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Abstract: In this paper, we study cyclic codes over the ring R = Z4+uZ4+u2Z4 , where u3 = 0. We investigate Galois

extensions of this ring and the ideal structure of these extensions. The results are then used to obtain facts about cyclic

codes over R . We also determine the general form of the generator of a cyclic code and find its minimal spanning sets.

Finally, we obtain many new linear codes over Z4 by considering Gray images of cyclic codes over R .
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1. Introduction

Cyclic codes are one of the most important and most intensively studied classes of linear codes with rich algebraic

structure due to their representation as the ideals of a polynomial ring. Another class of codes that has become

the subject of much research in recent years is codes over rings. The structure of cyclic codes over various

rings is investigated by many authors (e.g., [2, 3, 5, 10]). In [13], Yıldız studied cyclic codes of odd length over

F2 +uF2 + vF2 +uvF2 . In [12], the algebraic structure of cyclic codes over the ring Z4 +uZ4 , where u2 = 0, is

determined. Making use of the structure of cyclic codes over Z4+uZ4 , Yıldız and Aydın conducted a computer

search and obtained some new linear codes over Z4 . In [8], cyclic codes over Zq + uZq , where u2 = 0 and q is

the power of a prime, were investigated. In this work, we study cyclic codes over the ring R = Z4 +uZ4 +u2Z4

where u3 = 0. We determine the structure of cyclic codes over R and obtain many new linear codes over Z4

from the cyclic codes over R .

This work is organized as follows: In Section 2, we investigate the structure of the ring Z4+uZ4+u2Z4 ,

where u3 = 0, and we give some basic definitions and theorems. In Section 3, Galois extensions of this ring and

the ideal structure of this extension are studied. In the next section, cyclic codes over R are discussed and the

general form of the generator of a cyclic code and minimal spanning sets of such codes are obtained, where some

of the results from Section 3 are used. In Section 5 we define a Gray-like map to obtain codes over Z4 from

codes over R and show that the Z4 -image of a cyclic code over R is a quasi-cyclic code. Finally, we present

some of the results of a computer search in Section 6 that produced many new linear codes over Z4 from cyclic

codes over R .
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2. Preliminaries

Let R denote the ring Z4+uZ4+u2Z4 = {a+ub+u2c|a, b, c ∈ Z4} where u3 = 0. It is clear that R ∼= Z4[u]/⟨u3⟩ .
R is a commutative ring with identity, and it has characteristic 4 and order 64. Any element x of R can be

written as x = a+ ub+ u2c , where a, b, c ∈ Z4 and x is a unit in R if and only if a is a unit in Z4 . R has 11

nontrivial ideals given by

⟨2u2⟩ = {0, 2u2}
⟨u2⟩ = {0, u2, 2u2, 3u2}
⟨2u⟩ = {0, 2u, 2u2, 2u+ 2u2}
⟨2u+ u2⟩ = {0, 2u2, 2u+ u2, 2u+ 3u2}
⟨2u, u2⟩ = {0, u2, 2u2, 3u2, 2u, 2u+ u2, 2u+ 2u2, 2u+ 3u2}
⟨2⟩ = {0, 2, 2u, 2u2, 2 + 2u, 2 + 2u2, 2u+ 2u2, 2 + 2u+ 2u2}
⟨2 + u2⟩ = {0, 2u, 2u2, 2u+ 2u2, 2 + u2, 2 + 3u2, 2 + 2u+ u2, 2 + 2u+ 3u2}
⟨2, u2⟩ = {0, 2, 2u, u2, 2u2, 3u2, 2 + 2u, 2 + u2, 2 + 2u2, 2 + 3u2,

2u+ u2, 2u+ 2u2, 2u+ 3u2, 2 + 2u+ u2, 2 + 2u+ 2u2, 2 + 2u+ 3u2}
⟨u⟩ = {0, u, 2u, 3u, u2, 2u2, 3u2, u+ u2, u+ 2u2, u+ 3u2, 2u+ u2, 2u+ 2u2,

2u+ 3u2, 3u+ u2, 3u+ 2u2, 3u+ 3u2}
⟨2 + u⟩ = {0, 2u, u2, 2u2, 3u2, 2 + u, 2 + 3u, 2u+ u2, 2u+ 2u2, 2u+ 3u2, 2 + u+ u2

2 + u+ 2u2, 2 + u+ 3u2, 2 + 3u+ u2, 2 + 3u+ 2u2, 2 + 3u+ 3u2}
⟨2, u⟩ = {0, 2, u, 2u, 3u, u2, 2u2, 3u2, 2 + u, 2 + 2u, 2 + 3u, 2 + u2, 2 + 2u2, 2 + 3u2,

u+ u 2, u+ 2u2, u+ 3u2, 2u+ u2, 2u+ 2u2, 2u+ 3u2, 3u+ u2, 3u+ 2u2,
3u+ 3u2, 2 + u+ u2, 2 + u+ 2u2, 2 + u+ 3u, 2 + 2u+ u2, 2 + 2u+ 2u2,
2 + 2u+ 3u2, 2 + 3u+ u2, 2 + 3u+ 2u2, 2 + 3u+ 3u2}.

