)

H(x, a) = 0, k
∂

∂x
H(x, x) = q2(kx/2)− q1(kx/2), a ≤ x ≤ b, (2.2)

where Γ = {(x, t) ∈ R2 | a < t < x < b} .

Lemma 2.1 Let q1, q2 ∈ L1([ka/2, k(2b− a)/4]) . Then:

a) the problem (2.1)–(2.2) has a unique solution H , which is compactly supported in [a, b]× [a, b] . Moreover,

if q1, q2 ∈ Cm([ka/2, k(2b− a)/4]) , then H ∈ Cm+1(Γ) .
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b) For a ≤ t ≤ x ≤ b , the following estimate is valid:

|H(x, t)| ≤
∫ (x+t−a)/k

a/k

|q2(z)− q1(z)|dz × exp(

∫ (x−t+a)/k

a/k

∫ (x+t−a)/k

η

|q2(ζ + η)− q1(ζ − η)|dζdη).

(2.3)

Proof Denote the variables

τ =
x+ t− a

k
, θ =

x− t+ a

k
. (2.4)

Thus,

x = x(τ, θ) = k(τ + θ)/2, t = t(τ, θ) = k(τ − θ)/2 + a.

For a/k ≤ θ ≤ τ ≤ (2b− a)/k we define

h(τ, θ) = H(x(τ, θ), t(τ, θ)). (2.5)

Therefore, for a/k < θ < τ < 2b−a
k , the function h(τ, θ) solves the following problem:

∂2h

∂τ∂θ
(τ, θ) = f(x(τ, θ), t(τ, θ))h(τ, θ), (2.6)

h(τ0, τ0) = 0, (
∂

∂τ
h(τ, τ))|τ=τ1 = g(τ1), (2.7)

where τ0 = x/k , τ1 = (2x− a)/k , and

f(x, t) = q2(kx/2)− q1(kt/2), g(x) = f(x, x).

Integration with respect to θ from a/k to θ and then integration with respect to τ from θ to τ yields the

following second kind of Volterra integral equation:

h(τ, θ) =

∫ τ

θ

∫ θ

a
k

f(x′(τ ′, θ′), t′(τ ′, θ′))h(τ ′, θ′)dθ′dτ ′ +

∫ τ

θ

g(r)dr. (2.8)

Denote the operator T on C(Γ) by

Th(τ, θ) =

∫ τ

θ

∫ θ

a
k

f(x′(τ ′, θ′), t′(τ ′, θ′))h(τ ′, θ′)dθ′dτ ′,

and G(τ, θ) =
∫ τ

θ
g(r)dr . Thus, (2.8) has the form

(I − T )h(τ, θ) = G(τ, θ). (2.9)

By induction, for each h̃ ∈ C(Γ), we can establish

|Tnh̃(τ, θ)| ≤ sup
a
k≤θ′≤τ ′≤τ

|h̃(τ ′, θ′)| 1
n!
(

∫ θ

a
k

∫ τ

η

|f(ζ + η, ζ − η)|dζdη)n.
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Hence, from [6], the Neumann series
∑∞

n=0 T
n converges to the operator I − T , and the unique solution h is

obtained from (2.9). Moreover,

|h(τ, θ)| ≤ sup
a
k≤θ′≤τ ′≤τ

|G(τ ′, θ′)| × exp(

∫ θ

a
k

∫ τ

η

|f(ζ + η, ζ − η)|dζdη), (2.10)

and thus we arrive at (2.3). 2

In the same way as in the proof of Lemma 2.1, we can prove the following lemma.

Lemma 2.2 Let δ ∈ [a, b− a/2] , g1 ∈ C[a, a+ δ] , q1, q2, g2 ∈ L1([a, a+ δ]) . Then, for (x, t) ∈ Γδ := {(x, t) ∈
R2 | a < t < x < a+ δ, t+ x ≤ a+ δ} , the problem

∂2H
∂x2 − ∂2H

∂t2 + k2

4 (q1(kt/2)− q2(kx/2))H(x, t) = 0, (x, t) ∈ Γ,

H(x, a) = g1(x),
∂H
∂t (x, a) = g2(x), x ∈ [a, a+ δ],

has a unique solution, H ∈ C(Γδ) .

