

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

The t-successive associated Stirling numbers, t-Fibonacci–Stirling numbers, and unimodality

Hacène BELBACHIR^{*}, Assia Fettouma TEBTOUB

USTHB, Faculty of Mathematics, RECITS Laboratory El Alia, Algiers, Algeria

Received: 26.06.2015 • Accepted/Published Online: 12.12.2016	•	Final Version: 28.09.2017
--	---	---------------------------

Abstract: Using a combinatorial approach, we introduce the *t*-successive associated Stirling numbers and we give the recurrence relation and the generating function. We also establish the unimodality of sequence $\binom{n-2k}{k}_k$ lying over a ray of the second kind's Stirling triangle. Some combinatorial identities are given.

Key words: *t*-Successive associated Stirling numbers, recurrence relations, generating function, log-concavity, unimodality

1. Introduction

This paper is about some extension of Stirling numbers of second kind and unimodality. We give some introductory tools.

The *t*-associated Stirling numbers of second kind, denoted by $\binom{n}{k}^{(t)}$ (see for instance [4] and references therein), count the number of partitions of the set $\{1, 2, ..., n\}$ into *k* subsets such that each subset contains at least *t* elements. They are generated by the following function:

$$\frac{1}{k!} \left(\exp(x) - \sum_{i=0}^{t-1} \frac{x^i}{i!} \right)^k = \sum_{n \ge tk} \binom{n}{k}^{(t)} \frac{x^n}{n!}.$$

In this work, we focus on a special situation of t-associated Stirling numbers of second kind.

Our aim is to study combinatorial aspects of these sequences and for t = 3 prove the unimodality.

For doing so, we give some results and definitions linked to log-concavity and unimodality.

A finite sequence $(a_n)_{k=0}^n$ is unimodal if it increases to a maximum and then decreases. That is, there exists k such that

$$a_1 \leq a_2 \leq \cdots \leq a_k \geq a_{k+1} \geq \cdots \geq a_n.$$

The sequence $(a_n)_{k=0}^n$ is log-concave (LC for short) if for k = 2, ..., n-1,

$$a_k^2 \ge a_{k+1}a_{k-1},\tag{1}$$

it is strictly log-concave (SLC for short) when (1) holds with the strict inequality.

It is known that log-concavity implies unimodality [17].

^{*}Correspondence: hacenebelbachir@gmail.com

²⁰¹⁰ AMS Mathematics Subject Classification: 05A19, 11B37, 11B39, 11B73, 05A15

Theorem 1 (Newton's inequality [13]) If the polynomial $a_1x + a_2x^2 + \cdots + a_nx^n$ has only real zeros, then

$$a_k^2 \ge a_{k-1}a_{k+1}\frac{k}{k-1}\frac{n-k+1}{n-k}$$
 $(k=2,\ldots,n-1).$

Theorem 1 implies the strict version of (1), (see Hammersley [11] and Erdös [10]).

The first result dealing with unimodality of Pascal's triangle elements is due to Tanny and Zuker [15], who showed that the sequence of terms $\binom{n-k}{k}$ $(k = 0, ..., \lfloor n/2 \rfloor)$ is unimodal. They also investigated, for a given α , the unimodality of the sequence $\binom{n-\alpha k}{k}$ in [14, 16]. Belbachir et al. provide in [3] some cases of binomial sequence $\binom{n-\alpha k}{\beta k}$ and in [2] Belbachir and Bencherif proved the unimodality of sequences associated to Pell numbers. In [5], Belbachir and Szalay proved that any ray crossing Pascal's triangle provides a unimodal sequence. Our main interest is to examine combinatorial sequences connected to an arithmetical triangle as the second kind's Stirling triangle and its generalizations.

Harper [12] showed that $\sum_{k} {n \\ k} x^{k}$ has only real roots. Canfield [9] showed that the sequence $\left({n \\ k}\right)_{k}$ is unimodal for a fixed n with at most two consecutive modes.

In Section 2, we introduce the *t*-successive associated Stirling numbers ${n \\ k}^{[t]}$ $(n \ge tk)$ as an extension of the 2-successive associated Stirling numbers; see [6]. Using a combinatorial approach, we derive their recurrence relation and compute the associated generating function. We prove in Section 3 the strict log-concavity and hence the unimodality of the 3-successive associated Stirling numbers. In Section 4, we link the *t*-successive associated Stirling numbers of the second kind; this allowed us to prove the unimodality of sequence ${n-2k \atop k}$ lying over a ray of the second kind's Stirling triangle (see Figure). We also introduce the *t*-Fibonacci–Stirling numbers. We conclude, in Section 5, by establishing combinatorial identities related to the 2-successive associated Stirling numbers, as a complement study of our work [6].

2. The *t*-successive associated Stirling numbers

We start by giving a combinatorial definition of the *t*-successive associated Stirling numbers.

Definition 2 The t-successive associated Stirling numbers, denoted by ${n \atop k}^{[t]}$, count the number of partitions of the set $\{1, 2, ..., n\}$ into k parts, such that each part contains at least t consecutive numbers. Moreover, the last element n must either form a part with its t - 1 predecessors, or belongs to another part that already contains t consecutive numbers.

