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Abstract: Using a combinatorial approach, we introduce the t -successive associated Stirling numbers and we give the

recurrence relation and the generating function. We also establish the unimodality of sequence
{
n−2k

k

}
k
lying over a ray

of the second kind’s Stirling triangle. Some combinatorial identities are given.
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1. Introduction

This paper is about some extension of Stirling numbers of second kind and unimodality. We give some

introductory tools.

The t-associated Stirling numbers of second kind, denoted by
{
n
k

}(t)
(see for instance [4] and references

therein), count the number of partitions of the set {1, 2, . . . , n} into k subsets such that each subset contains

at least t elements. They are generated by the following function:

1

k!

(
exp (x)−

t−1∑
i=0

xi

i!

)k

=
∑
n≥tk

{
n

k

}(t)
xn

n!
.

In this work, we focus on a special situation of t-associated Stirling numbers of second kind.

Our aim is to study combinatorial aspects of these sequences and for t = 3 prove the unimodality.

For doing so, we give some results and definitions linked to log-concavity and unimodality.

A finite sequence (an)
n
k=0 is unimodal if it increases to a maximum and then decreases. That is, there

exists k such that
a1 ≤ a2 ≤ · · · ≤ ak ≥ ak+1 ≥ · · · ≥ an.

The sequence (an)
n
k=0 is log-concave (LC for short) if for k = 2, . . . , n− 1,

a2k ≥ ak+1ak−1, (1)

it is strictly log-concave (SLC for short) when (1) holds with the strict inequality.

It is known that log-concavity implies unimodality [17].
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Theorem 1 (Newton’s inequality [13]) If the polynomial a1x+ a2x
2 + · · ·+ anx

n has only real zeros, then

a2k ≥ ak−1ak+1
k

k − 1

n− k + 1

n− k
(k = 2, . . . , n− 1).

Theorem 1 implies the strict version of (1), (see Hammersley [11] and Erdös [10]).

The first result dealing with unimodality of Pascal’s triangle elements is due to Tanny and Zuker [15],

who showed that the sequence of terms
(
n−k
k

)
(k = 0, . . . , ⌊n/2⌋) is unimodal. They also investigated, for a

given α , the unimodality of the sequence
(
n−αk

k

)
in [14, 16]. Belbachir et al. provide in [3] some cases of

binomial sequence
(
n−αk
βk

)
and in [2] Belbachir and Bencherif proved the unimodality of sequences associated to

Pell numbers. In [5], Belbachir and Szalay proved that any ray crossing Pascal’s triangle provides a unimodal

sequence. Our main interest is to examine combinatorial sequences connected to an arithmetical triangle as the

second kind’s Stirling triangle and its generalizations.

Harper [12] showed that
∑

k

{
n
k

}
xk has only real roots. Canfield [9] showed that the sequence

({
n
k

})
k
is

unimodal for a fixed n with at most two consecutive modes.

In Section 2, we introduce the t-successive associated Stirling numbers
{
n
k

}[t]
(n ≥ tk) as an extension of

the 2-successive associated Stirling numbers; see [6]. Using a combinatorial approach, we derive their recurrence

relation and compute the associated generating function. We prove in Section 3 the strict log-concavity and

hence the unimodality of the 3-successive associated Stirling numbers. In Section 4, we link the t -successive

associated Stirling numbers to the classical Stirling numbers of the second kind; this allowed us to prove the

unimodality of sequence
{
n−2k

k

}
k
lying over a ray of the second kind’s Stirling triangle (see Figure). We also

introduce the t -Fibonacci–Stirling numbers. We conclude, in Section 5, by establishing combinatorial identities

related to the 2-successive associated Stirling numbers, as a complement study of our work [6].

2. The t-successive associated Stirling numbers

We start by giving a combinatorial definition of the t -successive associated Stirling numbers.

Definition 2 The t-successive associated Stirling numbers, denoted by
{
n
k

}[t]
, count the number of partitions

of the set {1, 2, . . . , n} into k parts, such that each part contains at least t consecutive numbers. Moreover,

the last element n must either form a part with its t − 1 predecessors, or belongs to another part that already

contains t consecutive numbers.

