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Abstract: In this paper we establish stability theorems for nonlinear fractional orders systems (FDEs) with Caputo

and Riemann–Liouville derivatives. In particular, we derive conditions for F -stability of nonlinear FDEs. By numerical

simulations, we verify numerically our theoretical results on a test example.
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1. Introduction

Fractional-order models are found to be more adequate than integer-order models in some real-world problems.

In fact, fractional differential equations appear naturally in a number of fields such as physics, polymer rheology,

regular variation in thermodynamics, biophysics, blood flow phenomena, aerodynamics, electro-dynamics of

complex medium, viscoelasticity, capacitor theory, electrical circuits, electron-analytical chemistry, biology,

control theory, and fitting of experimental data. For examples and details, see [1, 8, 13] and the references

therein.

Stability analysis is a central task in the study of fractional differential systems. The stability analysis of

FDEs is more complex than that of classical differential equations, since fractional derivatives are nonlocal and

have weakly singular kernels. Most of the known results on stability analysis of fractional differential systems

concentrate on the stability of linear fractional differential systems. In [15], Matignon has given a well-known

stability criterion for a linear fractional autonomous differential system with constant coefficient matrix A . The

criterion is that the stability is guaranteed if and only if the roots of the eigenfunction of the system lie outside

the closed angular sector | arg(λ(A))| < π
2α , which generalized the result for the integer case α = 1. Later,

Matignon’s stability criterion was developed by several authors. Deng et al. [7] generalized the system to a

linear fractional differential system with multiorders and multiple delays, in which the characteristic polynomial

is introduced by the Laplace transform method. In [18], a linear matrix inequality (LMI) was used in the

stability analysis of the linear fractional differential system.

Compared with the stability criteria for nonlinear integer-order differential systems, the developments of

nonlinear fractional differential systems are unsatisfactory. Lyapunov’s second method is an effective tool to

analyze the stability of nonlinear integer-order differential systems without solving state equations. Recently,

the nonlinear fractional differential systems have been discussed in several refs. [3, 4, 19, 20] and some results

have been derived by using Lyapunov’s method.
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The structural stability of a system with Riemann–Liouville derivative has been presented in [9]. In [5]

authors investigated the system of nonautonomous FDEs involving Caputo derivative and derived the result on

continuous dependence of solution on initial conditions. In [14], the Mittag–Leffler stability and the fractional

Lyapunov of the second method were proposed. Deng [6] derived a sufficient stability condition of nonlinear

FDEs. In this paper we introduce some developments of the stability of nonlinear fractional differential systems

in detail.

The paper is organized as follows. In section 2, we present some basic materials on fractional calculus

and prove a theorem to investigate the asymptotic expansions of the Mittag-Leffler function. Some stability

results of the system D
C

α

0,t
x(t) = Ax(t)+f(t, x(t)) are presented in section 3. In section 4, some stability results

of fractional differential systems D
RL

α

0,t
x(t) = Ax(t) + f(t, x(t)) are derived and F -asymptotic stability of the

system is presented. In section 5, we present a numerical example, for which we compute different orbits of the

corresponding system by means of numerical simulations, to reveal validity of our analytical results. In section

6, we conclude the paper.

2. Preliminaries

Two types of fractional derivatives of Riemann–Liouville and Caputo derivatives have been often used in

fractional differential systems. We briefly recall these two definitions.

Definition 1 The Riemann–Liouville integral Jα
t0,t with fractional order α ∈ R+ of function x(t) is defined as

Jα
t0,tx(t) := D−α

t0,tx(t) :=
1

Γ(α)

∫ t

t0

(t− τ)α−1x(τ)dτ,

where Γ(.) is Euler’s gamma function, for α = 0 we set J0
t0,t := Id , the identity operator.

Definition 2 The Riemann–Liouville derivative with fractional order α ∈ R+ of function x(t) is defined by

D
RL

α

t0,t
x(t) :=

dm

dtm
J
(m−α)
t0,t x(t),

where m− 1 < α ≤ m ∈ Z+ .

The Laplace transform of the Riemann–Liouville fractional derivative D
RL

α

0,t
x(t) for 0 < α ≤ 1 is

L{ D
RL

α

0,t
x(t)} = sαX(s)− (Dα−1

0 x(t))t=0

Here X(s) is the Laplace transform of x(t).

Definition 3 The Caputo derivative with fractional order α ∈ R+ of function x(t) is defined by

D
C

α

t0,t
x(t) := J

(m−α)
t0,t

dm

dtm
x(t),

where m− 1 < α ≤ m ∈ Z+ .
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The Laplace transform of the Caputo fractional derivative D
C

α

0,t
x(t) is

L{ D
C

α

0,t
x(t)} = sαX(s)−

m∑
k=1

sα−kx(k−1)(0), (m− 1 < α ≤ m).

If 0 < α ≤ 1 we have

L{ D
C

α

0,t
x(t)} = sαX(s)− sα−1x(0).

