The t-successive associated Stirling numbers, t-Fibonacci-Stirling numbers, and unimodality

Hacène BELBACHIR*, Assia Fettouma TEBTOUB
USTHB, Faculty of Mathematics, RECITS Laboratory El Alia, Algiers, Algeria
Received: 26.06.2015 \quad Accepted/Published Online: $12.12 .2016 \quad$ Final Version: 28.09 .2017

Abstract

Using a combinatorial approach, we introduce the t-successive associated Stirling numbers and we give the recurrence relation and the generating function. We also establish the unimodality of sequence $\left\{\begin{array}{c}n-2 k \\ k\end{array}\right\}_{k}$ lying over a ray of the second kind's Stirling triangle. Some combinatorial identities are given.

Key words: t-Successive associated Stirling numbers, recurrence relations, generating function, log-concavity, unimodality

1. Introduction

This paper is about some extension of Stirling numbers of second kind and unimodality. We give some introductory tools.

The t-associated Stirling numbers of second kind, denoted by $\left\{\begin{array}{l}n \\ k\end{array}\right\}^{(t)}$ (see for instance [4] and references therein), count the number of partitions of the set $\{1,2, \ldots, n\}$ into k subsets such that each subset contains at least t elements. They are generated by the following function:

$$
\frac{1}{k!}\left(\exp (x)-\sum_{i=0}^{t-1} \frac{x^{i}}{i!}\right)^{k}=\sum_{n \geq t k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}^{(t)} \frac{x^{n}}{n!}
$$

In this work, we focus on a special situation of t-associated Stirling numbers of second kind.
Our aim is to study combinatorial aspects of these sequences and for $t=3$ prove the unimodality.
For doing so, we give some results and definitions linked to log-concavity and unimodality.
A finite sequence $\left(a_{n}\right)_{k=0}^{n}$ is unimodal if it increases to a maximum and then decreases. That is, there exists k such that

$$
a_{1} \leq a_{2} \leq \cdots \leq a_{k} \geq a_{k+1} \geq \cdots \geq a_{n}
$$

The sequence $\left(a_{n}\right)_{k=0}^{n}$ is log-concave (LC for short) if for $k=2, \ldots, n-1$,

$$
\begin{equation*}
a_{k}^{2} \geq a_{k+1} a_{k-1} \tag{1}
\end{equation*}
$$

it is strictly log-concave (SLC for short) when (1) holds with the strict inequality.
It is known that log-concavity implies unimodality [17].

[^0]Theorem 1 (Newton's inequality [13]) If the polynomial $a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ has only real zeros, then

$$
a_{k}^{2} \geq a_{k-1} a_{k+1} \frac{k}{k-1} \frac{n-k+1}{n-k} \quad(k=2, \ldots, n-1) .
$$

Theorem 1 implies the strict version of (1), (see Hammersley [11] and Erdös [10]).
The first result dealing with unimodality of Pascal's triangle elements is due to Tanny and Zuker [15], who showed that the sequence of terms $\binom{n-k}{k}(k=0, \ldots,\lfloor n / 2\rfloor)$ is unimodal. They also investigated, for a given α, the unimodality of the sequence $\binom{n-\alpha k}{k}$ in [14, 16]. Belbachir et al. provide in [3] some cases of binomial sequence $\binom{n-\alpha k}{\beta k}$ and in [2] Belbachir and Bencherif proved the unimodality of sequences associated to Pell numbers. In [5], Belbachir and Szalay proved that any ray crossing Pascal's triangle provides a unimodal sequence. Our main interest is to examine combinatorial sequences connected to an arithmetical triangle as the second kind's Stirling triangle and its generalizations.

Harper [12] showed that $\sum_{k}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}$ has only real roots. Canfield [9] showed that the sequence $\left(\left\{\begin{array}{l}n \\ k\end{array}\right\}\right)_{k}$ is unimodal for a fixed n with at most two consecutive modes.

In Section 2, we introduce the t-successive associated Stirling numbers $\left\{\begin{array}{l}n \\ k\end{array}\right\}^{[t]}(n \geq t k)$ as an extension of the 2 -successive associated Stirling numbers; see [6]. Using a combinatorial approach, we derive their recurrence relation and compute the associated generating function. We prove in Section 3 the strict log-concavity and hence the unimodality of the 3 -successive associated Stirling numbers. In Section 4, we link the t-successive associated Stirling numbers to the classical Stirling numbers of the second kind; this allowed us to prove the unimodality of sequence $\left\{\begin{array}{c}n-2 k \\ k\end{array}\right\}_{k}$ lying over a ray of the second kind's Stirling triangle (see Figure). We also introduce the t-Fibonacci-Stirling numbers. We conclude, in Section 5 , by establishing combinatorial identities related to the 2 -successive associated Stirling numbers, as a complement study of our work [6].

2. The t-successive associated Stirling numbers

We start by giving a combinatorial definition of the t-successive associated Stirling numbers.

Definition 2 The t-successive associated Stirling numbers, denoted by $\left\{\begin{array}{l}n \\ k\end{array}\right\}^{[t]}$, count the number of partitions of the set $\{1,2, \ldots, n\}$ into k parts, such that each part contains at least t consecutive numbers. Moreover, the last element n must either form a part with its $t-1$ predecessors, or belongs to another part that already contains t consecutive numbers.

For some values of the t-successive Stirling numbers, see Tables 1-3.

Examples 3 The following examples clarify the above combinatorial definition.