In the special case q1 = q , q2 ≡ 0, the solution y2 of the regular problem L2 is y2(x, λ) = sin(
√
λx)/

√
λ , and

thus according to Theorem 1.1, there exists a unique kernel H1 such that

sin(
√
λx)√
λ

= y1(x, λ)−
∫ x

a

H1(x, t)y1(t, λ)dt. (2.11)

Moreover, by (2.1)–(2.2), we give the following partial differential equation associated with H1 ,

∂2H1

∂x2
− ∂2H1

∂t2
+

k2

4
q(kt/2)H1(x, t) = 0, (x, t) ∈ Γ, (2.12)

together with the conditions

H1(x, a) = 0, k
∂

∂x
H1(x, x) = −q(kx/2), x ≥ a. (2.13)

By changing variables (2.4), we define the function

h1(τ, θ) = H1(x(τ, θ), t(τ, θ)). (2.14)

Hence,

H1(x, a) = h1(τ, τ), H1(x, x) = h1(τ, a/k), H1(kx, a) = h1(x, x). (2.15)

Moreover,

∂h1

∂τ
(τ, θ)− ∂h1

∂θ
(τ, θ) = k

∂H1

∂t
(x(τ, θ), t(τ, θ)). (2.16)

In the following theorem, we estimate the kernel H1 and its partial derivatives.

Theorem 2.3 Let q ∈ L1([a, b− a/2]) . Then:
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(i) for a ≤ t ≤ x ≤ b , the following inequality holds:

|H1(x, t)| ≤
2

k
||q||∗ exp(

2

k
||q||∗ max{|x| − a

k
, |t| − a

k
}), (2.17)

where ||q||∗, ||q||∗ are the norm of q in L1([a/2, b− a/2]) and L1([a, b− a/2]) , respectively.

(ii) The function k
2
∂H1

∂t (kx, a)− q(kx/2) is continuous, and for a ≤ x ≤ b ,

|k
2

∂H1

∂t
(kx, a)− q(kx/2)| ≤ αq exp(

2

k
(|x| − a

k
)||q||∗). (2.18)

(iii) If q, q′ are compactly supported on [a, b] , then for a ≤ t ≤ x ≤ b ,

|∂H1

∂t
(x, t)| ≤ βq exp(

2

k
max{|x| − a

k
, |t| − a

k
}||q||L1[a,b]), (2.19)

|∂
2H1

∂t2
(x, t)| ≤ βq exp(

2

k
max{|x| − a

k
, |t| − a

k
}||q||L1[a,b]). (2.20)

Here, the constants αq, βq may depend on q .

Proof The problem (2.12)–(2.13) is equal to the problem (2.1)–(2.2) with H = H1 , q1 = q , and q2 = 0.

Therefore, according to (2.5), (2.8), and (2.14), h1 satisfies the following integral equation:

h1(τ, θ) = −
∫ τ

θ

∫ θ

a
k

q(t′(τ ′, θ′))h1(τ
′, θ′)dθ′dτ ′ +

∫ τ

θ

q(kr/2)dr. (2.21)

On the other hand, by (2.10) we get

|h1(τ, θ)| ≤
∫ τ

a
k

|q(kr/2)|dr. exp(
∫ θ

a
k

∫ τ

s

|q(k(ζ − η)

2
+ a)|dζdη). (2.22)

Since for x ≥ t , ∫ θ

a
k

∫ τ

s

|q(k(ζ − η)

2
+ a)|dζdη =

∫ τ− a
k

τ−θ

∫ u

0

|q(kr
2

+ a)|drdu

≤ 2

k
(θ − a

k
)

∫ (kτ+a)/2

a

|q(s)|ds,

this together with (2.22) yields

|h1(τ, θ)| ≤
∫ τ

a
k

|q(kr/2)|dr. exp( 2
k
(θ − a

k
)

∫ (kτ+a)/2

a

|q(s)|ds). (2.23)

Also, since τ ≤ (2b− a)/k , ∫ τ

a
k

|q(kr/2)|dr ≤ 2

k

∫ b−a/2

a/2

|q(r′)|dr′

=
2

k
||q||∗, (2.24)
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and moreover,

exp(
2

k
(θ − a

k
)

∫ kτ+a
2

a

|q(s)|ds) ≤ exp(
2

k
||q||∗ max{|x| − a

k
, |t| − a

k
}). (2.25)

According to (2.23)–(2.25), we arrive at (2.17).