It is easy to see that R is a local Frobenius ring with ⟨2, u⟩ as its unique maximal ideal. Since the ideals

⟨u2⟩ and ⟨2u⟩ are not comparable, R is not a chain ring. Since the ideal ⟨2, u⟩ cannot be generated by any

single element of R , R is not a principal ideal ring either.

Let R̃ denote the residue field of R . Then we have

R̃ = R/⟨2, u⟩ = {0 + ⟨2, u⟩, 1 + ⟨2, u⟩} ∼= Z2.

Now we define the projection map ∼: R → R̃ as follows:

∼ (x) =

{
1, if x is a unit
0, otherwise.

The image of x ∈ R under this projection map is denoted by x̃ . Let R[x] denote the polynomial ring

over R . The map ∼ is extended to R[x] → R̃[x] in the usual way. The image of f(x) ∈ R under this extended

map is denoted by f̃(x).

Definition 2.1 A polynomial f(x) is called basic irreducible in R[x] if f̃(x) is an irreducible polynomial in

R̃[x] .

Irreducible polynomials over finite fields and basic irreducible polynomials over finite local rings play

similar roles in algebra.

Definition 2.2 ([9]) If a polynomial f(x) ∈ R[x] is not a zero divisor, then it is called a regular polynomial.
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Definition 2.3 Two polynomials f(x), g(x) ∈ R[x] are said to be coprime if there are polynomials a0(x) and

a1(x) in R[x] such that

f(x)a0(x) + g(x)a1(x) = 1.

Theorem 2.4 (Hensel’s Lemma [11]) Let f(x) be a monic polynomial in Z4[x] and assume that f̃(x) =

f̃1(x) f̃2(x)... f̃r(x) where f̃1(x) , f̃2(x), ..., f̃r(x) are pairwise coprime polynomials in Z2[x] and f̃i(x) ≡
fi(x)(mod 2). Then there exist monic polynomials h1(x), h2(x), . . . , hr(x) ∈ Z4[x] with the following properties:

i) f(x) = h1(x)h2(x)...hr(x).

ii) h̃i(x) = f̃i(x).
iii) h1(x), h2(x), . . . , hr(x) are pairwise coprime polynomials in Z4[x].

3. Galois extensions of Z4 + uZ4 + u2Z4 , u3 = 0

In this section we study some aspects of Galois extensions of the ring R that will be useful in determining the

ideals of R[x]/⟨xn − 1⟩ . Throughout this section, n is assumed to be an odd integer. We first investigate the

factorization of xn − 1 over R because of its importance in the study of cyclic codes.

Theorem 3.1 Let h(x) be an irreducible polynomial in Z2[x] and divide x2r−1−1 for some positive integer r .

Then there exists a unique basic irreducible polynomial f(x) in R[x] such that f(x)|x2r−1−1 and f̃(x) = h(x).

Proof Since h(x)|x2r−1 − 1, there exists h
′
(x) ∈ Z2[x] such that h(x) · h′

(x) = x2r−1 − 1. By Theo-

rem 2.4, there exist f(x), f
′
(x) ∈ Z4[x] such that f(x) · f ′

(x) = x2r−1 − 1 and f(x) mod 2 = h(x), f
′
(x)

mod 2 = h
′
(x). Since Z4 is a subring of R , the factorization of x2r−1 − 1 is valid over R , i.e. f(x)|(x2r−1 − 1)

in R[x]. Also, f̃(x) ≡ f(x) mod ⟨2, u⟩ = h(x). Since 2r−1 is odd, by Theorem XIII.11 in [9], x2r−1−1 can be

factorized uniquely into pairwise coprime basic irreducible polynomials over R . It follows that f(x) is unique. 2

The polynomial f(x) in Theorem 3.1 is called the Hensel lift of h(x) to R . We will need some results

about the Galois extension of Z4 in our study of Galois extensions over the ring R . Therefore, we recall some

basic facts about the Galois extension of Z4 . Let r(x) be a monic basic irreducible polynomial of degree k

in Z4[x] . Then the Galois ring over Z4 is defined as the residue class ring Z4[x]/⟨r(x)⟩ and it is denoted by

GR(4, k).

Let ε be a root of r(x) and T = {0, 1, ε, ε2, . . . , ε2k−2} be the Teichmüller set of GR(4, k). Then all

elements of GR(4, k) can be expressed uniquely in the form x0 + 2x1, where x0, x1 ∈ T . This representation

is called the 2-adic representation.

Now we investigate the Galois extension of R in a similar way. Let r(x) be a monic basic irreducible

polynomial of degree k in R[x] . Then the Galois ring over R is defined as the residue class ring R[x]/⟨r(x)⟩
and denoted by GR(R, k). If α is a root of r(x), then all elements of GR(R, k) can be expressed uniquely in

the form

r0 + r1α+ · · ·+ rk−1α
k−1, where ri ∈ R, i = 0, 1, . . . , k − 1,
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which is called the additive representation of the element of the Galois ring GR(R, k). GR(R, k) is a free R-

module of rank k with basis {1, α, α2, . . . , αk−1} and |GR(R, k)| = 64k . It is a local ring with unique maximal

ideal ⟨2, u⟩+ ⟨r(x)⟩ . The field F2k is the residue field of GR(R, k). Moreover,

GR(R, k) ∼= GR(4, k)[u]/⟨u3⟩ ∼= GR(4, k) + uGR(4, k) + u2GR(4, k).