For some values of the t-successive Stirling numbers, see Tables 1–3.

Examples 3 The following examples clarify the above combinatorial definition.

• t = 2 :{
6
2

}[2]
= 7 , we have {1, 2, 3, 4} {5, 6} ; {1, 2, 3, 6} {4, 5} ;

{1, 2, 3} {4, 5, 6} ; {1, 2, 6} {3, 4, 5} ; {1, 2} {3, 4, 5, 6} ; {1, 2, 5, 6} {3, 4} ;
{1, 2, 5} {3, 4, 6} .{
6
3

}[2]
= 1 , there is one way to partition six elements into three parts {1, 2} {3, 4} {5, 6} .
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• t = 3 :{
7
2

}[3]
= 3 , counts the number of partitions of seven elements into two parts

{1, 2, 3, 4} {5, 6, 7} ; {1, 2, 3} {4, 5, 6, 7} ; {1, 2, 3, 7} {4, 5, 6} .
The partition {2, 3, 4} {1, 5, 6, 7} cannot be considered. In fact, the 7th element is not in a part that

already contains three consecutive numbers.

Theorem 4 For n ≥ tk , we have

{
n

k

}[t]

= k

{
n− 1

k

}[t]

+

{
n− t

k − 1

}[t]

, (2)

where
{
0
0

}[t]
= 1 ,

{
n

n−1

}[t]
=
{

n
n−2

}(t)
= · · · =

{
n

n−t+1

}[t]
= 0 and

{
n
0

}[t]
= 0, (n ≥ 1) .

Proof Let us focus on the last element n . If it forms a part with its t − 1 predecessors, then it remains to

form (k − 1) parts from the (n− t) remaining elements, and we have
{
n−t
k−1

}[t]
ways to do that. Otherwise, we

constitute k parts from (n− 1) elements; then adding the nth element to one of the k parts, we get k
{
n−1
k

}[t]
possibilities. This ends the proof. 2

The t-successive associated Stirling numbers satisfy the following vertical recurrence relation.

Theorem 5 Let n, k, t ∈ N such that n ≥ tk . We have

{
n

k

}[t]

=
n−tk∑
i=0

ki
{
n− i− t

k − 1

}[t]

. (3)

Proof From the recurrence relation (2), we have, for n ≥ tk ,

{
n

k

}[t]

= k

{
n− 1

k

}[t]

+

{
n− t

k − 1

}[t]

,

k

{
n− 1

k

}[t]

= k2
{
n− 2

k

}[t]

+ k

{
n− t− 1

k − 1

}[t]

,

...

kn−tk−1

{
tk + 1

k

}[t]

= kn−tk

{
tk

k

}[t]

+ kn−tk−1

{
1 + t(k − 1)

k − 1

}[t]

,

kn−tk

{
tk

k

}[t]

= kn−tk+1

{
tk − 1

k

}[t]

+ kn−tk

{
t(k − 1)

k − 1

}[t]

.

Summing all the equations side by side and according to the initial conditions, we get the result. 2

Now we give the generating function of the t-successive associated Stirling numbers.

Theorem 6 The generating function of the t-successive associated Stirling numbers is given, for k ≥ 1 , by

Ak(x) :=
∑
n≥sk

{
n

k

}[t]

xn =
xtk

(1− x)(1− 2x) · · · (1− kx)
, (4)

1281



BELBACHIR and TEBTOUB/Turk J Math

where A0(x) = 1 .

Proof From the recurrence relation (2), we have, for k = 1, 2, . . . , and for a fixed t ,

∑
n≥tk

{
n

k

}[t]

xn =
∑
n≥tk

k

{
n− 1

k

}[t]

xn +
∑
n≥tk

{
n− t

k − 1

}[t]

xn,

consequently,

Ak(x) = kxAk(x) + xtAk−1(x), k = 1, 2, . . . ,

thus,

Ak(x) = xt(1− kx)−1Ak−1(x), k = 1, 2, . . . .

Hence,

Ak−1(x) = xt(1− (k − 1)x)−1Ak−2(x),

Ak−2(x) = xt(1− (k − 2)x)−1Ak−3(x),

...