- $t=2$:
$\left\{\begin{array}{l}6 \\ 2\end{array}\right\}^{[2]}=7$, we have $\{1,2,3,4\}\{5,6\} ;\{1,2,3,6\}\{4,5\}$;
$\{1,2,3\}\{4,5,6\} ;\{1,2,6\}\{3,4,5\} ;\{1,2\}\{3,4,5,6\} ;\{1,2,5,6\}\{3,4\}$;
$\{1,2,5\}\{3,4,6\}$.
$\left\{\begin{array}{l}6 \\ 3\end{array}\right\}^{[2]}=1$, there is one way to partition six elements into three parts $\{1,2\}\{3,4\}\{5,6\}$.
- $t=3$:
$\left\{\begin{array}{c}7 \\ 2\end{array}\right\}^{[3]}=3$, counts the number of partitions of seven elements into two parts
$\{1,2,3,4\}\{5,6,7\} ;\{1,2,3\}\{4,5,6,7\} ;\{1,2,3,7\}\{4,5,6\}$.
The partition $\{2,3,4\}\{1,5,6,7\}$ cannot be considered. In fact, the $7^{\text {th }}$ element is not in a part that already contains three consecutive numbers.

Theorem 4 For $n \geq t k$, we have

$$
\left\{\begin{array}{l}
n \tag{2}\\
k
\end{array}\right\}^{[t]}=k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}^{[t]}+\left\{\begin{array}{c}
n-t \\
k-1
\end{array}\right\}^{[t]}
$$

where $\left\{\begin{array}{l}0 \\ 0\end{array}\right\}^{[t]}=1,\left\{\begin{array}{c}n \\ n-1\end{array}\right\}^{[t]}=\left\{\begin{array}{c}n \\ n-2\end{array}\right\}^{(t)}=\cdots=\left\{\begin{array}{c}n \\ n-t+1\end{array}\right\}^{[t]}=0$ and $\left\{\begin{array}{c}n \\ 0\end{array}\right\}^{[t]}=0,(n \geq 1)$.
Proof Let us focus on the last element n. If it forms a part with its $t-1$ predecessors, then it remains to form $(k-1)$ parts from the $(n-t)$ remaining elements, and we have $\left\{\begin{array}{c}n-t \\ k-1\end{array}\right\}^{[t]}$ ways to do that. Otherwise, we constitute k parts from $(n-1)$ elements; then adding the $n^{\text {th }}$ element to one of the k parts, we get $k\left\{\begin{array}{c}n-1 \\ k\end{array}\right\}^{[t]}$ possibilities. This ends the proof.
The t-successive associated Stirling numbers satisfy the following vertical recurrence relation.
Theorem 5 Let $n, k, t \in \mathbb{N}$ such that $n \geq t k$. We have

$$
\left\{\begin{array}{l}
n \tag{3}\\
k
\end{array}\right\}^{[t]}=\sum_{i=0}^{n-t k} k^{i}\left\{\begin{array}{c}
n-i-t \\
k-1
\end{array}\right\}^{[t]} .
$$

Proof From the recurrence relation (2), we have, for $n \geq t k$,

$$
\begin{aligned}
\left\{\begin{array}{c}
n \\
k
\end{array}\right\}^{[t]} & =k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}^{[t]}+\left\{\begin{array}{c}
n-t \\
k-1
\end{array}\right\}^{[t]}, \\
k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}^{[t]} & =k^{2}\left\{\begin{array}{c}
n-2 \\
k
\end{array}\right\}^{[t]}+k\left\{\begin{array}{c}
n-t-1 \\
k-1
\end{array}\right\}^{[t]}, \\
& \vdots \\
k^{n-t k-1}\left\{\begin{array}{c}
t k+1 \\
k
\end{array}\right\}^{[t]} & =k^{n-t k}\left\{\begin{array}{c}
t k \\
k
\end{array}\right\}^{[t]}+k^{n-t k-1}\left\{\begin{array}{c}
1+t(k-1) \\
k-1
\end{array}\right\}^{[t]}, \\
k^{n-t k}\left\{\begin{array}{c}
t k \\
k
\end{array}\right\}^{[t]} & =k^{n-t k+1}\left\{\begin{array}{c}
t k-1 \\
k
\end{array}\right\}^{[t]}+k^{n-t k}\left\{\begin{array}{c}
t(k-1) \\
k-1
\end{array}\right\}^{[t]} .
\end{aligned}
$$

Summing all the equations side by side and according to the initial conditions, we get the result.
Now we give the generating function of the t-successive associated Stirling numbers.
Theorem 6 The generating function of the t-successive associated Stirling numbers is given, for $k \geq 1$, by

$$
A_{k}(x):=\sum_{n \geq s k}\left\{\begin{array}{l}
n \tag{4}\\
k
\end{array}\right\}^{[t]} x^{n}=\frac{x^{t k}}{(1-x)(1-2 x) \cdots(1-k x)},
$$

where $A_{0}(x)=1$.
Proof From the recurrence relation (2), we have, for $k=1,2, \ldots$, and for a fixed t,

$$
\sum_{n \geq t k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}^{[t]} x^{n}=\sum_{n \geq t k} k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}^{[t]} x^{n}+\sum_{n \geq t k}\left\{\begin{array}{l}
n-t \\
k-1
\end{array}\right\}^{[t]} x^{n}
$$

consequently,

$$
A_{k}(x)=k x A_{k}(x)+x^{t} A_{k-1}(x), \quad k=1,2, \ldots
$$

thus,

$$
A_{k}(x)=x^{t}(1-k x)^{-1} A_{k-1}(x), \quad k=1,2, \ldots
$$

Hence,

$$
\begin{aligned}
A_{k-1}(x) & =x^{t}(1-(k-1) x)^{-1} A_{k-2}(x) \\
A_{k-2}(x) & =x^{t}(1-(k-2) x)^{-1} A_{k-3}(x), \\
& \vdots \\
A_{2}(x) & =x^{t}(1-2 x)^{-1} A_{1}(x), \\
A_{1}(x) & =x^{t}(1-x)^{-1} A_{0}(x) .
\end{aligned}
$$

By substituting each term $A_{i-1}(x)$ in $A_{i}(x), i=1, \ldots, k$, we obtain

$$
A_{k}(x)=x^{t}(1-(k-1) x)^{-1} x^{t}(1-(k-2) x)^{-1} \cdots x^{t}(1-x)^{-1} A_{0}(x)
$$

According to the initial conditions, we get the result.
An explicit expression is given in the following result.