Definition 4 [16] The Mittag-Leffler function is defined by

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
,

where α > 0, z ∈ C . The two-parameter Mittag-Leffler function is defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
,

where α, β > 0, z ∈ C . Clearly Eα(z) = Eα,1(z) .

For j ∈ N0 , λ ∈ R , and α, β > 0 the Laplace transform of the function

f(t) = tjα+β−1E
(j)
α,β(±λtα) can be easily found to be

L{f(t)} =
j!sα−β

(sα ∓ λ)j+1
, (|s| > |λ| 1

α , Re(s) > 0)

If β = α and j = 0 we have

L{tα−1Eα,α(±λtα)} =
1

sα ∓ λ
(|s| > |λ| 1

α , Re(s) > 0)

and if β = 1, j = 0 we have

L{Eα(±λtα)} =
sα−1

sα ∓ λ
(|s| > |λ| 1

α , Re(s) > 0).

The Mittag-Leffler function has the following asymptotic expression.

Lemma 1 [16] If 0 < α < 2 and β is an arbitrary complex number, then for an arbitrary integer p ≥ 1 the

following expansions hold:

Eα,β(z) =
1

α
z

(1−β)
α exp(z

1
α )−

p∑
k=1

1

Γ(β − αk)

1

zk
+O

( 1

|z|p+1

)
,

with |z| → ∞, | arg(z)| ≤ απ
2 , and

Eα,β(z) = −
p∑

k=1

1

Γ(β − αk)

1

zk
+O

( 1

|z|p+1

)
,

with |z| → ∞, | arg(z)| > απ
2 .
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Definition 5 Consider the following fractional differential system:

D
C

α

t0,t
x(t) = f(t, x(t)), (1)

with initial condition x(k)(t)|t=t0 = xk = (xk1, xk2, ..., xkn)
T ∈ Rn (k = 0, 1, ...,m − 1) where x(t) =

(x1(t), x2(t), ..., xn(t))
T ∈ Rn , m− 1 < α ≤ m ∈ Z+ , and f : [t0,∞)× Rn → Rn .

The system (1) is said to be stable if, for any initial values xk = (xk1, xk2, ..., xkn)
T ∈ Rn (k = 0, 1, ...,m− 1) ,

there exists ϵ > 0 such that any solution x(t) of (1) satisfies ∥x(t)∥ < ϵ for all t > t0 . The system (1) is said

to be asymptotically stable if ∥x(t)∥ → 0 as t→ ∞ .

Next we consider the following general type of fractional differential equations involving Riemann–

Liouville derivative:
D

RL

α

t0,t
x(t) = f(t, x(t)), (2)

with suitable initial values D
RL

α−k

t0,t
x(t)|t=t0 = xk = (xk1, xk2, ..., xkn)

T ∈ Rn (k = 1, ...,m), where x(t) =

(x1(t), x2(t), ..., xn(t))
T ∈ Rn , m− 1 < α ≤ m ∈ Z+ , and f : [t0,∞)× Rn → Rn .

Definition 6 The system (2) is said to be stable if, for any initial values

xk = (xk1, xk2, ..., xkn)
T ∈ Rn (k = 1, ...,m) , there exists ϵ > 0 such that any solution x(t) of (2) satisfies

∥x(t)∥ < ϵ for all t > t0 . The system (2) is said to be asymptotically stable if ∥x(t)∥ → 0 as t→ ∞ .

Recently Qian et al. [17] studied the case of the following linear system of FDEs with Riemann–Liouville

derivative:
D

RL

α

t0,t
x(t) = Ax(t), (0 < α < 1), (3)

where x(t) = (x1(t), x2(t), ..., xn(t))
T ∈ Rn , and A ∈ Rn×n . We recall the following theorem from [17].

Theorem 1 The system (3) with initial value D
RL

α−1

t0,t
x(t)|t=t0 , where 0 < α < 1 and t0 = 0 , is:

i) asymptotically stable if all the nonzero eigenvalues of A satisfy | arg(spec(A))| > απ
2 , or A has k-multiple

zero eigenvalues corresponding to a Jordan block

diag(J1, J2, ..., Ji) , where Jl is a Jordan canonical form with order nl×nl ,
∑i

l=1 nl = k , and nlα < 1 for each

1 ≤ l ≤ i .

ii) stable if all the nonzero eigenvalues of A satisfy | arg(spec(A))| ≥ απ
2 and the critical eigenvalues satisfying

| arg(spec(A))| = απ
2 have the same algebraic and geometric multiplicities, or A has k -multiple zero eigenvalues

corresponding to a Jordan block matrix diag(J1, J2, ..., Ji) , where Jl is a Jordan canonical form with order

nl × nl,
∑i

l=1 nl = k , and nlα ≤ 1 for each 1 ≤ l ≤ i .

We present the following theorem needed for the stability of the nonlinear system to be discussed in the

next section.

Theorem 2 Suppose 0 < α < 2 and An×n is a matrix with | arg(spec(A))| > απ
2 . Then there exists an

invertible matrix T, an n× n matrix M , and a real constant n0 > 0 such that ∥T−1Eα,α(At
α)T − M

t2α ∥ ≤ n0

t3α .