A2(x) = xt(1− 2x)−1A1(x),

A1(x) = xt(1− x)−1A0(x).

By substituting each term Ai−1(x) in Ai(x), i = 1, . . . , k , we obtain

Ak(x) = xt(1− (k − 1)x)−1xt(1− (k − 2)x)−1 · · ·xt(1− x)−1A0(x).

According to the initial conditions, we get the result. 2

An explicit expression is given in the following result.

Theorem 7 The t-successive associated Stirling numbers
{
n
k

}[t]
have the following explicit formula. For

n ≥ tk , we have

{
n

k

}[t]

=
1

k!

k∑
p=1

(−1)(k−p)

(
k

p

)
pn−(t−1)k. (5)
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Proof Formula (5) satisfies the recurrence relation (2),{
n

k

}[t]

= k

{
n− 1

k

}[t]

+

{
n− t

k − 1

}[t]

= k
1

k!

k∑
p=1

(−1)(k−p)

(
k

p

)
pn−1−(t−1)k

+
1

(k − 1)!

k−1∑
p=1

(−1)(k−p−1)

(
k − 1

p

)
pn−1−(t−1)k

=
1

(k − 1)!

k∑
p=1

(−1)(k−p)

(
k

p

)
pn−1−(t−1)k

− 1

(k − 1)!

k∑
p=1

(−1)(k−p)

(
k − 1

p

)
pn−1−(t−1)k

=
1

(k − 1)!

(
k∑

p=1

(−1)(k−p)pn−1−(t−1)k

((
k

p

)
−
(
k − 1

p

)))

=
1

(k − 1)!

k∑
p=1

(−1)(k−p)pn−1−(t−1)k

(
k − 1

p− 1

)

=

k∑
p=1

(−1)(k−p)pn−(t−1)k 1

(k − 1)!

1

p

(k − 1)!

(p− 1)!(k − p)!

=
1

k!

k∑
p=1

(−1)(k−p)pn−(t−1)k k!

p!(k − p)!

=
1

k!

k∑
p=1

(−1)(k−p)pn−(t−1)k

(
k

p

)
,

which ends the proof. 2

3. Unimodality of 3-successive associated Stirling numbers

Following Bòna’s approach [7], we prove the strict log-concavity of the 3-successive associated Stirling numbers.

Let

Pn(x) :=
n∑

j=0

{
n

j

}[t]

xj .

Proposition 8 Let d ∈ N be the degree of Pn(x) for a fixed t . If n is a multiple of t then Pn−1(x) and

Pn−2(x) ,. . . ,Pn−t(x) are of degree d − 1 , where d = n/t . Moreover, if n is not a multiple of t , n ≡ i[t] ,

1 ≤ i ≤ t − 1 then Pn(x), . . . , Pn−i(x) are of degree d and Pn−i−1(x), . . . , Pn−t are of degree d − 1 , where

d = ⌊n/t⌋ .
Proof The proof is easy; we leave it to the reader (see also the Appendix). 2
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Expression of Pn(x) for n ≤ 10 and t ≤ 4

• t = 2:
P0(x) = 1,

P1(x) = 0,

P2(x) = x ,

P3(x) = x ,

P4(x) = x+ x2 ,

P5(x) = x+ 3x2 ,

P6(x) = x+ 7x2 + x3 ,

P7(x) = x+ 15x2 + 6x3 ,

P8(x) = x+ 31x2 + 25x3 + x4 ,

P9(x) = x+ 63x2 + 90x3 + 10x4 ,

P10(x) = x+ 127x2 + 301x3 + 65x4 + x5 .

• t = 3:
P0(x) = 1,

P1(x) = 0,

P2(x) = 0,

P3(x) = x ,

P4(x) = x,

P5(x) = x ,

P6(x) = x+ x2 ,

P7(x) = x+ 3x2 ,

P8(x) = x+ 7x2 ,

P9(x) = x+ 15x2 + x3 ,

P10(x) = x+ 31x2 + 6x3 .

• t = 4:
P0(x) = 1,

P1(x) = 0,

P2(x) = 0,

P3(x) = 0,

P4(x) = x,

P5(x) = x ,

P6(x) = x ,

P7(x) = x ,

P8(x) = x+ x2 ,

P9(x) = x+ 3x2 ,

P10(x) = x+ 7x2 .