Theorem 7 The t-successive associated Stirling numbers $\left\{\begin{array}{l}n \\ k\end{array}\right\}^{[t]}$ have the following explicit formula. For $n \geq t k$, we have

$$
\left\{\begin{array}{l}
n \tag{5}\\
k
\end{array}\right\}^{[t]}=\frac{1}{k!} \sum_{p=1}^{k}(-1)^{(k-p)}\binom{k}{p} p^{n-(t-1) k}
$$

Proof Formula (5) satisfies the recurrence relation (2),

$$
\begin{aligned}
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}^{[t]} & =k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}^{[t]}+\left\{\begin{array}{l}
n-t \\
k-1
\end{array}\right\}^{[t]} \\
& =k \frac{1}{k!} \sum_{p=1}^{k}(-1)^{(k-p)}\binom{k}{p} p^{n-1-(t-1) k} \\
& +\frac{1}{(k-1)!} \sum_{p=1}^{k-1}(-1)^{(k-p-1)}\binom{k-1}{p} p^{n-1-(t-1) k} \\
& =\frac{1}{(k-1)!} \sum_{p=1}^{k}(-1)^{(k-p)}\binom{k}{p} p^{n-1-(t-1) k} \\
& =\frac{1}{(k-1)!} \sum_{p=1}^{k}(-1)^{(k-p)}\binom{k-1}{p} p^{n-1-(t-1) k} \\
& =\frac{1}{(k-1)!}\left(\sum_{p=1}^{k}(-1)^{(k-p)} p^{n-1-(t-1) k}\left(\binom{k}{p}-\binom{k-1}{p}\right)\right) \\
& =\sum_{p=1}^{k}(-1)^{(k-p)} p^{n-(t-1) k} \frac{1}{(k-1)!} \frac{1}{p} \frac{(k-1)!}{(p-1)!(k-p)!} \sum_{p=1}^{k}(-1)^{(k-p)} p^{n-1-(t-1) k}\binom{k-1}{p-1} \\
& =\frac{1}{k!} \sum_{p=1}^{k}(-1)^{(k-p)} p^{n-(t-1) k} \frac{k!}{p!(k-p)!} \\
& =\frac{1}{k!} \sum_{p=1}^{k}(-1)^{(k-p)} p^{n-(t-1) k}\binom{k}{p}
\end{aligned}
$$

which ends the proof.

3. Unimodality of 3 -successive associated Stirling numbers

Following Bòna's approach [7], we prove the strict log-concavity of the 3 -successive associated Stirling numbers. Let

$$
P_{n}(x):=\sum_{j=0}^{n}\left\{\begin{array}{l}
n \\
j
\end{array}\right\}^{[t]} x^{j}
$$

Proposition 8 Let $d \in \mathbb{N}$ be the degree of $P_{n}(x)$ for a fixed t. If n is a multiple of t then $P_{n-1}(x)$ and $P_{n-2}(x), \ldots, P_{n-t}(x)$ are of degree $d-1$, where $d=n / t$. Moreover, if n is not a multiple of $t, n \equiv i[t]$, $1 \leq i \leq t-1$ then $P_{n}(x), \ldots, P_{n-i}(x)$ are of degree d and $P_{n-i-1}(x), \ldots, P_{n-t}$ are of degree $d-1$, where $d=\lfloor n / t\rfloor$.
Proof The proof is easy; we leave it to the reader (see also the Appendix).

Expression of $P_{n}(x)$ for $n \leq 10$ and $t \leq 4$

- $t=2$:
$P_{0}(x)=1$,
$P_{1}(x)=0$,
$P_{2}(x)=x$,
$P_{3}(x)=x$,
$P_{4}(x)=x+x^{2}$,
$P_{5}(x)=x+3 x^{2}$,
$P_{6}(x)=x+7 x^{2}+x^{3}$,
$P_{7}(x)=x+15 x^{2}+6 x^{3}$,
$P_{8}(x)=x+31 x^{2}+25 x^{3}+x^{4}$,
$P_{9}(x)=x+63 x^{2}+90 x^{3}+10 x^{4}$,
$P_{10}(x)=x+127 x^{2}+301 x^{3}+65 x^{4}+x^{5}$.
- $t=3$:
$P_{0}(x)=1$,
$P_{1}(x)=0$,
$P_{2}(x)=0$,
$P_{3}(x)=x$,
$P_{4}(x)=x$,
$P_{5}(x)=x$,
$P_{6}(x)=x+x^{2}$,
$P_{7}(x)=x+3 x^{2}$,
$P_{8}(x)=x+7 x^{2}$,
$P_{9}(x)=x+15 x^{2}+x^{3}$,
$P_{10}(x)=x+31 x^{2}+6 x^{3}$.
- $t=4$:
$P_{0}(x)=1$,
$P_{1}(x)=0$,
$P_{2}(x)=0$,
$P_{3}(x)=0$,
$P_{4}(x)=x$,
$P_{5}(x)=x$,
$P_{6}(x)=x$,
$P_{7}(x)=x$,
$P_{8}(x)=x+x^{2}$,
$P_{9}(x)=x+3 x^{2}$,
$P_{10}(x)=x+7 x^{2}$.

Now we prove the log-concavity and the unimodality of the 3 -successive associated Stirling numbers.