Now, differentiating (2.21) with respect to τ and θ , respectively, yields

∂h1

∂τ
(τ, θ) = −

∫ θ

a
k

q(t′(τ, θ′))h1(τ, θ
′)dθ′ + q(kτ/2)

=

∫ τ− a
k

τ−θ

q(kr/2 + a)h1(τ, τ − r)dr + q(kτ/2), (2.26)

∂h1

∂θ
(τ, θ) =

∫ θ

a
k

q(t′(θ, θ′))h1(θ, θ
′)dθ′ −

∫ τ

θ

q(t′(τ ′, θ))h1(τ
′, θ)dτ ′ − q(kθ/2)

=

∫ θ− a
k

0

q(kr/2 + a)h1(θ, θ − r)dr −
∫ τ−θ

0

q(kr/2 + a)h1(θ + r, θ)dr − q(kθ/2). (2.27)

Hence, from (2.26)–(2.27), we obtain

∂h1

∂τ
(x, t)− ∂h1

∂θ
(x, t) = 2

∫ x− a
k

0

q(kr/2 + a)h1(x, x− r)dr + 2q(kx/2).

This together with (2.15)–(2.16) yields

k
∂H1

∂t
(kx, a)− 2q(kx/2) = 2

∫ x− a
k

0

q(kr/2 + a)h1(x, x− r)dr.

Therefore, we arrive at (ii).

If q, q′ are compactly supported on [a, b] , then there is a positive number βq (which may depend on q ) such

that

|∂h1

∂τ
(τ, θ)|, |∂h1

∂θ
(τ, θ)| ≤ βq exp(

2

k
(θ − a/k)

∫ τ

a

|q(s)|ds). (2.28)

Thus, the estimate (2.19) follows from (2.15) and (2.28). Similarly, since

∂2H1

∂t2
(x, t) =

1

k2
{∂

2h1

∂τ2
(τ(x, t), θ(x, t))− 2

∂2h1

∂τ∂θ
(τ(x, t), θ(x, t)) +

∂2h1

∂θ2
(τ(x, t), θ(x, t))},

and q, q′ are compactly supported on [a, b] , we arrive at (2.20). 2

3. Relations between the Weyl solutions, mj -functions, and the kernels

In this section, first we derive the relations between the Weyl solutions ỹj and the kernels Hj , j = 1, 2. Then,

with these, we prove the connection between Hj and the Weyl functions mj , which will be used in the proof

of the uniqueness theorem in section 4.

First, in the following lemma, we establish a relation between ỹj and the kernels Hj when qj , q
′
j are

compactly supported on [a, b− a/2].
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Lemma 3.1 Let qj , q
′
j , j = 1, 2 , be compactly supported on [a, b− a

2 ] and Hj be the kernel in (2.11) such that

for a ≤ t ≤ b− a
2 ,

Hj(b−
a

2
, t) = 0 =

∂Hj

∂x
(b− a

2
, t), j = 1, 2. (3.1)

Assume λ = −c2ρ2 , ρ = σ1+ iσ2 , c > 0 , and σ1, σ2 are constants. Then, for k = 2 , j = 1, 2 and |ρ| > ||qj ||∗ ,
the function

ỹj(t, λ) = A exp(−cρ(t− a))−A

∫ b− a
2

t

Hj(x, t) exp(−cρ(x− a))dx (3.2)

is the Weyl solution of the differential equation

−y′′(x) + qj(x)y(x) = λy(x), x ∈ [a, b− a

2
],

where A is defined as in (1.3) , and ||qj ||∗ is the norm of qj in L1([a, b− a
2 ]) .

Proof First, it follows from (2.13) and (3.2) that ỹj(a, λ) = A , j = 1, 2. Second, (2.17) implies that ỹj(t, λ)

is well defined by (3.2) for |ρ| > ||qj ||∗ , and moreover, ỹj(t, λ) ∈ L2([a, b − a/2]). Since qj , q
′
j are compactly

supported on [a, b− a/2], it follows from Theorem 2.3 that Hj ∈ C2(Γ). Now, by (3.2) we have for j = 1, 2,

ỹ′j(t, λ) = A{−cρ+Hj(t, t)} exp(−cρ(t− a))−A

∫ b− a
2

t

∂Hj

∂t
(x, t) exp(−cρ(x− a))dx, (3.3)

ỹ′′j (t, λ) =A exp(−cρ(t− a))× {c2ρ2 + ∂

∂t
Hj(t, t)− cρHj(t, t) +

∂Hj

∂t
(t, t)}

−A

∫ b− a
2

t

∂2Hj

∂t2
(x, t) exp(−cρ(x− a))dx. (3.4)

Since Hj solves (2.12)–(2.13), we obtain∫ b− a
2

t

∂2Hj

∂t2
(x, t) exp(−cρ(x− a))dx =

∫ b− a
2

t

{∂
2Hj

∂x2
(x, t) + qj(t)Hj(x, t)} exp(−cρ(x− a))dx. (3.5)