Therefore, any element x of GR(R, k) can be written as x = a + ub + u2c , where a, b, c ∈ GR(4, k).

Making use of 2-adic representation in GR(4, k), we can write a = a1+2a2, b = b1+2b2, c = c1+2c2 , for i = 1, 2;

ai, bi, ci ∈ T . Thus, the element x ∈ GR(R, k) can be written in the form x = a1+2a2+u(b1+2b2)+u2(c1+2c2).

Lemma 3.2 A nonzero element x = a1 + 2a2 + u(b1 + 2b2) + u2(c1 + 2c2) ∈ GR(R, k) is unit if and only if

a1 ̸= 0 in T.

Proof Since x4 = a41 for any nonzero element x in GR(R, k), the result is obtained as follows:

x is unit ⇐⇒ x4 = a41 ∈ T is unit
⇐⇒ a41 ̸= 0
⇐⇒ a1 ̸= 0.

2

By Lemma 3.2, the group of units GR∗(R, k) of GR(R, k) is given by

GR∗(R, k) = {a1 + 2a2 + u(b1 + 2b2) + u2(c1 + 2c2)|ai, bi, ci ∈ T, (i = 1, 2); a1 ̸= 0}.

Lemma 3.3 Let f(x) and g(x) be in R[x]. Then f(x) and g(x) are coprime in R[x] if and only if f̃(x) and

g̃(x) are coprime in R̃[x].

Proof Since f(x) and g(x) are coprime in R[x] , there are polynomials a0(x) and a1(x) in R[x] such that

f(x)a0(x) + g(x)a1(x) = 1,

which implies that

f̃(x)ã0(x) + g̃(x)ã1(x) = 1

with f̃(x), ã0(x), g̃(x), ã1(x) ∈ R̃[x] . Thus, f̃(x) and g̃(x) are coprime in R̃[x].

On the other hand, if f̃(x) and g̃(x) are coprime in R̃[x] , then there are polynomials ã0(x) and ã1(x)

in R[x] such that f̃(x)ã0(x) + g̃(x)ã1(x) = 1. Then there exist s(x), t(x) ∈ R[x] such that

f(x)a0(x) + g(x)a1(x) = 1 + 2s(x) + ut(x).

Let

α(x) = 1− 2s(x)

β(x) = 1− ut(x)α(x)

δ(x) = β2(x) + 2ut(x)α(x)

Γ(x) = α(x)β(x)δ(x).

Then,

Γ(x)f(x)a0(x) + Γ(x)g(x)a1(x) = 1.

Therefore, f(x) and g(x) are coprime in R[x] . 2
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Theorem 3.4 Let f(x) be a basic irreducible polynomial over R. Then the ideals of the Galois ring R[x]/⟨f(x)⟩
are {0}, ⟨1 + ⟨f(x)⟩⟩, ⟨2 + ⟨f(x)⟩⟩ , ⟨u+ ⟨f(x)⟩⟩, ⟨2u+ ⟨f(x)⟩⟩, ⟨u2 + ⟨f(x)⟩⟩ , ⟨2u2 + ⟨f(x)⟩⟩, ⟨2 + u+ ⟨f(x)⟩⟩ ,
⟨2 + u2 + ⟨f(x)⟩⟩, ⟨2u+ u2 + ⟨f(x)⟩⟩ ,⟨(2u, u2) + ⟨f(x)⟩⟩, ⟨(2, u2) + ⟨f(x)⟩⟩ , and ⟨(2, u) + ⟨f(x)⟩⟩ .

Proof Let I be a nonzero ideal of R[x]/⟨f(x)⟩ and g(x)+ ⟨f(x)⟩ ∈ I for some g(x) /∈ ⟨f(x)⟩ . Since f(x) is a

basic irreducible polynomial over R , f̃(x) is an irreducible polynomial over R̃ . Therefore, gcd(g̃, f̃) = 1 or f̃ .

Suppose that gcd(g̃, f̃) = 1. From Lemma 3.4, we have gcd(g, f) = 1 and hence there exist a0(x),a1(x) ∈ R[x]

such that

f(x)a0(x) + g(x)a1(x) = 1,

which implies that g(x)a1(x) = 1 mod f(x). Therefore, g(x) is an invertible element in I and so I = ⟨1 +

(f(x))⟩ . Now suppose that gcd(g̃, f̃) = f̃ . It follows that there exists h̃(x) ∈ R̃[x] such that g̃(x) = f̃(x)h̃(x),

or equivalently

g(x) = f(x)h(x) + 2h1(x) + uh2(x)

where h(x), h1(x), h2(x) ∈ R[x] and gcd(f̃ , h̃1) = 1 or gcd(f̃ , h̃2) = 1. This shows that g(x) + ⟨f(x)⟩ ∈
⟨(2, u)+ ⟨f(x)⟩⟩ . Since I ̸= ⟨1+ ⟨f(x)⟩⟩ , I ⊂ ⟨(2, u)+ ⟨f(x)⟩⟩ . The nonzero ideals contained in ⟨(2, u)+ ⟨f(x)⟩⟩
are ⟨2+⟨f(x)⟩⟩, ⟨u+⟨f(x)⟩⟩, ⟨2u+⟨f(x)⟩⟩, ⟨u2+⟨f(x)⟩⟩, ⟨2u2+⟨f(x)⟩⟩, ⟨2+u+⟨f(x)⟩⟩, ⟨2+u2+⟨f(x)⟩⟩, ⟨2u+
u2 + ⟨f(x)⟩⟩, ⟨(2u, u2) + ⟨f(x)⟩⟩, ⟨(2, u2) + ⟨f(x)⟩⟩ , and ⟨(2, u) + ⟨f(x)⟩⟩ itself. 2

The results about the ideals of a Galois extension of R will be useful in determining the number of cyclic

codes of length n over R in the next section.