Theorem 9 The roots of $P_{n}(x)$ are real, distinct, and nonpositive for $n=1,2, \ldots$.
Furthermore, the roots of $P_{n}(x), P_{n-1}(x)$ and $P_{n-2}(x)$ are interlacing in the following sense:
If $P_{n}(x), P_{n-1}(x)$ et $P_{n-2}(x)$ are all of degree d and their roots are, respectively: $0=x_{0}^{(n)}>x_{1}^{(n)}>$ $\cdots>x_{d-1}^{(n)}>x_{d}^{(n)}, 0=x_{0}^{(n-1)}>x_{1}^{(n-1)}>\cdots>x_{d-1}^{(n-1)}, 0=x_{0}^{(n-2)}>x_{1}^{(n-2)}>\cdots>x_{d-1}^{(n-2)}$, then

$$
\begin{align*}
0>x_{1}^{(n)}>x_{1}^{(n-1)} & >x_{1}^{(n-2)}>\cdots>x_{d-2}^{(n)}>x_{d-2}^{(n-1)}>x_{d-2}^{(n-2)}> \\
& >x_{d-1}^{(n)}>x_{d-1}^{(n-1)}>x_{d-1}^{(n-2)} \tag{6}
\end{align*}
$$

. If $P_{n}(x)$ and $P_{n-1}(x)$ are of degree d and $P_{n-2}(x)$ is of degree $d-1$ and their roots are, respectively: $0=x_{0}^{(n)}>x_{1}^{(n)}>\cdots>x_{d-1}^{(n)}>x_{d}^{(n)}, 0=x_{0}^{(n-1)}>x_{1}^{(n-1)}>\cdots>x_{d-1}^{(n-1)}, 0=x_{0}^{(n-2)}>x_{1}^{(n-2)}>\cdots>x_{d-2}^{(n-2)}$, then

$$
\begin{equation*}
0>x_{1}^{(n)}>x_{1}^{(n-1)}>x_{1}^{(n-2)}>\cdots>x_{d-2}^{(n)}>x_{d-2}^{(n-1)}>x_{d-2}^{(n-2)}>x_{d-1}^{(n)}>x_{d-1}^{(n-1)} \tag{7}
\end{equation*}
$$

. While if $P_{n}(x)$ is of degree d and $P_{n-1}(x)$ and $P_{n-2}(x)$ are of degree $d-1$ and their roots are, respectively: $0=x_{0}^{(n)}>x_{1}^{(n)}>\cdots>x_{d-1}^{(n)}, 0=x_{0}^{(n-1)}>x_{1}^{(n-1)}>\cdots>x_{d-2}^{(n-1)}, 0=x_{0}^{(n-2)}>x_{1}^{(n-2)}>\cdots>x_{d-2}^{(n-2)}$, then

$$
\begin{equation*}
0>x_{1}^{(n)}>x_{1}^{(n-1)}>x_{1}^{(n-2)}>\cdots>x_{d-2}^{(n)}>x_{d-2}^{(n-1)}>x_{d-2}^{(n-2)}>x_{d-1}^{(n)} \tag{8}
\end{equation*}
$$

Proof The recurrence relation of $\left\{\begin{array}{c}n \\ j\end{array}\right\}^{[t]}$, for $t=3$, yields

$$
\begin{equation*}
P_{n}(x)=x\left[P_{n-1}^{\prime}(x)+P_{n-3}(x)\right] \tag{9}
\end{equation*}
$$

where $P_{0}(x)=1, P_{i}(x)=0$, if $i<3$ and $P_{i}(x)=x$, if $3 \leq i<6$.
We prove our theorem by induction on n. For $n \leq 4$, the statements are true.
Supposing the theorem true for $n-1$, we prove it for n.
First we consider the case where $P_{n}(x), P_{n-1}(x)$, and $P_{n-2}(x)$ are of degree d, which means that $n \equiv 2[3]$.

Let $0=x_{0}^{(n-1)}>x_{1}^{(n-1)}>\cdots>x_{d-1}^{(n-1)}$ be the roots of $P_{n-1}(x)$.
Step 1: Consider the two largest roots of $P_{n-1}(x)$, which are 0 and $x_{1}^{(n-1)}$. By Rolle's theorem, there exists $c \in] x_{1}^{(n-1)}, 0\left[\right.$ such that $P_{n-1}^{\prime}(c)=0$. Since the coefficients of $P_{n-1}(x)$ are positive, $P_{n-1}(x)$ is monotone decreasing in $] x_{1}^{(n-1)}, c[$ and monotone increasing in $] c, 0\left[\right.$. This implies that $P_{n-1}(x)<0$ for all $\left.x \in\right] x_{1}^{(n-1)}, 0[$.

Step 2: Consider the case when $x=x_{1}^{(n-1)}$ in (9).

- By induction hypothesis, the roots of $P_{n-3}(x)$ are: $0=x_{0}^{(n-3)}>x_{1}^{(n-3)}>\cdots>x_{d-2}^{(n-3)}$, and they are interlacing with the roots of $P_{n-1}(x)$ and $P_{n-2}(x)$ as follows: $0>x_{1}^{(n-1)}>x_{1}^{(n-2)}>x_{1}^{(n-3)}>\cdots>$ $x_{d-2}^{(n-1)}>x_{d-2}^{(n-2)}>x_{d-2}^{(n-3)}>x_{d-1}^{(n-1)}>x_{d-1}^{(n-2)}$.
From Step 1, we have $P_{n-3}(x)<0$ for $\left.x \in\right] x_{1}^{(n-3)}, 0\left[\right.$, in particular for $x=x_{1}^{(n-1)}$ which implies that $P_{n-3}\left(x_{1}^{(n-1)}\right)<0$.
- We know that $P_{n-1}(x)$ has d nonpositive real roots and so $P_{n-1}^{\prime}(x)$ must have $d-1$.

By Rolle's theorem, we know that there exists a root of $P_{n-1}^{\prime}(x)$ between any two consecutive roots of $P_{n-1}(x)$, and so there is a root of $P_{n-1}^{\prime}(x)$ between $] x_{1}^{(n-1)}, 0\left[\right.$, and the sign of $P_{n-1}^{\prime}\left(x_{1}^{(n-1)}\right)$ is the opposite sign of $P_{n-1}^{\prime}(0)$, which is positive, and so $P_{n-1}^{\prime}\left(x_{1}^{(n-1)}\right)<0$.