From integration by parts and (3.1), we get

−
∫ b− a

2

t

∂2Hj

∂x2
(x, t) exp(−cρ(x− a))dx =

∂Hj

∂x
(t, t) exp(−cρ(t− a))− cρ

∫ b− a
2

t

∂Hj

∂x
(x, t) exp(−cρ(x− a))dx

= {∂Hj

∂x
(t, t) + cρHj(t, t)} exp(−cρ(t− a))− c2ρ2

∫ b− a
2

t

Hj(x, t) exp(−cρ(x− a))dx. (3.6)

Substituting (3.5)–(3.6) into (3.4) yields

ỹ′′j (t, λ) = A{c2ρ2 + ∂

∂t
Hj(t, t) +

∂Hj

∂t
(t, t) +

∂Hj

∂x
(t, t)} exp(−cρ(t− a))

−A(c2ρ2 + qj(t))

∫ b− a
2

t

Hj(x, t) exp(−cρ(x− a))dx

= (c2ρ2 + qj(t))ỹj(t, λ).
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This completes the proof of Lemma 3.1. 2

Now we prove the main result of this section, which allows the connection between the mj -functions and their

associated kernels Hj , which satisfy

sin(
√
λx)√
λ

= yj(x, λ)−
∫ x

a

Hj(x, t)yj(t, λ)dt, j = 1, 2. (3.7)

Theorem 3.2 Let for j = 1, 2 , qj ∈ L1([a, b − a/2]) . Then, for |ρ| > max{||q1||∗, ||q2||∗} and j = 1, 2, the

following relation is valid:

mj(λ) = −cρ−
∫ b−a/2

a

∂Hj

∂t
(x, a) exp(−cρ(x− a))dx. (3.8)

Proof In the case when qj , q
′
j , j = 1, 2, are compactly supported on [a, b− a/2], (3.8) can be obtained from

(1.4), (3.3), and Hj(a, a) = 0.

In the general case qj ∈ L1([a, b− a/2]), j = 1, 2, let {qj,n}∞n=1 be a sequence in which qj,n, q
′
j,n are compactly

supported on [a, b− a/2], ||qj,n||∗ ≤ αqj < |ρ| and ||qj,n − qj ||∗ → ∞ for n → ∞ . Then, according to (2.17),

(2.19), and dominated convergence,∫ b−a/2

a

∂Hj

∂t
(x, a; qj,n) exp(−cρ(x− a))dx

converges to ∫ b−a/2

a

∂Hj

∂t
(x, a; qj) exp(−cρ(x− a))dx

as n → ∞ . This together with (1.5) completes the proof. 2

Remark 3.3 In the special case q1 = 0 , according to Theorem 1.1, there exists a unique transformation kernel

H̃ such that

y2(x, λ) =
sin(

√
λx)√
λ

+

∫ x

a

H̃(x, t)
sin(

√
λt)√
λ

dt. (3.9)

4. The uniqueness theorem

In this section, we give a result about the connection between the differential kernels H1,H2 , associated with

the problems (1.1)–(1.2) (with j = 1, 2) and the kernel H in (1.6), and we prove a uniqueness result for the

potentials of the Sturm–Liouville operators.

Lemma 4.1 Let for j = 1, 2 , qj ∈ L1([a, b − a/2]) , Hj be the kernels given by (3.7) associated with the

following problems: {
−y′′(x) + qj(x)y(x) = λy(x),
y(a, λ) = 0,

(4.1)

and let H be the kernel given by (1.6) . If ∂H1

∂t (x, a) = ∂H2

∂t (x, a) in L1((a, a0)) for some a0 ∈ (a, b − a/2) ,

then ∂H
∂t (x, a) = 0 in L1((a, a0)) .
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Proof Substituting (3.7) for j = 1 into (3.9) yields

y2(x, λ) = y1(x, λ) +

∫ x

a

{H̃(x, t)−H1(x, t)−
∫ x

t

H̃(x, η)H1(η, t)dη}y1(t, λ)dt. (4.2)

Therefore, by (3.9) and (4.2), the kernel H is uniquely determined as follows:

H(x, t) = H̃(x, t)−H1(x, t)−
∫ x

t

H̃(x, η)H1(η, t)dη.