4. Cyclic codes over Z4 + uZ4 + u2Z4

In this section, we assume again that n is an odd integer. A linear code of length n over R is an R -submodule

of Rn . A linear code C over R is called cyclic if (cn−1, c0, . . . , cn−2) ∈ C whenever (c0, c1, . . . , cn−1) ∈ C . Let

Rn denote the quotient ring R[x]/⟨xn − 1⟩ . Then we consider the usual correspondence between vectors and

polynomials

ϕ : Rn −→ Rn

c = (c0, c1, . . . , cn−1) −→ c(x) = c0 + c1x+ · · ·+ cn−1x
n−1.

It is easily verified that C is a cyclic code if and only if ϕ(C) is an ideal of Rn . Therefore, in order to

understand cyclic codes over R , we need to understand the structure of the ring Rn .

We know that if S is a finite chain ring and n and the characteristic of S are coprime, then Sn is

principal ideal ring [6]. However, since the ring R is not a finite chain ring, this is not necessarily true. Now

we show that Rn is, in fact, not a principal ideal ring.

Theorem 4.1 The ring Rn is not a principal ideal ring.

Proof In this proof, we use the group rings as defined in [1]. Let G = ⟨g : gn = 1⟩ be a cyclic group order of

n. For any group ring RG, the augmentation homomorphism is defined as

ξ : RG −→ R

1239
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ξ(r0 + r1g + · · ·+ rn−1g
n−1) = r0 + r1 + · · ·+ rn−1.

This map is a surjective ring homomorphism and it can also be defined as

ξ : Rn −→ R
ξ(r0 + r1x+ · · ·+ rn−1x

n−1) = r0 + r1 + · · ·+ rn−1.

Now we consider the ideal I = ⟨2, u⟩ of R . Let J = ξ−1(I). Since the inverse image under a ring

homomorphism of an ideal is an ideal, J is an ideal of Rn . Suppose that J is a principal ideal. Since I is

a homomorphic image of J , it must be a principal ideal. This is a contradiction. Hence, J is not a principal

ideal of Rn and therefore the ring Rn is not a principal ideal ring. 2

Now, making use of Chinese remainder theorem (CRT), we investigate the ideals of Rn . Since n is odd,

xn − 1 can be written as the product of pairwise coprime basic irreducible polynomials over R [11]. Let the

polynomials f1(x), f2(x), ..., fs(x) be pairwise coprime basic irreducible polynomials and assume that xn − 1 =

f1(x)f2(x) · · · fs(x). Let f̂i(x) denote the product of all fj(x) except fi(x). Then for i = 1, 2, . . . , s , f̂i(x)

and fi(x) are coprime and there exist ai(x), bi(x) ∈ R[x] such that

fi(x)ai(x) + f̂i(x)bi(x) = 1.

Let ei(x) = f̂i(x)bi(x) + ⟨xn − 1⟩ and Ri = ei(x)Rn. Then Rn has the direct sum decomposition

R[x]/⟨xn − 1⟩ = R1 +R2 + · · ·+Rs.

For all i = 1, 2, ..., s , the map

θi : R[x]/⟨fi(x)⟩ −→ Ri

r(x) + ⟨fi(x)⟩ −→ (r(x) + ⟨xn − 1⟩)ei(x)

is a ring homomorphism. Therefore, we obtain

R[x]/⟨xn − 1⟩ ∼= R[x]/⟨f1(x)⟩+R[x]/⟨f2(x)⟩+ · · ·+R[x]/⟨fs(x)⟩.

Theorem 4.2 Let xn − 1 = f1(x)f2(x) · · · fs(x) be the unique factorization of xn − 1 where for all i =

1, 2, . . . , s , the polynomials fi(x) are basic irreducible pairwise coprime over R . Then any ideal in R[x]/⟨xn−1⟩
is sum of the ideals of R[x]/⟨fi(x)⟩, i = 1, 2, . . . , s .

Proof The proof is obtained from the CRT. 2

Corollary 4.3 The number of cyclic codes over R is 13s, where s is the number of basic irreducible factors of

xn − 1 .

Proof From Theorem 4.2, each ideal of R[x]/⟨xn − 1⟩ is a sum of the ideals of R[x]/⟨fi(x)⟩, i = 1, 2, . . . , s .