For $x=x_{1}^{(n-1)}$, we have shown that $x_{1}^{(n-1)}\left[P_{n-1}^{\prime}\left(x_{1}^{(n-1)}\right)+P_{n-3}\left(x_{1}^{(n-1)}\right)\right]$ is positive as a product of two nonpositive numbers. Hence $P_{n}\left(x_{1}^{(n-1)}\right)$ must be positive as well.

Moreover, we have $P_{n}(x)<0$ in $] x_{1}^{(n-1)}, 0\left[\right.$ because $P_{n-1}^{\prime}(x)>0$ is in $] x_{1}^{(n-1)}, 0[$ from Step 1 and $P_{n-3}(x)<0$, and so $P_{n}(x)$ has a root in $] x_{1}^{(n-1)}, 0[$.

Now we prove that $P_{n}(x)$ has a root in each interval $] x_{i+1}^{(n-1)}, x_{i}^{(n-1)}$ [. In order to do so, it is enough to show that $P_{n}\left(x_{i}^{(n-1)}\right)$ and $P_{n}\left(x_{i}^{(n-1)}\right)$ have opposite signs.

- By Rolle's theorem, we conclude that $P_{n-1}^{\prime}\left(x_{i+1}^{(n-1)}\right)$ and $P_{n-1}^{\prime}\left(x_{i}^{(n-1)}\right)$ have opposite signs.
- By induction hypothesis, we conclude that $P_{n-3}\left(x_{i+1}^{(n-1)}\right)$ and $P_{n-3}\left(x_{i}^{(n-1)}\right)$ have opposite signs.
- Based on Rolle's theorem, P_{n-1}^{\prime} changes its sign i times in $] x_{i}^{(n-1)}, 0\left[\right.$, and by induction hypothesis, P_{n-3} changes its sign $i-1$ times; however, there exists a small neighborhood of 0 where $P_{n-1}^{\prime}(x)>0$ and $P_{n-3}<0$, and so $P_{n-1}^{\prime}\left(x_{i}^{(n-1)}\right)$ and $P_{n-3}\left(x_{i}^{(n-1)}\right)$ have equal signs.

By Equation (9), $P_{n}\left(x_{i}^{(n-1)}\right)$ and $P_{n}\left(x_{i+1}^{(n-1)}\right)$ have opposite signs, which implies that $P_{n}(x)$ has a root in each interval $] x_{i+1}^{(n-1)}, x_{i}^{(n-1)}[$.

Furthermore, $P_{n}(x)$ has an odd number of roots in such interval because it has different signs in the limits of such interval, and we know that the number of the roots of $P_{n}(x)$ is at most one larger than $P_{n-1}(x)$. Then $P_{n}(x)$ has exactly one root in each interval $] x_{i+1}^{(n-1)}, x_{i}^{(n-1)}[$.

Now we prove that the polynomial $P_{n}(x)$ has exactly one root in each interval $] x_{i+1}^{(n-2)}, x_{i}^{(n-2)}$ [. To do this, we just have to prove that $P_{n}\left(x_{i}^{(n-2)}\right)$ and $P_{n}\left(x_{i+1}^{(n-2)}\right)$ have opposite signs. We know by induction hypothesis that $P_{n-3}\left(x_{i}^{(n-1)}\right)$ and $P_{n-3}\left(x_{i}^{(n-2)}\right)$ have equal signs. For this, we just have to show that for $0 \leq i \leq d-1$, $P_{n-1}^{\prime}\left(x_{i}^{(n-1)}\right)$ and $P_{n-1}^{\prime}\left(x_{i}^{(n-2)}\right)$ have equal signs.

- Consider the case where $P_{n-1}^{\prime}\left(x_{i}^{(n-1)}\right)$ is nonpositive and so by induction hypothesis $P_{n-1}(x)$ is nonnegative in the interval $] x_{i+1}^{(n-1)}, x_{i}^{(n-1)}\left[, P_{n-2}(x)\right.$ is nonnegative in the interval $] x_{i+1}^{(n-1)}, x_{i}^{(n-2)}$ [and nonpositive in $] x_{i}^{(n-2)}, x_{i}^{(n-1)}\left[\right.$, knowing that $P_{n-2}^{\prime}(x)$ achieves its maximum at $x_{i}^{(n-2)}$ and so $P_{n-2}^{\prime}\left(x_{i}^{(n-2)}\right)$ is nonpositive; moreover, $P_{n-2}^{\prime}\left(x_{i}^{(n-1)}\right)$ is nonnegative, then P_{n-2}^{\prime} has a root in such interval, denoted as γ_{i}. For this, $P_{n-2}^{\prime}(x)$ is monotone increasing and nonpositive in the interval $] x_{i}^{(n-2)}, \gamma_{i}[$ and monotone increasing and nonnegative in the interval $] \gamma_{i}, x_{i}^{(n-1)}[$.

Supposing that $P_{n-1}^{\prime}\left(x_{i}^{(n-2)}\right)$ is nonnegative and β_{i} the root of $P_{n-1}^{\prime}(x)$, we have $P_{n-1}(x)$ monotone increasing in the interval $] x_{i+1}^{(n-1)}, \beta_{i}[$ and monotone decreasing in the interval $] \beta_{i}, x_{i}^{(n-1)}[$.
From our supposition, we have $P_{n-1}^{\prime}\left(x_{i}^{(n-2)}\right)>0$, which means that $\left.\beta_{i} \in\right] x_{i}^{(n-2)}, x_{i}^{(n-1)}$ [, and we discuss two cases:

1. $\left.\beta_{i} \in\right] x_{i}^{(n-2)}, \gamma_{i}$, from the supposition, $P_{n-1}\left(\beta_{i}\right)-P_{n-1}\left(x_{i}^{(n-2)}\right) \geq 0$, which implies $\beta_{i} P_{n-2}^{\prime}\left(\beta_{i}\right)+$ $\beta_{i} P_{n-4}\left(\beta_{i}\right)-x_{i}^{(n-2)} P_{n-2}^{\prime}\left(x_{i}^{(n-2)}\right)-x_{i}^{(n-2)} P_{n-4}\left(x_{i}^{(n-2)}\right) \geq 0$; however, by induction hypothesis and from the previous paragraph, we have $\beta_{i} P_{n-2}^{\prime}\left(\beta_{i}\right)-x_{i}^{(n-2)} P_{n-2}^{\prime}\left(x_{i}^{(n-2)}\right) \leq 0$ and $\beta_{i} P_{n-4}\left(\beta_{i}\right)-$ $x_{i}^{(n-2)} P_{n-4}\left(x_{i}^{(n-2)}\right) \leq 0$, a contradiction, and so $P_{n-1}^{\prime}\left(x_{i}^{(n-2)}\right)$ is nonpositive, which means that it has the same sign of $P_{n-1}^{\prime}\left(x_{i}^{(n-1)}\right)$.
2. $\left.\beta_{i} \in\right] \gamma_{i}, x_{i}^{(n-1)}$ [, from the supposition, $P_{n-1}\left(\beta_{i}\right)-P_{n-1}\left(x_{i}^{(n-2)}\right) \geq 0$, which implies $\beta_{i} P_{n-2}^{\prime}\left(\beta_{i}\right)+$ $\beta_{i} P_{n-4}\left(\beta_{i}\right)-\gamma_{i} P_{n-2}^{\prime}\left(\gamma_{i}\right)-\gamma_{i} P_{n-4}\left(\gamma_{i}\right) \geq 0, \beta_{i} P_{n-2}^{\prime}\left(\beta_{i}\right)+\beta_{i} P_{n-4}\left(\beta_{i}\right)-\gamma_{i} P_{n-4}\left(\gamma_{i}\right) \geq 0$; however, by induction hypothesis and from the previous paragraph, we have $\beta_{i} P_{n-2}^{\prime}\left(\beta_{i}\right) \leq 0$ and $\beta_{i} P_{n-4}\left(\beta_{i}\right)-$ $\gamma_{i} P_{n-4}\left(\gamma_{i}\right) \leq 0$, a contradiction, and so $P_{n-1}^{\prime}\left(x_{i}^{(n-2)}\right)$ is nonpositive, which means that it has the same sign of $P_{n-1}^{\prime}\left(x_{i}^{(n-1)}\right)$.

- For the second case, where $P_{n-1}^{\prime}\left(x_{i}^{(n-1)}\right)$ is nonnegative, the proof is the same.

This completes the proof.
Consider now the case when $P_{n}(x)$ is of degree d and $P_{n-1}(x), P_{n-2}(x)$ are of degree $d-1$, which means that $n \equiv 0[3]$. We follow the same method of proof presented in the previous case.

For the case when $P_{n}(x)$ and $P_{n-1}(x)$ are of degree d and $P_{n-2}(x)$ is of degree $d-1, n \equiv 1[3]$. We follow the same approach of proof presented in the previous case. We know that the last root of $P_{n}(x)$ has to be nonpositive and it cannot be in any interval $] x_{i+1}^{(n-2)}, x_{i}^{(n-1)}$ [, which means that it should be in $]-\infty, x_{d-2}^{(n-2)}[$. This concludes the proof.

Theorem 10 The sequence $\left(\left\{\begin{array}{l}n \\ k\end{array}\right\}^{[3]}\right)_{k}$ is strictly log-concave and thus unimodal with at most two consecutive modes.
Proof It follows by Theorem 1 and Theorem 9.

4. Link with the Stirling numbers of second kind and the t-Fibonacci-Stirling numbers

In this section, we give the relation between the t-successive associated Stirling numbers and the Stirling numbers of second kind. We also introduce the t-Fibonacci-Stirling numbers.

4.1. The Stirling numbers of second kind

The t-successive associated Stirling numbers are defined as the second kind's Stirling triangle elements of direction $(\alpha, 1), \alpha=t-1$. The sequence $\left\{\begin{array}{c}n-\alpha k \\ k\end{array}\right\}$ associated with the direction $(\alpha, 1)$ is illustrated by the theorem below.

Figure. Direction $(2,1)$ in second kind's Stirling triangle.

Theorem 11 For $n \geq t k$, we have

$$
\left\{\begin{array}{l}
n \tag{10}\\
k
\end{array}\right\}^{[t]}=\left\{\begin{array}{c}
n-\alpha k \\
k
\end{array}\right\}
$$

Proof It is a consequence of (2).

Remark 12 For $n \geq t k$, we have

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}^{[t]}=\left\{\begin{array}{c}
n-k \\
k
\end{array}\right\}^{[t-1]}=\left\{\begin{array}{c}
n-\alpha k \\
k
\end{array}\right\}
$$

The following theorem is an analogue of Tanny and Zuker's theorem [14, 16].

Theorem 13 The sequence $\left(\left\{\begin{array}{c}n-2 k \\ k\end{array}\right\}\right)_{k}$ is log-concave and thus unimodal with at most two consecutive modes.
Proof It follows from Theorem 11, for $t=3$, and Theorem 10 .

4.2. The t-Fibonacci-Stirling numbers

It is well known that Fibonacci numbers are defined as the sum of diagonal elements of Pascal's triangle; see for instance [1]. Hence we introduce the t-Fibonacci-Stirling numbers as well.

Definition 14 We define the t-Fibonacci-Stirling numbers $\left(\varphi_{n}^{(t)}\right)_{n}$, for $n \geq t k$, by

$$
\varphi_{n+1}^{(t+1)}:=\sum_{k}\left\{\begin{array}{c}
n-t k \tag{11}\\
k
\end{array}\right\}
$$

where, $\varphi_{0}^{(t)}=1, \varphi_{1}^{(t)}=0$.