This yields

∂H

∂t
(x, t) =

∂H̃

∂t
(x, t)− ∂H1

∂t
(x, t) + H̃(x, t)H1(t, t)−

∫ x

t

H̃(x, η)
∂H1

∂t
(η, t)dη,

for almost all (x, t) ∈ Γ. Hence, since H1(a, a) = 0 and ∂H1

∂t (x, a) = ∂H2

∂t (x, a) in L1((a, a0)), we obtain

∂H

∂t
(x, a) =

∂H̃

∂t
(x, a)− ∂H2

∂t
(x, a)−

∫ x

a

H̃(x, η)
∂H2

∂t
(η, a)dη, (4.3)

for almost all x ∈ (a, a0).

Similarly, substituting (3.7) for j = 2 into (3.9) gives us∫ x

a

{H̃(x, t)−H2(x, t)−
∫ x

t

H̃(x, η)H2(η, t)dη}y2(t, λ)dt = 0.

Hence,

H̃(x, t)−H2(x, t)−
∫ x

t

H̃(x, η)H2(η, t)dη = 0, a ≤ t ≤ x ≤ b− a/2,

for almost all (x, t) ∈ Γ. Therefore,

∂H̃

∂t
(x, a)− ∂H2

∂t
(x, a)−

∫ x

a

H̃(x, η)
∂H2

∂t
(η, a)dη = 0,

for almost all x ∈ (a, a0). This together with (4.3) completes the proof. 2

To prove the main theorem (Theorem 4.3), we need the following lemma, which can be proved similarly by a

method used in [14].

Lemma 4.2 Let p ∈ L1([α, β]) and assume that the function s(ζ) =
∫ β

α
p(r) exp(−ζr)dr satisfies

s(η) = o(exp(−(β − α)(1− ε)cη))

as η → +∞ , for all 0 < ε < 1 . Then p ≡ 0 .

Now, we prove the following uniqueness theorem, which is the main result of this section.

Theorem 4.3 Let qj ∈ L1([a, b− a/2]) be a real potential for the problem (4.1) , and let mj be the associated

mj -function. Assume that there is a number a0 ∈ (a, b− a/2) such that

m1(λ)−m2(λ) = o(exp(−(a0 − a)(1− ε)c|ρ|)),

as |ρ| → ∞ , for each 0 < ε < 1 . Then q1 = q2 a.e. on [a, (a+ a0)/2] .
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Proof From (3.8) and the hypothesis of the theorem, we have

m1(λ)−m2(λ) =

∫ b−a/2

a

{∂H2

∂t
(x, a)− ∂H1

∂t
(x, a)} × exp(−cρ(x− a))dx (4.4)

=o(exp(−(a0 − a)(1− ε)c|ρ|)),

as |ρ| → ∞ , for each 0 < ε < 1. On the other hand, by (2.18) with k = 2 we have

|∂Hj

∂t
(x, a)− qj(x/2)| ≤ αqj exp(||qj ||∗(|x| − a)/2).

Thus, for |ρ| > max{||q1||∗, ||q2||∗} , we get∫ b−a/2

a0

|(∂H2

∂t
(x, a)− ∂H1

∂t
(x, a)) exp(−cρ(x− a))|dx = o(exp(−(a0 − a)(1− ε)c|ρ|)),

as |ρ| → ∞ , for each 0 < ε < 1. This together with (4.4) gives∫ a0

a

(
∂H2

∂t
(x, a)− ∂H1

∂t
(x, a)) exp(−cρ(x− a))dx = o(exp(−(a0 − a)(1− ε)c|ρ|)),

as |ρ| → ∞ , for each 0 < ε < 1. Hence, by Lemma 4.2 we get

∂H2

∂t
(x, a)− ∂H1

∂t
(x, a) = 0,

for a.e. x ∈ (a, a0). Now it follows from Lemma 4.1 that the kernel H satisfies ∂H̃
∂t (x, a) = 0, for a.e.

x ∈ (a, a0). Consequently, since H solves uniquely the problem (2.1)–(2.2) with k = 2, H specially solves the

following problem: 
∂2H
∂x2 − ∂2H

∂t2 + (q1(t)− q2(x))H(x, t) = 0, (x, t) ∈ Γ,

H(x, a) = 0, ∂H
∂t (x, a) = 0, x ∈ [a, a0].

(4.5)

According to Lemma 2.2, the problem (4.5) has a unique solution H ∈ C(Γa0), where

Γa0
= {(x, t) ∈ R2 | a < t < x < a0, t+ x ≤ a+ a0}.

Therefore,

H(x, t) ≡ 0, (x, t) ∈ Γa0 . (4.6)

Now, from (2.2) with k = 2 and (4.6), we obtain

∂H

∂x
(x, x) =

1

2
(q2(x)− q1(x)) = 0,

for a.e. x ∈ [a, (a+ a0)/2]. The proof is complete. 2
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