By Theorem 3.4, R[x]/⟨fi(x)⟩ has 13 ideals for each i . The result follows from these two facts. 2

Now we determine the general form of the generators of cyclic codes over R . First, we consider a

homomorphism from Z4 + uZ4 + u2Z4 to Z4 + uZ4 . Making use of this homomorphism and some results on
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cyclic codes over Z4 + uZ4 , we determine the general form of the generators of cyclic codes over R . Define a

ring homomorphism as follows:

Ψ : Z4 + uZ4 + u2Z4 −→ Z4 + uZ4

a+ ub+ u2c −→ a+ ub mod u2.

Let C be a cyclic code in Rn . We extend Ψ to a homomorphism Φ : R[x]/⟨xn − 1⟩ −→ (Z4 +uZ4)[x]/⟨xn − 1⟩
by

Φ(a0 + a1x+ · · ·+ an−1x
n−1) = Ψ(a0) + Ψ(a1)x+ · · ·+Ψ(an−1)x

n−1

where ai ∈ R . We remember that the image of Φ is an ideal in (Z4 + uZ4)[x]/⟨xn − 1⟩ , which means that

Φ(C) is a cyclic code over Z4 + uZ4 . Since the generators of cyclic codes over Z4 + uZ4 are characterized in

[12], we can use these results. For some g(x) ∈ Z4[x] , we have

Φ(C) = ⟨g1(x) + 2a1(x) + ug(x), u(g2(x) + 2a2(x))⟩

where for i = 1, 2; gi(x), ai(x) are binary polynomials with ai(x)| gi(x)|xn − 1 mod 2 and gi(x) + 2ai(x) is a

generator of a cyclic code over Z4 . Furthermore, Ker(Φ) is a cyclic code over u2Z4[x] , and therefore

KerΦ = u2⟨g3(x) + 2a3(x)⟩

where g3(x) and a3(x) are binary polynomials. Hence, we obtain the following theorem:

Theorem 4.4 Let C be a cyclic code of length n over R . Then C = ⟨g1(x)+2a1(x)+ug(x)+u2h(x), u(g2(x)+

2a2(x)) + u2b(x), u2(g3(x) + 2a3(x))⟩ where ai(x)| gi(x)|xn − 1 mod 2 , and gi(x) + 2ai(x) is a generator of a

cyclic code over Z4 for i = 1, 2, 3 .

Let us define fi(x) ∈ Z4[x] as fi(x) = gi(x) + 2ai(x) for i = 1, 2, 3. A generator of C can be written as

C = ⟨f1(x) + ug(x) + u2h(x), uf2(x) + u2b(x), u2f3(x)⟩.

Also, since u2(f1(x) + ug(x) + u2h(x)) = u2f1(x) ∈ C and Φ(u2f1(x)) = 0, we have u2f1(x) ∈ Ker(Φ),

i.e. f3(x)|f1(x). Similarly we have u2f2(x) ∈ Ker(Φ). Also making use of homomorphism in [12], we can

obtain f2(x)|f1(x) by the above method. This implies that f3(x)|f2(x)|f1(x).

Lemma 4.5 Let α(x) and β(x) be polynomials over R . If β(x) is regular, then there exist polynomials s(x)

and t(x) such that

α(x) = β(x)s(x) + t(x) where deg t(x) < deg β(x).

Proof By [9], since β(x) is regular, there exist monic f∗(x) and unit q(x) in R[x] such that β(x) =

f∗(x)q(x). Since f∗(x) is monic, using the division algorithm we have α(x) = f∗(x)ś(x) + t(x) where

deg t(x) < deg f∗(x). Multiplying both sides by q(x), we get q(x)α(x) = q(x)f∗(x)ś(x) + q(x)t(x), which

implies α(x) = β(x)s(x) + t(x) where s(x) = (q(x))−1ś(x).
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Since f∗(x) is monic, we have deg(β(x)) = deg(q(x)) + deg(f∗(x)) ≥ deg(f∗(x)). We already know

deg(t(x)) < deg(f∗(x)). Hence, deg(t(x)) < deg(β(x)). 2

Theorem 4.6 Let C be a cyclic code of length n over R . If C = ⟨f1(x) + ug(x) + u2h(x), uf2(x) +

u2b(x), u2f3(x)⟩ , and f3(x) = f1(x), then C = ⟨f1(x)+ug(x)+u2h(x)⟩ . Furthermore, if f3(x) is regular, then

f1(x) + ug(x) + u2h(x)|(xn − 1) .

Proof Suppose f3(x) = f1(x); then the equality f3(x) = f2(x) = f1(x) follows from f3(x)|f2(x)|f1(x). Since
Φ(C) = ⟨f1(x) + ug(x), uf2(x)⟩ is a cyclic code over Z4 + uZ4 , and u(f1(x) + ug(x)) = uf1(x) = uf2(x), we

have Φ(C) = ⟨f1(x) + ug(x)⟩ . Making use of f3(x) = f1(x), we have

u2(f1(x) + ug(x) + u2h(x)) = u2f1(x) = u2f3(x) ∈ ⟨f1(x) + ug(x) + u2h(x)⟩.

Thus, C = ⟨f1(x) + ug(x) + u2h(x)⟩ .