For some values of the t-Fibonacci-Stirling numbers, see Tables 4-6.
Corollary 15 The t-Fibonacci-Stirling numbers are linked to the t-successive associated Stirling numbers by the following expression:

$$
\varphi_{n+1}^{(t+1)}=\sum_{k}\left\{\begin{array}{l}
n \tag{12}\\
k
\end{array}\right\}^{[t]}
$$

Proof It follows by (10) in (11).
The sequence $\left(\varphi_{n}^{(t)}\right)$ is called the sequence of the t-successive associated Bell numbers.

5. The 2 -successive associated Stirling numbers

In this section, we give some complementary identities specific to the 2 -successive associated Stirling numbers; see [6].

Remark 16 For all $n \geq 3$, we have $\left\{\begin{array}{l}n \\ 2\end{array}\right\}^{[2]}=2^{n-3}-1$.
Corollary 17 Expression of the generating function in terms of noncentral ascending factorial

$$
\sum_{n \geq 2 k}\left\{\begin{array}{l}
n \tag{13}\\
k
\end{array}\right\}^{[2]} \frac{1}{z^{n}}=\frac{1}{z^{k}(z)_{k+1}}
$$

where $(z)_{k+1}=z(z-1) \cdots(z-k)$.
Proof We have to set $x=1 / z$ in (4), with $t=2$.
The 2 -successive associated Stirling numbers $\left\{\begin{array}{l}n \\ k\end{array}\right\}^{[2]}$ are given by the following sum. It is the main result of this section.

Theorem 18 For $k=0,1, \ldots,\lfloor n / 2\rfloor$, we have,

$$
\left\{\begin{array}{l}
n \tag{14}\\
k
\end{array}\right\}^{[2]}=\sum 1^{r_{1}} 2^{r_{2}} \cdots k^{r_{k}}
$$

where the summation is extended over all integers $r_{j} \geq 0, j=1, \ldots, k$, with $r_{1}+r_{2}+\cdots+r_{k}=n-2 k$.
Proof Expanding each factor in (4), where $t=2$, and using the geometric series, we find

$$
\begin{aligned}
A_{k}(x) & =\sum_{n \geq 2 k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}^{[2]} x^{n} \\
& =x^{2 k} \prod_{j=1}^{k}\left(\sum_{r_{j}=0}^{\infty} k^{r_{j}} x^{r_{j}}\right) \\
& =\sum_{n \geq 2 k}\left(\sum_{r_{1}+r_{2}+\cdots+r_{k}=n-2 k} 1^{r_{1}} 2^{r_{2}} \cdots k^{r_{k}}\right) x^{n}
\end{aligned}
$$

The result follows by identification.

Corollary 19 The following relation, with symmetric functions, holds:

$$
\left\{\begin{array}{c}
2 n+k \tag{15}\\
n
\end{array}\right\}^{[2]}=\sum_{1 \leq i_{1} \leq \cdots \leq i_{k} \leq n} i_{1} i_{2} \cdots i_{k}
$$

Proof See [8, Th. 8].
We give now an exponential generating function and double generating function for $\left\{\begin{array}{c}n+k \\ k\end{array}\right\}^{[2]}$.
Corollary 20 We have the following generating functions:

$$
\begin{align*}
& \sum_{n \geq k}\left\{\begin{array}{c}
n+k \\
k
\end{array}\right\}^{[2]} \frac{x^{n}}{n!}=\frac{1}{k!} e^{x}\left(e^{x}-1\right)^{k} \tag{16}\\
& \sum_{n} \sum_{k}\left\{\begin{array}{c}
n+k \\
k
\end{array}\right\}^{[2]} \frac{x^{n}}{n!} y^{k}=e^{y\left(e^{x}-1\right)} \tag{17}
\end{align*}
$$

Proof See [8, Th. 16].

6. Commentaries

In this section, we give some commentaries related to the log-concavity and the unimodality of the t-successive associated Stirling numbers.

Let

$$
P_{n}(x)=x\left[P_{n-1}^{\prime}(x)+P_{n-t}(x)\right]
$$

We are convinced that the roots of $P_{n}(x)$ are real, distinct, and nonpositive for $n=1,2, \ldots$.
Furthermore, the roots of $P_{n}(x), P_{n-1}(x), \ldots, P_{n-t+1}(x)$ are interlacing in the following sense:
If $P_{n}(x)$ is of degree d and $P_{n-1}(x), \cdots, P_{n-(t-1)}(x)$ are of degree $d-1$ and their roots are, respectively:
$0=x_{0}^{(n)}>x_{1}^{(n)}>\cdots>x_{d-1}^{(n)}, 0=x_{0}^{(n-1)}>x_{1}^{(n-1)}>\cdots>x_{d-2}^{(n-1)}, \cdots, 0=x_{0}^{(n-(t-1))}>x_{1}^{(n-(t-1))}>\cdots>$ $x_{d-2}^{(n-(t-1))}$, then

$$
\begin{align*}
0>x_{1}^{(n)}>x_{1}^{(n-1)}> & \cdots>x_{1}^{(n-(t-1))}>\cdots>x_{d-2}^{(n)}>x_{d-2}^{(n-1)}>\cdots \\
& \cdots>x_{d-2}^{(n-(t-1))}>x_{d-1}^{(n)} \tag{18}
\end{align*}
$$

While if $P_{n}(x), \ldots, P_{n-i}(x)$ are of degree d and $P_{n-i-1}(x), \ldots, P_{n-(t-1)}, 1 \leq i \leq t-1$, are of degree $d-1$ and their roots are, respectively:
$0=x_{0}^{(n)}>x_{1}^{(n)}>\cdots>x_{d-1}^{(n)}>x_{d}^{(n)}, \cdots, 0=x_{0}^{(n-i)}>x_{1}^{(n-i)}>\cdots>x_{d-1}^{(n-i)}, \cdots, 0=x_{0}^{(n-(t-1))}>x_{1}^{(n-(t-1))}>$ $\cdots>x_{d-2}^{(n-(t-1))}$, then

$$
\begin{gather*}
0>x_{1}^{(n)}>\cdots>x_{1}^{(n-i)}>\cdots>x_{1}^{(n-(t-1))}>\cdots>x_{d-2}^{(n)}>\cdots>x_{d-2}^{(n-i)}>\cdots \\
\cdots>x_{d-2}^{(n-(t-1))}>x_{d-1}^{(n)}>\cdots>x_{d-1}^{(n-i)} \tag{19}
\end{gather*}
$$

We can then conclude that

1. The sequence $\left(\left\{\begin{array}{l}n \\ k\end{array}\right\}^{[t]}\right)_{k}$, for a fixed t, is strictly log-concave and thus unimodal with at most two consecutive modes.
2. The sequence $\left(\left\{\begin{array}{c}n-(t-1) k \\ k\end{array}\right\}\right)_{k}$ is log-concave and thus unimodal with at most two consecutive modes.