Now we prove the log-concavity and the unimodality of the 3-successive associated Stirling numbers.
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Theorem 9 The roots of Pn(x) are real, distinct, and nonpositive for n = 1, 2, . . . .

Furthermore, the roots of Pn(x) , Pn−1(x) and Pn−2(x) are interlacing in the following sense:

If Pn(x), Pn−1(x) et Pn−2(x) are all of degree d and their roots are, respectively: 0 = x
(n)
0 > x

(n)
1 >

· · · > x
(n)
d−1 > x

(n)
d , 0 = x

(n−1)
0 > x

(n−1)
1 > · · · > x

(n−1)
d−1 , 0 = x

(n−2)
0 > x

(n−2)
1 > · · · > x

(n−2)
d−1 , then

0 > x
(n)
1 > x

(n−1)
1 > x

(n−2)
1 > · · · > x

(n)
d−2 > x

(n−1)
d−2 > x

(n−2)
d−2 >

> x
(n)
d−1 > x

(n−1)
d−1 > x

(n−2)
d−1 (6)

. If Pn(x) and Pn−1(x) are of degree d and Pn−2(x) is of degree d − 1 and their roots are, respectively:

0 = x
(n)
0 > x

(n)
1 > · · · > x

(n)
d−1 > x

(n)
d , 0 = x

(n−1)
0 > x

(n−1)
1 > · · · > x

(n−1)
d−1 , 0 = x

(n−2)
0 > x

(n−2)
1 > · · · > x

(n−2)
d−2 ,

then

0 > x
(n)
1 > x

(n−1)
1 > x

(n−2)
1 > · · · > x

(n)
d−2 > x

(n−1)
d−2 > x

(n−2)
d−2 > x

(n)
d−1 > x

(n−1)
d−1 (7)

. While if Pn(x) is of degree d and Pn−1(x) and Pn−2(x) are of degree d− 1 and their roots are, respectively:

0 = x
(n)
0 > x

(n)
1 > · · · > x

(n)
d−1 , 0 = x

(n−1)
0 > x

(n−1)
1 > · · · > x

(n−1)
d−2 , 0 = x

(n−2)
0 > x

(n−2)
1 > · · · > x

(n−2)
d−2 , then

0 > x
(n)
1 > x

(n−1)
1 > x

(n−2)
1 > · · · > x

(n)
d−2 > x

(n−1)
d−2 > x

(n−2)
d−2 > x

(n)
d−1. (8)

Proof The recurrence relation of
{
n
j

}[t]
, for t = 3, yields

Pn(x) = x
[
P

′

n−1(x) + Pn−3(x)
]
, (9)

where P0(x) = 1, Pi(x) = 0, if i < 3 and Pi(x) = x, if 3 ≤ i < 6.

We prove our theorem by induction on n . For n ≤ 4, the statements are true.

Supposing the theorem true for n− 1, we prove it for n .

First we consider the case where Pn(x), Pn−1(x), and Pn−2(x) are of degree d , which means that

n ≡ 2[3] .

Let 0 = x
(n−1)
0 > x

(n−1)
1 > · · · > x

(n−1)
d−1 be the roots of Pn−1(x).

Step 1: Consider the two largest roots of Pn−1(x), which are 0 and x
(n−1)
1 . By Rolle’s theorem, there

exists c ∈]x(n−1)
1 , 0[ such that P

′

n−1(c) = 0. Since the coefficients of Pn−1(x) are positive, Pn−1(x) is monotone

decreasing in ]x
(n−1)
1 , c[ and monotone increasing in ]c, 0[. This implies that Pn−1(x) < 0 for all x ∈]x(n−1)

1 , 0[.

Step 2: Consider the case when x = x
(n−1)
1 in (9).

• By induction hypothesis, the roots of Pn−3(x) are: 0 = x
(n−3)
0 > x

(n−3)
1 > · · · > x

(n−3)
d−2 , and they are

interlacing with the roots of Pn−1(x) and Pn−2(x) as follows: 0 > x
(n−1)
1 > x

(n−2)
1 > x

(n−3)
1 > · · · >

x
(n−1)
d−2 > x

(n−2)
d−2 > x

(n−3)
d−2 > x

(n−1)
d−1 > x

(n−2)
d−1 .