Now, assuming that f3(x) = f1(x) is regular, then so is f1(x)+ug(x)+u2h(x). By Lemma 4.5, we have

xn − 1 = (f1(x) + ug(x) + u2h(x))s(x) + t(x)

where t(x) = 0 or deg t(x) < deg(f1(x) + ug(x) + u2h(x)). It follows that t(x) = (xn − 1)− (f1(x) + ug(x) +

u2h(x))s(x) = −s(x)(f1(x)+ug(x)+u2h(x)) ∈ C . This contradicts that f1(x)+ug(x)+u2h(x) has minimum

degree in C , unless t(x) = 0. Thus, t(x) = 0 and f1(x) + ug(x) + u2h(x)|(xn − 1). 2

Next, we determine a minimal spanning set and the size of a cyclic code over R . First we need the following

definition.

Definition 4.7 [7] Let R be a local Frobenius ring with unique maximal ideal M and let r1, . . . , rk be elements in

Rn . Then r1, . . . , rk are modular independent if and only if
∑

ciri = 0 implies that ci ∈ M for all i = 1, . . . , k .

Theorem 4.8 Let n be an odd integer and C be a cyclic code of length n over R .

1. If C = ⟨f(x)⟩ is a cyclic code of length n over R where f(x) = f1(x)+ug(x)+u2h(x) with deg f(x) = s

and f1(x) is a regular polynomial over R[x] , then C is free with rank = n− s and has basis

B = {f(x), xf(x), . . . , xn−s−1f(x)}.

2. If C = ⟨f1(x) + ug(x) + u2h(x), uf2(x) + u2b(x), u2f3(x)⟩ is a cyclic code over R where f1(x) , f2(x) ,

and f3(x) are monic polynomials with deg f1(x) = s1,deg f2(x) = s2 and deg f3(x) = s3 , then C has

rank n− s3 and a minimal spanning set

T =

{
f1(x) + ug(x) + u2h(x), x(f1(x) + ug(x) + u2h(x)), . . . , xn−s1−1(f1(x) + ug(x) + u2h(x)),

uf2(x)̇ + u2b(x), x(uf2(x)̇ + u2b(x)), . . . , xs1−s2−1(uf2(x)̇ + u2b(x)),

u2f3(x), x(u
2f3(x)), . . . , x

s2−s3−1(u2f3(x))

}
.

Proof (1) Let C = ⟨f(x)⟩ be a cyclic code of length n over R where f(x) = f1(x) + ug(x) + u2h(x) and

f1(x) be a regular polynomial over R[x] . From Theorem 4.6, we can say that f(x)|xn − 1. Thus, there exists

a polynomial h(x) ∈ R[x] with deg h(x) = n − s such that xn − 1 = f(x)h(x). Let c(x) be an element of C
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ÖZEN et al./Turk J Math

and then c(x) can be expressed as c(x) = f(x)k(x) for some polynomial k(x). If k(x) has degree n − s − 1

then the proof is done. Otherwise, since f1(x) is regular, f1(x) + ug(x) + u2h(x) is so. Hence, by Lemma 4.5

there exist polynomials s(x) and t(x) such that

k(x) = h(x)s(x) + t(x) where deg t(x) ≤ n− s− 1.

Thus, c(x) = f(x)k(x) = f(x)t(x), so B spans C . Now we show that B is linearly independent. Let

a(x) = a0 + a1x + · · · + an−s−1x
n−s−1 ∈ R[x] be a polynomial such that a(x)f(x) = 0. Since f(x) is regular

then there exist polynomial unit q(x) and monic f∗(x) = f∗
0 +f∗

1x+ · · ·+f∗
n−s−1x

n−s−1 in R[x] where f∗
n−s−1

is unit such that f(x) = f∗(x)q(x). Thus, we have a(x)f∗(x)q(x) = 0. By comparing coefficients we have

aif
∗(x)q(x) = 0 for all i = 1, 2, . . . , n − s − 1. Since q(x) is a unit we get aif

∗(x) = 0. Again by comparing

coefficients we can say that the coefficient of highest degree of x is aif
∗
n−s−1 = 0 and since f∗

n−s−1 is unit we

have ai = 0 for all i = 1, 2, . . . , n− s− 1. Thus, B is basis for C .

(2) Let C = ⟨f1(x)+ug(x)+u2h(x), uf2(x)+u2b(x), u2f3(x)⟩ be a cyclic code over R with deg f1(x) =

s1, deg f2(x) = s2 , and deg f3(x) = s3. Since f3(x)|f2(x)|f1(x) and fi(x)s are monic, we have s1 > s2 > s3 .

Next we show that T is a minimal spanning set of C . For this, we need to show that T spans

X = {f1(x) + ug(x) + u2h(x), x(f1(x) + ug(x) + u2h(x)), . . . , xn−s1−1(f1(x) + ug(x) + u2h(x)), uf2(x) +

u2b(x), x(uf2(x) + u2b(x)), . . . , xn−s2−1(uf2(x)) + u2b(x)), u2f3(x), x(u
2f3(x)), . . . , x

n−s3−1(u2f3(x))} and T

is modular independent. We first show that xs2−s3(u2f3(x)) ∈ span(T ). Assume that the leading coefficient of

xs2−s3f3(x) is a0 and that of f2(x) + ub(x) is b0 . Then there exist c0 ∈ Z4 such that a0 = c0b0. Since f2(x)

is a monic polynomial, f2(x) + ub(x) is a regular polynomial too. By division algorithm it can be written as

u2xs2−s3f3(x) =u2c0(f2(x) + ub(x)) + u2t(x)

where u2t(x) = u2f3(x)α(x) is a polynomial in C of degree less than s2 . Since any polynomial in C must have

degree greater than or equal to deg f3(x) = s3 , we have s3 ≤ deg t(x) < s2 . Then

u2t(x) = α0(u
2f3(x)) + α1x(u

2f3(x)) + · · ·+ αs2−s3−1x
s2−s3−1(u2f3(x)).