Acknowledgments

The work is partially supported by Tassili-Maghreb project 14MDU929M. The authors wish to express their thanks to Professor M Josuat-Verges and Professor I Mező for their comments. They also thank the referee for valuable advice and comments.

References

[1] Belbachir H, Bencherif F. Linear recurrent sequences and powers of a square matrix. Integers 2006; 6: A12.
[2] Belbachir H, Bencherif F. Unimodality of sequences associated to Pell numbers. Ars Combinatoria 2011; 102: 305311.
[3] Belbachir H, Bencherif F, Szalay L. Unimodality of certain sequences connected with binomial coefficients. J Integer Seq 2007; 10: 2.
[4] Belbachir H, Bousbaa IE. Associated Lah numbers and r-Stirling numbers. arXiv: 1404.5573v2 2014.
[5] Belbachir H, Szalay L. Unimodal rays in the regular and generalized Pascal triangles. J Integer Seq 2008; 11: 2.
[6] Belbachir H, Tebtoub AF. Les nombres de Stirling associés avec succession d'ordre 2, nombres de Fibonacci-Stirling et unimodalité. C R Acad Sci Paris 2015; 353: 767-771.
[7] Bóna M, Mező I. Real Zeros and Partitions without singleton blocks. European J Combinatorics 2016; 51: 500-510.
[8] Broder AZ. The r-Stirling numbers. Discrete Math 1984; 49: 241-259.
[9] Canfield ER. Location of the maximum Stirling number(s) of second kind. Studies in App Math 1978; 59: 83-93.
[10] Erdös P. On a conjecture of Hammersley. J London Math Soc 1953; 28: 232-236.
[11] Hammersley JM. The sum of products of the natural numbers. Proc London Math Soc 1951; 31: 435-452.
[12] Harper LH. Stirling behaviour is asymptotically normal. Ann Math Stat 1967; 38: 410-414.
[13] Lieb EH. Concavity properties and a generating function for Stirling numbers. J Combinatorial Theory 1968; 5: 203-206.
[14] Tanny S, Zuker M. Analytic methods applied to a sequence of binomial coefficients. Discrete Math 1978; 24: 299-310.
[15] Tanny S, Zuker M. On unimodality sequence of binomial coefficients. Discrete Math 1974; 9: 79-89.
[16] Tanny S, Zuker M. On unimodal sequence of binomial coefficients II. Combin Inform System Sci 1976; 1: 81-91.
[17] Wilf HS. Generatingfunctionology. San Diego, CA, USA: Academic Press, 1994.

Appendix

Table 1. Some values for the 2 -successive associated Stirling numbers.

$n \backslash k$	0	1	2	3	4	5	6	7
0	1							
1	0							
2	0	1						
3	0	1						
4	0	1	1					
5	0	1	3					
6	0	1	7	1				
7	0	1	15	6				
8	0	1	31	25	1			
9	0	1	63	90	10			
10	0	1	127	301	65	1		
11	0	1	255	966	350	15		
12	0	1	511	3025	1701	140	1	
13	0	1	1023	9330	7770	1050	21	
14	0	1	2047	28501	34105	6951	266	1
15	0	1	4095	86526	145750	42525	2646	28

Table 2. Some values for the 3 -successive associated Stirling numbers.

$n \backslash k$	0	1	2	3	4	5
0	1					
1	0					
2	0					
3	0	1				
4	0	1				
5	0	1				
6	0	1	1			
7	0	1	3			
8	0	1	7			
9	0	1	15	1		
10	0	1	31	6		
11	0	1	63	25		
12	0	1	127	90	1	
13	0	1	255	301	10	
14	0	1	511	966	65	
15	0	1	1023	3025	350	1

Table 3. Some values for the 4 -successive associated Stirling numbers.

$n \backslash k$	0	1	2	3
0	1			
1	0			
2	0			
3	0			
4	0	1		
5	0	1		
6	0	1		
7	0	1		
8	0	1	1	
9	0	1	3	
10	0	1	7	
11	0	1	15	
12	0	1	31	1
13	0	1	63	6
14	0	1	127	25
15	0	1	255	90

Table 4. Some values for the 2-Fibonacci-Stirling numbers, (Sloane, A171367).

n	0	1	2	3	4	5	6	7	8	9	10	11	12
$\varphi_{n}^{(2)}$	1	0	1	1	2	4	9	22	58	164	495	1587	5379

Table 5. Some values for the 4-Fibonacci-Stirling numbers.

n	0	1	2	3	4	5	6	7	8	9	10	11	12
$\varphi_{n}^{(3)}$	1	0	0	1	1	1	2	4	8	17	38	89	219

Table 6. Some values for the 3-Fibonacci-Stirling numbers.

n	0	1	2	3	4	5	6	7	8	9	10	11	12
$\varphi_{n}^{(4)}$	1	0	0	0	1	1	1	1	2	4	8	16	33

[^0]: *Correspondence: hacenebelbachir@gmail.com
 2010 AMS Mathematics Subject Classification: 05A19, 11B37, 11B39, 11B73, 05A15