Moreover, there exists a constant m0 > 0 such that ∥tα−1Eα,α(At
α)∥ ≤ m0

tα+1 for all t > 0 .
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Proof.

First we need the derivatives of the Mittag-Leffler function

Eα,β(z) =

∞∑
k=0

zk

Γ(β + αk)
, α, β > 0, z ∈ C.

Hence, we use the integral representations of the Mittag-Leffler function in the form of an improper integral

along the Hankel loop, which have been treated with arbitrary β by Erdelyi et al. [12] and Dzherbashyan

[10, 11] as

Eα,β(z) =
1

2πiα

∫
γ(ϵ;δ)

exp(ζ
1
α )ζ

1−β
α

ζ − z
dζ, z ∈ G(−)(ϵ; δ) (4)

and

Eα,β(z) =
1

α
z

1−β
α exp(z

1
α ) +

1

2πiα

∫
γ(ϵ;δ)

exp(ζ
1
α )ζ

1−β
α

ζ − z
dζ, z ∈ G(+)(ϵ; δ) (5)

under the conditions

0 < α < 2,
πα

2
< δ ≤ min{π, πα}. (6)

The contour γ(ϵ; δ) is depicted in Figure 1, which consists of two rays S−δ and Sδ , arg(ζ) = −δ, |ζ| ≥ ϵ and

arg(ζ) = δ, |ζ| ≥ ϵ , respectively, a circular Cδ(0; ϵ), |ζ| = ϵ,−δ ≤ arg(ζ) ≤ δ , the region G−(ϵ; δ) on the left side

and the region G+(ϵ; δ), on the right side. Using the integral representations in (4) and (5), it is not difficult

to get asymptotic expansions for the Mittag-Leffler function in the complex plane. Let 0 < α < 2, and δ be

chosen to satisfy the condition (6). Then for any constants p ∈ N and β = α we have

∧

>

⌝

A
A
A

A
A

�����*

�
�
�
�
�
⌝

⌜

ϵ
δ

Cδ(0; ϵ)

Sδ

S−δ

G(+)(ϵ; δ)G(−)(ϵ; δ)

Figure 1. The contour of γ(ϵ; δ).

Eα,α(z) = −
p∑

k=2

1

Γ(α− αk)

1

zk
+ Ip(z), z ∈ G(−)(1; δ) (7)
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in which

Ip(z) =
1

2πiαzp

∫
γ(1;δ)

exp(ζ
1
α )ζ

1−α
α +p

ζ − z
dζ.

To proceed the proof first suppose that 1 ≤ α < 2 and arg(z) > απ
2 ; we choose δ such that απ

2 < δ ≤ π and

then a simple calculation shows that for all z ∈ G(−)(1; δ), |z| ≥ | sec δ| ,

dist{z, γ(1; δ)} = |z| sin(θ − δ),

where θ = | arg(z)| . Now by setting z = λtα and ϕ(ζ) = exp(ζ
1
α )ζ

1−α
α +p , and by using

|∂Ip(z)
∂λ

| = tα|∂Ip(z)
∂z

|.

We get

|∂Ip(λt
α)

∂λ
| ≤ ptα

πα|λ|p+2
t(p+2)α

(I1 + I2),

in which

I1 =

∫
γ(1;δ)

|ϕ(ζ)|
sin(θ − δ)

d|ζ|,

and

I2 =

∫
γ(1;δ)

|ϕ(ζ)|
sin2(θ − δ)

d|ζ|.

We now take ζ = reiδ , 1 ≤ r < ∞ on the ray Sδ and then get | exp(ζ 1
α )| = exp(|ζ|

1
α cos( δ

α )). We have

π
2 <

δ
α ≤ π

α < π and then cos( δ
α ) < 0. Setting cos( δ

α ) = −γ , where γ is a positive constant, leads to

I1|Sδ
=

1

sin(θ − δ)

∫ +∞

1

exp(−γr 1
α )r

1−α
α +pdr,

and

I2|Sδ
=

1

sin2(θ − δ)

∫ +∞

1

exp(−γr 1
α )r

1−α
α +pdr,

in which the right-hand sides of both inequalities are finite. A similar argument on the ray S−δ shows that

these integrals are finite. We notice that on the circular Cδ(0; 1) (that is a compact set) integrals are finite.

Thus there exists a constant c such that

|∂Ip(λt
α)

∂λ
| ≤ ctα

|λ|p+2
tα(p+2)

.

Thus

∂Ip(λt
α)

∂λ
= O

( 1

tα(p+1)|λ|p+2

)
,

and by induction we get

1

j!

( ∂

∂λ

)(j)
Ip(λt

α) = O
( 1

tα(p+1)|λ|p+j+1

)
. (8)
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Moreover, by using (7) and (8) and by choosing p = 2 we get

1

j!

( ∂

∂λ

)(j)
Eα,α(λt

α) =
1

j!

( ∂

∂λ

)(j){
− 1

Γ(−α)
1

t2αλ2
+ I2(λt

α)
}

(9)

=
1

j!