From Step 1, we have Pn−3(x) < 0 for x ∈]x(n−3)
1 , 0[, in particular for x = x

(n−1)
1 which implies that

Pn−3(x
(n−1)
1 ) < 0.
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• We know that Pn−1(x) has d nonpositive real roots and so P
′

n−1(x) must have d− 1.

By Rolle’s theorem, we know that there exists a root of P
′

n−1(x) between any two consecutive roots

of Pn−1(x), and so there is a root of P
′

n−1(x) between ]x
(n−1)
1 , 0[, and the sign of P

′

n−1(x
(n−1)
1 ) is the

opposite sign of P
′

n−1(0), which is positive, and so P
′

n−1(x
(n−1)
1 ) < 0.

For x = x
(n−1)
1 , we have shown that x

(n−1)
1

[
P

′

n−1(x
(n−1)
1 ) + Pn−3(x

(n−1)
1 )

]
is positive as a product of two

nonpositive numbers. Hence Pn(x
(n−1)
1 ) must be positive as well.

Moreover, we have Pn(x) < 0 in ]x
(n−1)
1 , 0[ because P

′

n−1(x) > 0 is in ]x
(n−1)
1 , 0[ from Step 1 and

Pn−3(x) < 0, and so Pn(x) has a root in ]x
(n−1)
1 , 0[.

Now we prove that Pn(x) has a root in each interval ]x
(n−1)
i+1 , x

(n−1)
i [ . In order to do so, it is enough to

show that Pn(x
(n−1)
i ) and Pn(x

(n−1)
i ) have opposite signs.

• By Rolle’s theorem, we conclude that P
′

n−1(x
(n−1)
i+1 ) and P

′

n−1(x
(n−1)
i ) have opposite signs.

• By induction hypothesis, we conclude that Pn−3(x
(n−1)
i+1 ) and Pn−3(x

(n−1)
i ) have opposite signs.

• Based on Rolle’s theorem, P
′

n−1 changes its sign i times in ]x
(n−1)
i , 0[, and by induction hypothesis, Pn−3

changes its sign i − 1 times; however, there exists a small neighborhood of 0 where P
′

n−1(x) > 0 and

Pn−3 < 0, and so P
′

n−1(x
(n−1)
i ) and Pn−3(x

(n−1)
i ) have equal signs.

By Equation (9), Pn(x
(n−1)
i ) and Pn(x

(n−1)
i+1 ) have opposite signs, which implies that Pn(x) has a root

in each interval ]x
(n−1)
i+1 , x

(n−1)
i [ .

Furthermore, Pn(x) has an odd number of roots in such interval because it has different signs in the

limits of such interval, and we know that the number of the roots of Pn(x) is at most one larger than Pn−1(x).

Then Pn(x) has exactly one root in each interval ]x
(n−1)
i+1 , x

(n−1)
i [ .

Now we prove that the polynomial Pn(x) has exactly one root in each interval ]x
(n−2)
i+1 , x

(n−2)
i [ . To do this,

we just have to prove that Pn(x
(n−2)
i ) and Pn(x

(n−2)
i+1 ) have opposite signs. We know by induction hypothesis

that Pn−3(x
(n−1)
i ) and Pn−3(x

(n−2)
i ) have equal signs. For this, we just have to show that for 0 ≤ i ≤ d − 1,

P
′

n−1(x
(n−1)
i ) and P

′

n−1(x
(n−2)
i ) have equal signs.