Hence, xs2−s3(u2f3(x)) ∈ span(T ). Similarly, it can be shown that xs2−s3+1(u2f3(x)), xs2−s3+2(u2f3(x)), . . . ,

xn−s3−1(u2f3(x)) ∈ span(T ). Now we need to show that xs1−s2(uf2(x) + u2b(x)) ∈ span(T ). Assume that the

leading coefficient of xs1−s2(f2(x) + ub(x)) is a1 and that of f1(x) + ug(x) + u2h(x) is b1 . Then there exists a

c1 ∈ Z4 such that a1 = b1c1. Since f1(x) + ug(x) + u2h(x) is a regular polynomial by Lemma 4.5, we have

xs1−s2(uf2(x) + u2b(x) = c1u(f1(x) + ug(x) + u2h(x)) + ur(x)

where deg ur(x) < s1 . Since ur(x) ∈ C it can be expressed as

ur(x) = A(x)(uf2(x) + u2b(x)) +B(x)(u2f3(x))

where degB(x) = s2 − s3 − 1 and degA(x) = k . Since deg ur(x) < s1 , k must be less than s1 − s2 . It

follows that xs1−s2(uf2(x) + u2b(x)) ∈ span(T ). In the same way, it can be shown that xs1−s2+1(uf2(x) +

u2b(x)), . . . , xn−s2−1(uf2(x) + u2b(x)) ∈ span(T ).
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Now we show that T is modular independent. Let f1(x) + ug(x) + u2h(x) = g0 + g1x + · · · + gs1x
s1 ,

f2(x)+ub(x) = b0+b1x+· · ·+bs2x
s2 , and f3(x) = f0+f1x+· · ·+fs3x

s3 be monic polynomials, i.e. gs1 , bs2 , and

fs3 are unit. Suppose that there exist three polynomials k(x) =
n−s1−1∑

i=0

kix
i ∈ R[x], l(x) =

s1−s2−1∑
i=0

lix
i ∈ R[x] ,

and m(x) =
s2−s3−1∑

i=0

mix
i ∈ Z4[x] such that

k(x)(f1(x) + ug(x) + u2h(x)) + l(x)(uf2(x) + u2b(x)) +m(x)(u2f3(x)) = 0. (4.1)

If we compare the coefficients of xn−1 on both sides of 4.1 as in (1), then we get kn−s1−1gs1 = 0. Since

gs1 is unit, we have kn−s1−1 = 0. If we compare the coefficients of xn−2 on both sides of 4.1, then we get

kn−s1−2gs1 + kn−s1−1gs1−1 = 0. Since gs1 is unit and kn−s1−1 = 0, we have kn−s1−2 = 0. Continuing in the

same way as above, we get ki = 0 for i = 0, 1, ..., n − s1 − 1. Also, since u is a zero divisor, the coefficients

of x containing any li for i = 0, 1, . . . , s1 − s2 − 1 are zero only if li ∈< 2, u > . By the same reason, for

j = 0, 1, . . . , s2 − s3 − 1, mj ∈< 2, u > . Therefore, T is modular independent. 2

We end this section with an observation about the minimum Hamming weight for a cyclic code of length

n over R .

Theorem 4.9 Let C = ⟨f1(x)+ug(x)+u2h(x), uf2(x)+u2b(x), u2f3(x)⟩ be a cyclic code of length n over R .

Then wH(C) = wH(KerΦ) , where wH denotes the Hamming weight.

Proof Suppose that r(x) = r0(x)+u r1(x)+u2 r2(x) ∈ C where r0(x), r1(x), r2(x) ∈ Z4[x] . Since u2r(x) =

u2r0(x) ∈ C , wH(u2r(x)) ≤ wH(r(x)), i.e. wH(u2C) ≤ wH(C). On the other hand, since u2C is a subcode of

C , we have wH(C) ≤ wH(u2C). Hence, wH(C) = wH(u2C). 2

5. Z4 -images of codes over R

We will be interested in Z4 -images of codes over R . To this end, we define the following Gray-like map from

R to Z3
4 :

φ : Z4 + uZ4 + u2Z4 −→ Z3
4

φ(a+ ub+ u2c) = (a, a+ b+ c, b).

This map is then extended to a map from Rn to Z3n
4 . We observe that the Z4 -image of a cyclic code over R

under φ is a quasi-cyclic (QC) code.

Theorem 5.1 Let C be a cyclic code of length n over R . Then φ(C) is a 3-QC code of length 3n over Z4 .

Proof Let C be a cyclic code of length n over R and let σ denote the cyclic shift operator. Let

v⃗ = (v1, v2, . . . , vn) ∈ C , where vi = ai + ubi + u2ci . Then σ(v⃗) = (vn, v1, . . . , vn−1) ∈ C , and φ(σ(v⃗)) =

(an, an + bn + cn, bn, a1, a1 + b1 + c1, b1, . . . , an−1, an−1 + bn−1 + cn−1, bn−1).