( ∂

∂λ

)(j){
− 1

Γ(−α)
1

t2αλ2

}
+

1

j!

( ∂

∂λ

)(j){
I2(λt

α)
}

= − (j + 1)(−1)j

Γ(−α)λj+2t2α
+O

( 1

t3α|λ|j+3

)
.

Now suppose that 0 < α < 1 and arg(z) > απ
2 , in this case by choosing δ such that απ

2 < δ <

min{arg(z), π2 ,
3π
2 α} ; then a simple calculation shows that for some z ∈ G(−)(1; δ),

dist{z, γ(1; δ)} = |z| sin(θ − δ),

where θ = | arg(z)| , that by a similar argument we get equation (9), and for other some z ∈ G(−)(1; δ), with

|z| sufficient large we have

dist{z, γ(1; δ)} ≥ |z| − 1,

then

|∂Ip(λt
α)

∂λ
| ≤ ptα

πα|λ|p+2
t(p+2)α

(I3 + I4),

in which

I3 = (
1

1− 1
|z|

)

∫
γ(1;δ)

|ϕ(ζ)|d|ζ|,

and

I4 =
1

(1− 1
|z| )

2

∫
γ(1;δ)

|ϕ(ζ)|d|ζ|.

A similar argument on the ray Sδ and S−δ and circular Cδ(0; 1) shows that these integrals are finite and we

get equation (9). Next, suppose that the matrix A is similar to a Jordan canonical form, i.e. there exists an

invertible matrix T such that J = T−1AT = diag(J1, · · · , Jr), where Ji, 1 ≤ i ≤ r ,
∑r

i=1 ni = n , and has the

following form 

λi 1 0 · · · 0

0 λi 1 · · ·
...

0 0 λi
. . . 0

...
...

. . .
. . . 1

0 · · · 0 λi


ni×ni

.

Obviously,

Eα,α(At
α) = Tdiag[Eα,α(J1t

α), Eα,α(J2t
α), · · · , Eα,α(Jrt

α)]T−1,

and

Eα,α(Jit
α) =

∞∑
k=0

(Jit
α)k

Γ(αk + α)
=

∞∑
k=0

(tα)k

Γ(αk + α)
Jk
i =
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

Eα,α(λit
α) 1

1!

(
∂

∂λi

)
Eα,α(λit

α) · · · 1
(ni−1)!

(
∂

∂λi

)(ni−1)

Eα,α(λit
α)

0 Eα,α(λit
α)

. . . · · ·
...

0 0 Eα,α(λit
α)

. . .
...

...
...

. . . 1
1!

(
∂

∂λi

)
Eα,α(λit

α)

0 · · · 0 Eα,α(λit
α)


.

We set M = diag[M1, . . . ,Mr]n×n in which

Mi =



−1
Γ(−α)λ2

i

2
Γ(−α)λ3

i
· · · −ni(−1)ni−1

Γ(−α)λ
2+(ni−1)

i

0 −1
Γ(−α)λ2

i

. . .
...

0 0
. . .

. . .
...

...
. . . 2

Γ(−α)λ3
i

0 · · · 0 −1
Γ(−α)λ2

i


ni×ni

.

Thus by using (9) we get

∥Eα,α(Jit
α)− Mi

t2α
∥ =

∥∥∥


O( 1
t3α|λi|3 ) O( 1

t3α|λi|4 ) · · · O( 1
t3α|λi|3+(ni−1) )

0 O( 1
t3α|λi|3 )

. . .
...

0 0
. . .

. . .
...

...
. . . O( 1

t3α|λi|4 )

0 · · · 0 O( 1
t3α|λi|3 )


ni×ni

∥∥∥,

Now for each i = 1, . . . , r , there exist k0, k1, . . . , kni−1 ≥ 0 such that

O(
1

t3α|λi|3
) ≤ k0

t3α
, . . . , O(

1

t3α|λi|3+(ni−1)
) ≤ kni−1

t3α
,

then

∥Eα,α(Jit
α)− Mi

t2α
∥ ≤

∥∥∥


k0

t3α
k1

t3α · · · kni−1

t3α

0 k0

t3α
. . .

...

0 0
. . .

. . .
...

...
. . . k1

t3α

0 · · · 0 k0

t3α


∥∥∥ ≤ 1

t3α
ci,

1267



ALIDOUSTI et al./Turk J Math

where

ci =
∥∥∥


k0 k1 · · · kni−1

0 k0
. . .

...

0 0
. . .

. . .
...

...
. . . k1

0 · · · 0 k0


∥∥∥,

then

∥T−1Eα,α(At
α)T − M

t2α
∥ = ∥diag[Eα,α(J1t

α), · · · , Eα,α(Jrt
α)]− M

t2α
∥ ≤ n0

t3α

where n0 = max{c1, . . . , cr} . Multiplying by tα−1 , we get

∥T−1tα−1Eα,α(At
α)T −Mt−α−1∥ ≤ n0t

−2α−1,

and so

∥T−1tα−1Eα,α(At
α)T∥ ≤ ∥M∥t−α−1 + n0t

−2α−1 ≤ t−α−1
[
∥M∥+ n0t

−α
]
.