• Consider the case where P
′

n−1(x
(n−1)
i ) is nonpositive and so by induction hypothesis Pn−1(x) is nonnega-

tive in the interval ]x
(n−1)
i+1 , x

(n−1)
i [ , Pn−2(x) is nonnegative in the interval ]x

(n−1)
i+1 , x

(n−2)
i [ and nonpositive

in ]x
(n−2)
i , x

(n−1)
i [ , knowing that P

′

n−2(x) achieves its maximum at x
(n−2)
i and so P

′

n−2(x
(n−2)
i ) is non-

positive; moreover, P
′

n−2(x
(n−1)
i ) is nonnegative, then P

′

n−2 has a root in such interval, denoted as γi . For

this, P
′

n−2(x) is monotone increasing and nonpositive in the interval ]x
(n−2)
i , γi[ and monotone increasing

and nonnegative in the interval ]γi, x
(n−1)
i [ .
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Supposing that P
′

n−1(x
(n−2)
i ) is nonnegative and βi the root of P

′

n−1(x), we have Pn−1(x) monotone

increasing in the interval ]x
(n−1)
i+1 , βi[ and monotone decreasing in the interval ]βi, x

(n−1)
i [ .

From our supposition, we have P
′

n−1(x
(n−2)
i ) > 0, which means that βi ∈]x(n−2)

i , x
(n−1)
i [ , and we discuss

two cases:

1. βi ∈]x(n−2)
i , γi[ , from the supposition, Pn−1(βi) − Pn−1(x

(n−2)
i ) ≥ 0, which implies βiP

′

n−2(βi) +

βiPn−4(βi)− x
(n−2)
i P

′

n−2(x
(n−2)
i )− x

(n−2)
i Pn−4(x

(n−2)
i ) ≥ 0; however, by induction hypothesis and

from the previous paragraph, we have βiP
′

n−2(βi)− x
(n−2)
i P

′

n−2(x
(n−2)
i ) ≤ 0 and βiPn−4(βi) −

x
(n−2)
i Pn−4(x

(n−2)
i ) ≤ 0, a contradiction, and so P

′

n−1(x
(n−2)
i ) is nonpositive, which means that it

has the same sign of P
′

n−1(x
(n−1)
i ).

2. βi ∈]γi, x(n−1)
i [ , from the supposition, Pn−1(βi) − Pn−1(x

(n−2)
i ) ≥ 0, which implies βiP

′

n−2(βi) +

βiPn−4(βi)− γiP
′

n−2(γi)− γiPn−4(γi)≥ 0, βiP
′

n−2(βi) + βiPn−4(βi)− γiPn−4(γi) ≥ 0; however, by

induction hypothesis and from the previous paragraph, we have βiP
′

n−2(βi) ≤ 0 and βiPn−4(βi) −

γiPn−4(γi) ≤ 0, a contradiction, and so P
′

n−1(x
(n−2)
i ) is nonpositive, which means that it has the

same sign of P
′

n−1(x
(n−1)
i ).

• For the second case, where P
′

n−1(x
(n−1)
i ) is nonnegative, the proof is the same.

This completes the proof.

Consider now the case when Pn(x) is of degree d and Pn−1(x), Pn−2(x) are of degree d − 1, which

means that n ≡ 0[3] . We follow the same method of proof presented in the previous case.

For the case when Pn(x) and Pn−1(x) are of degree d and Pn−2(x) is of degree d − 1, n ≡ 1[3] . We

follow the same approach of proof presented in the previous case. We know that the last root of Pn(x) has to

be nonpositive and it cannot be in any interval ]x
(n−2)
i+1 , x

(n−1)
i [ , which means that it should be in ]−∞, x

(n−2)
d−2 [ .

This concludes the proof. 2

Theorem 10 The sequence
({

n
k

}[3])
k
is strictly log-concave and thus unimodal with at most two consecutive

modes.

Proof It follows by Theorem 1 and Theorem 9. 2

4. Link with the Stirling numbers of second kind and the t-Fibonacci–Stirling numbers

In this section, we give the relation between the t-successive associated Stirling numbers and the Stirling

numbers of second kind. We also introduce the t-Fibonacci–Stirling numbers.

4.1. The Stirling numbers of second kind

The t -successive associated Stirling numbers are defined as the second kind’s Stirling triangle elements of

direction (α, 1), α = t − 1. The sequence
{
n−αk

k

}
associated with the direction (α, 1) is illustrated by the

theorem below.
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6 0 1 31 90 65

5 0 1 15 25 10

4 0 1 7 6 1

3 0 1 3 1

2 0 1 1

1 0 1

0 1

n/k 0 1 f
¯
2 3 4

Figure. Direction (2, 1) in second kind’s Stirling triangle.