On the other hand, we have φ(v⃗) = (a1, a1 + b1 + c1, b1, . . . , an, an + bn + cn, bn) and σ3(φ(v⃗)) =

(an, an + bn + cn, bn, a1, a1 + bn + c1, b1, . . . , an−1, an−1 + bn−1 + cn−1, bn−1)

Therefore, σ3(φ(v⃗)) = φ(σ(v⃗)) ∈ φ(C). This means that φ(C) is a 3-QC code. 2
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6. Computational results

We conducted a computer search for cyclic codes of odd length n over R in the special case given in Theorem

4.6. This means that our generators are of the form ⟨f(x) + ug(x) + u2h(x)⟩ where f, g, h are polynomials

over Z4 and f is a generator of a cyclic code of length n over Z4 . We also considered Z4 images of these

cyclic codes over R under the map described in the previous section. Our search yielded a number of new

linear codes over Z4 . The tables below contain a subset of those codes for n = 7. The length of the Z4 -images

are therefore 21. Each generator is determined by three polynomials over Z4 . We list the coefficients of the

polynomials in descending order, so, for example, the polynomial 2x4 + 3x+ 1 is represented by 20031. When

there is a long string of repetition of a digit d , we abbreviate it in the form dn . For example, 34 represents the

polynomial 3x3+3x2+3x+3. We considered both the Lee weight and the Euclidean weight for the Z4 -images

of these codes, which are the two most important weights for codes over Z4 . The Lee weight wL(x) of x ∈ Z4

is min{|x|, |4 − x|} . Hence, the Lee weights of 0,1,2,3 are respectively 0,1,2,1. The Euclidean weight wE(x)

of x ∈ Z4 is min{x2, (4 − x)2} . Hence, the Euclidean weights of 0,1,2,3 are respectively 0,1,4,1. The Lee (or

Euclidean) weight of a vector in Zn
4 is then defined as the rational sum of the Lee (Euclidean) weight of its

coordinates. Table 1 has codes with Euclidean weights and Table 2 has Lee weights.

There is a database of Z4 linear codes introduced in [4] and available online (Z4Codes.info). The new

codes obtained in this work have been added to this database.

Table 1. Some cyclic codes of length 7 with Z4 -images and Euclidean weights.

f(x) g(x) h(x) Parameters of Z4 image
1113313 2000222 110300 [21, 42215, 8]
2 3313313 313312 [21, 41220, 4]
20222 2002 233202 [21, 4329, 8]
163 3113111 3113132 [21, 43218, 4]
2 23213 2303332 [21, 44217, 3]
163 1123003 2101301 [21, 45216, 4]
11323 2200202 2223112 [21, 46212, 7]
11323 220 2031110 [21, 46214, 6]
11323 163 1122132 [21, 47214, 4]
12333 1313113 1123320 [21, 48212, 4]
37 120213 3011120 [21, 4926, 3]
12313 233301 202121 [21, 4928, 6]
1211 3311113 3232310 [21, 49212, 4]
11303 101332 2001210 [21, 41029, 4]
11323 2312102 3212330 [21, 410211, 3]
3231 22020 3313312 [21, 41121, 6]
1211 1303201 3020223 [21, 411210, 4]
11 200 23002 [21, 41229, 4]
10113 110023 1033223 [21, 41322, 4]
10113 2210110 2031121 [21, 41325, 3]
3231 102133 3133202 [21, 41421, 4]
1211 3322310 3332300 [21, 41427, 2]
31 3103003 203120 [21, 41525, 4]
11 3100121 1103323 [21, 41526, 3]
31 3312122 321201 [21, 41623, 3]
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Table 2. Some cyclic codes of length 7 with Z4 -images and Lee weights.

f(x) g(x) h(x) Parameters of Z4 image
1113313 2000222 110300 [21, 42215, 4]
22 3131333 221212 [21, 42218, 2]
22202 1130120 2120111 [21, 43212, 4]
2 1302030 3220121 [21, 44214, 4]
163 3223011 2202002 [21, 45215, 4]
11323 202 2031110 [21, 46214, 4]
163 230110 3212323 [21, 46215, 2]
1113133 3210231 101213 [21, 4826, 4]
163 3011032 21322 [21, 48213, 2]
11303 3132322 3122031 [21, 4929, 4]
3231 22020 3313312 [21, 41121, 6]
1211 1021310 1223110 [21, 41129, 4]
1321 2133 301302 [21, 41226, 4]
10113 110023 1033223 [21, 41322, 4]
3121 3122301 1101123 [21, 41420, 4]
31 1320101 3212112 [21, 41523, 4]
11 2120113 3200330 [21, 41526, 2]
31 3211101 1330033 [21, 41620, 4]

7. Conclusion

In this paper, Galois extensions of the ring R = Z4 + uZ4 + u2Z4 and the ideal structure of these extensions

are investigated. These results are used in the study of cyclic codes over R . The general form of the generators

of a cyclic code is determined and minimal spanning sets of such codes are found. Finally, we employed these

results to conduct a computer search and obtained many cyclic codes over R whose Z4 images yielded new

linear codes over Z4 .
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