Thus there exists a constant l′ > 0 such that for t ≥ 1, we have

∥T−1tα−1Eα,α(At
α)T∥ ≤ l′

tα+1
.

Then we get

∥tα−1Eα,α(At
α)∥ = ∥TT−1tα−1Eα,α(At

α)TT−1∥ ≤ ∥T∥.∥T−1tα−1Eα,α(At
α)T∥.∥T−1∥

≤ ∥T∥ l′

tα+1
∥T−1∥ ≤ l

tα+1
, l = max{l′, ∥T∥∥T−1∥}

Otherwise, for 0 ≤ t ≤ 1, Eα,α(At
α) is a continuous function and thus E = sup

0≤t≤1

∥Eα,α(At
α)∥ exists. Then for

0 < t < 1 we have

∥Eα,α(At
α)∥ ≤ E ≤ E

t2α
,

This implies

∥tα−1Eα,α(At
α)∥ ≤ E

tα+1
.

Now, we set m0 = max{l, E} ; then for all t > 0 we have

∥tα−1Eα,α(At
α)∥ ≤ m0

tα+1
,

which completes the proof. 2
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Theorem 3 Suppose 0 < α < 2 and An×n is a matrix with | arg(spec(A))| > απ
2 . Then there exist an invert-

ible matrix T, a matrix Mn×n , and a real constant n0 > 0 such that ∥T−1Eα(At
α)T − M

tα ∥ ≤ n0

t2α ; moreover,

there exists a constant m0 > 0 such that ∥Eα(At
α)∥ ≤ m0

tα for all t > 0 .

Proof. The proof is similar to that of Theorem 2. 2

We present the following definition needed for the stability of the nonlinear system to be discussed in the next

section.

Definition 7 A solution of fractional differential system (2) is said to be F -asymptotically stable if every

solution that belongs to set F is asymptotically stable. Moreover, a solution of fractional differential system (2)

is said to be F -stable if every solution that belongs to F is stable.

3. Stability of D
C

α

0,t
x(t) = Ax(t) + f(t, x(t))

In this section, we study the following fractional differential system with Caputo derivative:

D
C

α

0,t
x(t) = Ax(t) + f(t, x(t)), (0 < α < 1) (10)

under the initial condition x(0) = x0 , where x(t) = (x1(t), x2(t), ..., xn(t))
T ∈ Rn and A ∈ Rn×n , f :

[0,∞)× Rn → Rn . We can get the solution of (10), by using the Laplace and inverse Laplace transforms, as

x(t) = Eα(At
α)x0 +

∫ t

0

(t− θ)α−1Eα,α(A(t− θ)α)f(θ, x(θ))dθ. (11)

We establish the following stability results.

Theorem 4 Suppose f is a continuous vector function for which there exists p > 1
α such that ∥f(., x(t))∥ ∈

Lp(R+) . Then the system (10) is stable if all the eigenvalues of A satisfy

| arg(spec(A))| > απ

2
, (12)

especially if ∥f(., x(t))∥ ∈ L∞(R+) the stability holds.

Proof. Equation (11) implies

∥x(t)∥ ≤ ∥Eα(At
α)∥ ∥x0∥+

∫ t

0

∥(t− θ)α−1Eα,α(A(t− θ)α)∥ ∥f(θ, x(θ))∥dθ.

According to Theorem 3, there exists m0 > 0 such that ∥Eα(At
α)∥ ≤ m0

tα ; then

∥x(t)∥ ≤ m0

tα
∥x0∥+

∫ t

0

θα−1∥Eα,α(Aθ
α)∥ ∥f(t− θ, x(t− θ))∥dθ. (13)

We now set

I =

∫ t

0

θα−1∥Eα,α(Aθ
α)∥ ∥f(t− θ, x(t− θ))∥dθ.

1269



ALIDOUSTI et al./Turk J Math

First suppose that 1
α < p <∞ ; then by applying Hölder’s inequality, we obtain

I ≤
[ ∫ t

0

θqα−q∥Eα,α(Aθ
α)∥qdθ

] 1
q
[ ∫ t

0

∥f(t− θ, x(t− θ))∥pdθ
] 1

p

, (14)

where 1
p + 1

q = 1. We have∫ t

0

θqα−q∥Eα,α(Aθ
α)∥qdθ =

∫ 1

0

θqα−q∥Eα,α(Aθ
α)∥qdθ +

∫ t

1

θqα−q∥Eα,α(Aθ
α)∥qdθ,

where t ≥ 1. Furthermore, ∫ 1

0

θqα−q∥Eα,α(Aθ
α)∥qdθ ≤ Eq

∫ 1

0

θqα−qdθ, (15)

where E = sup
0≤t≤1

∥Eα,α(At
α)∥ , and the right-hand side of (15) is bounded for p > 1

α .