Theorem 11 For n ≥ tk , we have {
n

k

}[t]

=

{
n− αk

k

}
. (10)

Proof It is a consequence of (2). 2

Remark 12 For n ≥ tk , we have

{
n

k

}[t]

=

{
n− k

k

}[t−1]

=

{
n− αk

k

}
.

The following theorem is an analogue of Tanny and Zuker’s theorem [14, 16].

Theorem 13 The sequence
({

n−2k
k

})
k
is log-concave and thus unimodal with at most two consecutive modes.

Proof It follows from Theorem 11, for t = 3, and Theorem 10. 2

4.2. The t-Fibonacci–Stirling numbers

It is well known that Fibonacci numbers are defined as the sum of diagonal elements of Pascal’s triangle; see

for instance [1]. Hence we introduce the t -Fibonacci–Stirling numbers as well.

Definition 14 We define the t-Fibonacci–Stirling numbers
(
φ
(t)
n

)
n
, for n ≥ tk , by

φ
(t+1)
n+1 :=

∑
k

{
n− tk

k

}
, (11)

where, φ
(t)
0 = 1, φ

(t)
1 = 0.
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For some values of the t-Fibonacci–Stirling numbers, see Tables 4–6.

Corollary 15 The t-Fibonacci–Stirling numbers are linked to the t-successive associated Stirling numbers by

the following expression:

φ
(t+1)
n+1 =

∑
k

{
n

k

}[t]

. (12)

Proof It follows by (10) in (11). 2

The sequence
(
φ
(t)
n

)
is called the sequence of the t-successive associated Bell numbers.

5. The 2-successive associated Stirling numbers

In this section, we give some complementary identities specific to the 2-successive associated Stirling numbers;

see [6].

Remark 16 For all n ≥ 3 , we have
{
n
2

}[2]
= 2n−3 − 1 .

Corollary 17 Expression of the generating function in terms of noncentral ascending factorial

∑
n≥2k

{
n

k

}[2]
1

zn
=

1

zk(z)k+1
, (13)

where (z)k+1 = z(z − 1) · · · (z − k) .

Proof We have to set x = 1/z in (4), with t = 2. 2

The 2-successive associated Stirling numbers
{
n
k

}[2]
are given by the following sum. It is the main result of

this section.

Theorem 18 For k = 0, 1, . . . , ⌊n/2⌋ , we have,{
n

k

}[2]

=
∑

1r12r2 · · · krk , (14)

where the summation is extended over all integers rj ≥ 0 , j = 1, . . . , k , with r1 + r2 + · · ·+ rk = n− 2k .

Proof Expanding each factor in (4), where t = 2, and using the geometric series, we find

Ak(x) =
∑
n≥2k

{
n

k

}[2]

xn

= x2k
k∏

j=1

 ∞∑
rj=0

krjxrj


=

∑
n≥2k

( ∑
r1+r2+···+rk=n−2k

1r12r2 · · · krk
)
xn.

The result follows by identification. 2
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Corollary 19 The following relation, with symmetric functions, holds:{
2n+ k

n

}[2]

=
∑

1≤i1≤···≤ik≤n

i1i2 · · · ik. (15)

Proof See [8, Th. 8]. 2

We give now an exponential generating function and double generating function for
{
n+k
k

}[2]
.

Corollary 20 We have the following generating functions:

∑
n≥k

{
n+ k

k

}[2]
xn

n!
=

1

k!
ex(ex − 1)k, (16)

∑
n

∑
k

{
n+ k

k

}[2]
xn

n!
yk = ey(e

x−1). (17)

Proof See [8, Th. 16]. 2

6. Commentaries

In this section, we give some commentaries related to the log-concavity and the unimodality of the t -successive

associated Stirling numbers.

Let

Pn(x) = x
[
P

′

n−1(x) + Pn−t(x)
]
.

We are convinced that the roots of Pn(x) are real, distinct, and nonpositive for n = 1, 2, . . . .