We also have ∫ t

1

θqα−q∥Eα,α(Aθ
α)∥qdθ ≤

∫ t

1

(
m0

θα+1
)q,

which is bounded. On the other hand,

∫ t

0

∥f(t− θ, x(t− θ))∥pdθ =
∫ t

0

∥f(θ, x(θ))∥pdθ ≤ ∥f∥pp.

Hence, the right-hand side of (14) remains bounded as t −→ ∞ , and so the right-hand side of (13) remains

bounded and the system (10) is stable.

It remains to prove our claim for p = ∞ . In this case q = 1 and ∥f(., x(t))∥ ∈ L∞(R+). Thus f is bounded

with the upper bound F ≥ 0, and∫ t

0

θα−1∥Eα,α(Aθ
α)∥∥f(t− θ, x(t− θ))∥dθ ≤ F

∫ t

0

θα−1∥Eα,α(Aθ
α)∥dθ

≤ F
(∫ 1

0

θα−1∥Eα,α(Aθ
α)∥dθ +

∫ t

1

θα−1∥Eα,α(Aθ
α)∥dθ

)

≤ F

α

(
E +m0(1−

1

tα
)
)
,

which remains bounded as t −→ ∞ . Thus (10) is stable. 2

Corollary 1. Suppose A is an n× n matrix that satisfied (12), and there exist functions φ : R+ 7−→ R+ and

ψ : Rn 7−→ R+ such that ψ is bounded, φ ∈ Lp(R+) for p > 1
α , and ∥f(t, x(t))∥ ≤ φ(t)ψ(x(t)). Then the

solution of (10) is stable. Especially by this assumption the system

D
C

α

0,t
x(t) = Ax(t) + b(t) (0 < α < 1),

where ∥b(t)∥ ∈ Lp(Rn), p > 1
α is stable.
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4. Stability of D
RL

α

0,t
x(t) = Ax(t) + f(t, x(t))

In this section, we study the following fractional differential system with Riemann–Liouville derivative

D
RL

α

0,t
x(t) = Ax(t) + f(t, x(t)), (0 < α < 1) (16)

with the initial condition x0 = D
RL

α−1

0,t
x(t)|t=0 , where x(t) = (x1(t), x2(t), ..., xn(t))

T

∈ Rn , A ∈ Rn×n , and f : [0,∞)× Rn → Rn .

We can get the solution of (16), by using the Laplace and inverse Laplace transforms, as

x(t) = tα−1Eα,α(At
α)x0 +

∫ t

0

(t− θ)α−1Eα,α(A(t− θ)α)f(θ, x(θ))dθ. (17)

Theorem 5 Suppose f is a continuous vector function for which there exists p > 1
α such that ∥f(., x(t))∥ ∈

Lp(R+) . Then the system (16) is stable if all the eigenvalues of A satisfy (12). Especially if ∥f(., x(t))∥ ∈
L∞(R+) the stability holds.

Proof. We have

∥x(t)∥ ≤ ∥tα−1Eα,α(At
α)∥ ∥x0∥+

∫ t

0

(t− θ)α−1∥Eα,α(A(t− θ)α)∥ ∥f(θ, x(θ))∥dθ.

According to Theorem 2 there exists m0 > 0 such that ∥tα−1Eα,α(At
α)∥ ≤ m0

tα+1 ; thus

∥x(t)∥ ≤ m0

tα+1
∥x0∥+

∫ t

0

θα−1∥Eα,α(Aθ
α)∥∥f(t− θ, x(t− θ))∥dθ. (18)

We now set

I =

∫ t

0

θα−1∥Eα,α(Aθ
α)∥ ∥f(t− θ, x(t− θ))∥dθ.

First suppose that 1
α < p <∞ ; then similar to theorem 4 by applying Hölder’s inequality, we obtain

I ≤
[ ∫ t

0

θqα−q∥Eα,α(Aθ
α)∥qdθ

] 1
q
[ ∫ t

0

∥f(t− θ, x(t− θ))∥pdθ
] 1

p

, (19)

where 1
p + 1

q = 1. We have∫ t

0

θqα−q∥Eα,α(Aθ
α)∥qdθ =

∫ 1

0

θqα−q∥Eα,α(Aθ
α)∥qdθ +

∫ t

1

θqα−q∥Eα,α(Aθ
α)∥qdθ,

and also ∫ 1

0

θqα−q∥Eα,α(Aθ
α)∥qdθ ≤ Eq

∫ 1

0

θqα−qdθ, (20)

which is bounded for p > 1
α , and ∫ t

1

θqα−q∥Eα,α(Aθ
α)∥qdθ ≤

∫ t

1

(
m0

θα+1
)q,
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which is bounded. Thus the right-hand side of (18) remains bounded and the system (16) is stable.

Our proof claim for p = ∞ is similar to the proof of theorem 4.

Corollary 2. Suppose the matrix A satisfies in (12) and f(., x(t)) is a continuous function and there exist

functions φ : R+ 7−→ R+ and ψ : Rn 7−→ R+ such that ψ is bounded, φ ∈ Lp(R+) for some p > 1
α , and

∥f(t, x(t))∥ ≤ φ(t)ψ(x(t)). Then the solution of (16) is stable. Especially the system

D
RL

α

0,t
x(t) = Ax(t) + b(t), (0 < α < 1)

in which ∥b(t)∥ ∈ Lp(Rn) is stable for p > 1
α .

Theorem 6 Suppose that all the eigenvalues of A satisfy in (12) and the following conditions hold:

i) ∥f(t, x(t))∥ ≤ tγφ(∥x(t)∥) where φ(∥x(t)∥) ∈ Lp(R+) ,

ii) p > 1
α and γ < 1

p − α.

Then the system (16) is F -asymptotically stable, for

F :=
{
x(t) : [0,∞) 7−→ Rn, φ(∥x(t)∥) ∈ Lp(R+)

}
.

Proof. Clearly, we have

∥x(t)∥ ≤ tα−1∥Eα,α(At
α)∥∥x0∥+ E

∫ t

0

(t− θ)α−1θγφ(∥x(θ)∥)dθ.

such that E = sup0≤t<∞ ∥Eα,α(At
α)∥ . Applying Hölder’s inequality yields∫ t

0

(t− θ)α−1θγφ(∥x(θ)∥)dθ ≤
[ ∫ t

0

(t− θ)qα−qθqγdθ
] 1

q ∥φ(∥x(θ)∥)∥p. (21)

We observe that if θ = ty , then∫ t

0

(t− θ)qα−qθqγdθ =

∫ 1

0

tqα−q(1− y)qα−qtqγyqγtdy

= tqα−q+qγ+1B(qα− q + 1, qγ + 1), (22)

where B(., .) stands for the Beta function. By the assumptions of this theorem (22) tends to zero, and then the

right-hand side of (21) tends to zero. This completes the proof. 2

Remark 1 In the previous theorem if γ = 1
p − α , then the system (16) is F -stable. In the case p = ∞ , we

have the following theorem:

Theorem 7 Suppose that all the eigenvalues of A satisfy in (12) and the following conditions hold:

i) ∥f(t, x(t))∥ ≤ tγφ(∥x(t)∥) , where φ(∥x(t)∥) ∈ L∞(R+) ,

ii) γ < −α.

Then the system (16) is F -asymptotically stable, for F := L∞(R+) .
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Proof. We have

∥x(t)∥ ≤ tα−1∥Eα,α(At
α)∥∥x0∥+ E

∫ t

0

(t− θ)α−1θγφ(∥x(θ)∥)dθ,

and ∣∣∣ ∫ t

0

(t− θ)α−1θγφ(∥x(θ)∥)dθ
∣∣∣ ≤ [ ∫ t

0

(t− θ)α−1θγdθ
]∥∥φ(∥x(θ)∥)∥∥∞. (23)

We set θ = ty ; then ∫ t

0

(t− θ)α−1θγdθ = tα+γB(α, γ + 1).

By using the assumptions the right-hand side of (23) tends to zero. This completes the proof. 2

Remark 2 It is easily verified that in Theorem 7, for γ = −α , the system (16) is F -stable.

5. Numerical approach and example

Example 5.1. Consider the Riemann–Liouville fractional-order model presented by

 xα

yα

zα

 =

 −a a 0
b 0 0
0 0 −c

 x
y
z

+

 0
−kxz

1+∥X∥2 g(t)
hx2

1+∥X∥2h(t)

 , (24)

in which a, b, c, k , and h are positive parameters, g(t), h(t) ∈ Lp(R+) and X = (x, y, z). If we set

A =

 −a a 0
b 0 0
0 0 −c

 , F (t,X) =

 0
−kxz

1+∥X∥2 g(t)
hx2

1+∥X∥2h(t)

 ,

then ∥F (., X)∥ ∈ Lp(R+). By choosing appropriate parameter values, we get | arg(spec(A))| > απ
2 . Therefore,

according to Theorem 5 the system (24) becomes stable for p > 1
α .

To verify the stability results of this example numerically, we perform numerical simulation by means

of the method given by Atanackovic and Stankovic [2]. In [2] it was shown that for a function f(t), the

Riemann–Liouville derivative of order α with 0 < α < 1 may be expressed as

D
RL

α

0,t
f(t) =

1

Γ(2− α)
×

[
f ′(t)

tα−1

(
1 +

∞∑
p=1

Γ(p− 1 + α)

Γ(α− 1)p!

)
−

(α− 1

tα
f(t) +

∞∑
p=2

Γ(p− 1 + α)

Γ(α− 1)(p− 1)!

(f(t)
tα

+
vp(f)(t)

tp−1+α

))]
, (25)

where

vp(f)(t) = −(p− 1)

∫ t

0

τp−2f(τ)dτ, p = 2, 3, · · ·
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For the sake of simplicity, we proceed the computations as follows.

First we approximate D
RL

α

0,t
f(t) by using the first M terms in the sum appearing in Eq. (25) by

D
RL

α

0,t
f(t) ≃ 1

Γ(2− α)
×

[
f ′(t)

tα−1

(
1 +

M∑
p=1

Γ(p− 1 + α)

Γ(α− 1)p!