Furthermore, the roots of Pn(x), Pn−1(x),. . . ,Pn−t+1(x) are interlacing in the following sense:

If Pn(x) is of degree d and Pn−1(x), · · · , Pn−(t−1)(x) are of degree d− 1 and their roots are, respectively:

0 = x
(n)
0 > x

(n)
1 > · · · > x

(n)
d−1 , 0 = x

(n−1)
0 > x

(n−1)
1 > · · · > x

(n−1)
d−2 , · · · ,0 = x

(n−(t−1))
0 > x

(n−(t−1))
1 > · · · >

x
(n−(t−1))
d−2 , then

0 > x
(n)
1 > x

(n−1)
1 > · · · > x

(n−(t−1))
1 > · · · > x

(n)
d−2 > x

(n−1)
d−2 > · · ·

· · · > x
(n−(t−1))
d−2 > x

(n)
d−1. (18)

While if Pn(x), . . . , Pn−i(x) are of degree d and Pn−i−1(x), . . . , Pn−(t−1) , 1 ≤ i ≤ t − 1, are of degree d − 1

and their roots are, respectively:

0 = x
(n)
0 > x

(n)
1 > · · · > x

(n)
d−1 > x

(n)
d , · · · ,0 = x

(n−i)
0 > x

(n−i)
1 > · · · > x

(n−i)
d−1 , · · · ,0 = x

(n−(t−1))
0 > x

(n−(t−1))
1 >

· · · > x
(n−(t−1))
d−2 , then

0 > x
(n)
1 > · · · > x

(n−i)
1 > · · · > x

(n−(t−1))
1 > · · · > x

(n)
d−2 > · · · > x

(n−i)
d−2 > · · ·

· · · > x
(n−(t−1))
d−2 > x

(n)
d−1 > · · · > x

(n−i)
d−1 . (19)

We can then conclude that
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1. The sequence
({

n
k

}[t])
k
, for a fixed t , is strictly log-concave and thus unimodal with at most two

consecutive modes.

2. The sequence
({

n−(t−1)k
k

})
k
is log-concave and thus unimodal with at most two consecutive modes.
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et unimodalité. C R Acad Sci Paris 2015; 353: 767-771.
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Appendix

Table 1. Some values for the 2-successive associated Stirling numbers.

n\k 0 1 2 3 4 5 6 7
0 1
1 0
2 0 1
3 0 1
4 0 1 1
5 0 1 3
6 0 1 7 1
7 0 1 15 6
8 0 1 31 25 1
9 0 1 63 90 10
10 0 1 127 301 65 1
11 0 1 255 966 350 15
12 0 1 511 3025 1701 140 1
13 0 1 1023 9330 7770 1050 21
14 0 1 2047 28501 34105 6951 266 1
15 0 1 4095 86526 145750 42525 2646 28

Table 2. Some values for the 3-successive associated Stirling numbers.

n\k 0 1 2 3 4 5
0 1
1 0
2 0
3 0 1
4 0 1
5 0 1
6 0 1 1
7 0 1 3
8 0 1 7
9 0 1 15 1
10 0 1 31 6
11 0 1 63 25
12 0 1 127 90 1
13 0 1 255 301 10
14 0 1 511 966 65
15 0 1 1023 3025 350 1

1
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Table 3. Some values for the 4-successive associated Stirling numbers.

n\k 0 1 2 3
0 1
1 0
2 0
3 0
4 0 1
5 0 1
6 0 1
7 0 1
8 0 1 1
9 0 1 3
10 0 1 7
11 0 1 15
12 0 1 31 1
13 0 1 63 6
14 0 1 127 25
15 0 1 255 90

Table 4. Some values for the 2-Fibonacci–Stirling numbers, (Sloane, A171367).

n 0 1 2 3 4 5 6 7 8 9 10 11 12

φ
(2)
n 1 0 1 1 2 4 9 22 58 164 495 1587 5379

Table 5. Some values for the 4-Fibonacci-Stirling numbers.

n 0 1 2 3 4 5 6 7 8 9 10 11 12

φ
(3)
n 1 0 0 1 1 1 2 4 8 17 38 89 219

Table 6. Some values for the 3-Fibonacci–Stirling numbers.

n 0 1 2 3 4 5 6 7 8 9 10 11 12

φ
(4)
n 1 0 0 0 1 1 1 1 2 4 8 16 33
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