)
−

(α− 1

tα
f(t) +

M∑
p=2

Γ(p− 1 + α)

Γ(α− 1)(p− 1)!

(f(t)
tα

+
vp(f)(t)

tp−1+α

))]
. (26)

We can rewrite Eq. (26) as follows

D
RL

α

0,t
f(t) ≃ Ω(α, t,M)f ′(t) + Φ(α, t,M)f(t) +

M∑
p=2

A(α, t, p)
vp(f)(t)

tp−1+α
,

where

Ω(α, t,M) =

1 +
M∑
p=1

Γ(p−1+α)
Γ(α−1)p!

Γ(2− α)tα−1
, R(α, t) =

1− α

Γ(2− α)tα
,

and

Φ(α, t,M) = R(α, t) +

M∑
p=2

A(α, t, p)

tα
, A(α, t, p) = − Γ(p− 1 + α)

Γ(2− α)Γ(α− 1)(p− 1)!
,

We set

vp(x)(t) = wp(t), vp(y)(t) = up(t), vp(z)(t) = kp(t), p = 2, 3, ...

and rewrite system (24) as

Ω(α, t,M)x′(t) + Φ(α, t,M)x(t) +

M∑
p=2

A(α, t, p)
wp(t)

tp−1+α
= a(y − x),

where

wp(t) = −(p− 1)

∫ t

0

τp−2x(τ)dτ, p = 2, 3, ...,M.

We also have

Ω(α, t,M)y′(t) + Φ(α, t,M)y(t) +
M∑
p=2

A(α, t, p)
up(t)

tp−1+α
= bx− kxz

1 + ∥X∥2
g(t),

where

up(t) = −(p− 1)

∫ t

0

τp−2y(τ)dτ, p = 2, 3, ...,M.
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Further

Ω(α, t,M)z′(t) + Φ(α, t,M)z(t) +

M∑
p=2

A(α, t, p)
kp(t)

tp−1+α
= −cz + hx2

1 + ∥X∥2
h(t),

where

kp(t) = −(p− 1)

∫ t

0

τp−2z(τ)dτ, p = 2, 3, ...,M

Now we can rewrite the above equations as the following forms:

x′(t) =
1

Ω(α, t,M)

[
a(y − x)− Φ(α, t,M)x(t)−

M∑
p=2

A(α, t, p)
wp(t)

tp−1+α

]
, (27)

where

w′
p(t) = −(p− 1)tp−2x(t), p = 2, 3, ...,M

and

y′(t) =
1

Ω(α, t,M)

[
bx− kxz

1 + ∥X∥2
g(t)− Φ(α, t,M)y(t)−

M∑
p=2

A(α, t, p)
up(t)

tp−1+α

]
, (28)

in which

u′p(t) = −(p− 1)tp−2y(t), p = 2, 3, ...,M

and

z′(t) =
1

Ω(α, t,M)

[
− cz +

hx2

1 + ∥X∥2
h(t)− Φ(α, t,M)z(t)−

M∑
p=2

A(α, t, p)
kp(t)

tp−1+α

]
, (29)

with

k′p(t) = −(p− 1)tp−2z(t), p = 2, 3, ...,M

along with the following initial conditions

x(δ) = x0, wp(δ) = 0, p = 2, 3, ...,M,

y(δ) = y0, up(δ) = 0, p = 2, 3, ...,M,

z(δ) = z0, kp(δ) = 0, p = 2, 3, ...,M, (30)

where δ is a positive constant. Now we consider the numerical solution of the system of ordinary differential

Eqs. (27), (28), (29), with the initial conditions (30) by using the well-known Runge–Kutta method of fourth

order and depict orbits of the system (24) for different sets of parameters.

Phase portrait and numerical values of (24) for the fixed parameter values α = .98, b = −400, c = 2, k =

10, h = 40, ω = 20, x0 = 0.1, y0 = 0.1, z0 = 0.1, and the function g(t) = sinωt and h(t) = cosωt that are in

L∞(R+), are depicted in Figures 2–11.
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Figure 2. x− y plane of (24), for a = .01.
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Figure 3. Phase portrait of (24), for a = .01.
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Figure 4. Numerical value of (24), for a = .01.
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Figure 5. Numerical value of (24), for a = .01.
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Figure 6. Phase portrait of (24), for a = 10.
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Figure 7. x− y plane of (24), for a = 10.
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Figure 8. Numerical value of (24), for a = 10.
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Figure 9. Numerical value of (24), for a = .02.
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Figure 10. x− y plane of (24), for a = .5.
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Figure 11. Numerical value of (24), for a = .5.

6. Concluding remarks

In this paper, the stability of a class of fractional order nonlinear systems with Caputo and Riemann–Liouville

derivatives for the commensurate order 0 < α < 1 has been studied. We derived sufficient conditions for stability

and F -stability of nonlinear fraction systems. The effectiveness of the obtained results has been illustrated by

a numerical example.
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