For some values of the t-successive Stirling numbers, see Tables 1–3.

Examples 3 The following examples clarify the above combinatorial definition.

• t = 2: $\binom{6}{2}^{[2]} = 7$, we have $\{1, 2, 3, 4\} \{5, 6\}; \{1, 2, 3, 6\} \{4, 5\};$ $\{1, 2, 3\} \{4, 5, 6\}; \{1, 2, 6\} \{3, 4, 5\}; \{1, 2\} \{3, 4, 5, 6\}; \{1, 2, 5, 6\} \{3, 4\};$ $\{1, 2, 5\} \{3, 4, 6\}.$ $\binom{6}{3}^{[2]} = 1$, there is one way to partition six elements into three parts $\{1, 2\} \{3, 4\} \{5, 6\}.$ • t = 3:

 ${7 \choose 2}^{[3]} = 3$, counts the number of partitions of seven elements into two parts

 $\left\{1,2,3,4\right\}\left\{5,6,7\right\};\left\{1,2,3\right\}\left\{4,5,6,7\right\};\left\{1,2,3,7\right\}\;\left\{4,5,6\right\}.$

The partition $\{2,3,4\}$ $\{1,5,6,7\}$ cannot be considered. In fact, the 7th element is not in a part that already contains three consecutive numbers.

Theorem 4 For $n \ge tk$, we have

$$\binom{n}{k}^{[t]} = k \binom{n-1}{k}^{[t]} + \binom{n-t}{k-1}^{[t]},$$
 (2)

where $\begin{pmatrix} 0 \\ 0 \end{pmatrix}^{[t]} = 1$, $\begin{pmatrix} n \\ n-1 \end{pmatrix}^{[t]} = \begin{pmatrix} n \\ n-2 \end{pmatrix}^{(t)} = \cdots = \begin{pmatrix} n \\ n-t+1 \end{pmatrix}^{[t]} = 0$ and $\begin{pmatrix} n \\ 0 \end{pmatrix}^{[t]} = 0$, $(n \ge 1)$.

Proof Let us focus on the last element n. If it forms a part with its t-1 predecessors, then it remains to form (k-1) parts from the (n-t) remaining elements, and we have $\binom{n-t}{k-1}^{[t]}$ ways to do that. Otherwise, we constitute k parts from (n-1) elements; then adding the n^{th} element to one of the k parts, we get $k\binom{n-1}{k}^{[t]}$ possibilities. This ends the proof.

The t-successive associated Stirling numbers satisfy the following vertical recurrence relation.

Theorem 5 Let $n, k, t \in \mathbb{N}$ such that $n \geq tk$. We have

$$\binom{n}{k}^{[t]} = \sum_{i=0}^{n-tk} k^{i} \binom{n-i-t}{k-1}^{[t]}.$$
(3)

Proof From the recurrence relation (2), we have, for $n \ge tk$,

$$\begin{cases} n \\ k \end{cases}^{[t]} = k \begin{Bmatrix} n-1 \\ k \end{Bmatrix}^{[t]} + \begin{Bmatrix} n-t \\ k-1 \end{Bmatrix}^{[t]}, \\ k \begin{Bmatrix} n-1 \\ k \end{Bmatrix}^{[t]} = k^2 \begin{Bmatrix} n-2 \\ k \end{Bmatrix}^{[t]} + k \begin{Bmatrix} n-t-1 \\ k-1 \end{Bmatrix}^{[t]}, \\ \vdots \\ k^{n-tk-1} \begin{Bmatrix} tk+1 \\ k \end{Bmatrix}^{[t]} = k^{n-tk} \begin{Bmatrix} tk \\ k \end{Bmatrix}^{[t]} + k^{n-tk-1} \begin{Bmatrix} 1+t(k-1) \\ k-1 \end{Bmatrix}^{[t]}, \\ k^{n-tk} \begin{Bmatrix} tk \\ k \end{Bmatrix}^{[t]} = k^{n-tk+1} \begin{Bmatrix} tk-1 \\ k \end{Bmatrix}^{[t]} + k^{n-tk} \begin{Bmatrix} t(k-1) \\ k-1 \end{Bmatrix}^{[t]}. \end{cases}$$

Summing all the equations side by side and according to the initial conditions, we get the result. Now we give the generating function of the t-successive associated Stirling numbers.

Theorem 6 The generating function of the t-successive associated Stirling numbers is given, for $k \ge 1$, by

$$A_k(x) := \sum_{n \ge sk} {\binom{n}{k}}^{[t]} x^n = \frac{x^{tk}}{(1-x)(1-2x)\cdots(1-kx)},$$
(4)

1281

where $A_0(x) = 1$.

Proof From the recurrence relation (2), we have, for k = 1, 2, ..., and for a fixed t,

$$\sum_{n \ge tk} {n \\ k}^{[t]} x^n = \sum_{n \ge tk} k {n-1 \\ k}^{[t]} x^n + \sum_{n \ge tk} {n-t \\ k-1}^{[t]} x^n,$$

consequently,

$$A_k(x) = kxA_k(x) + x^tA_{k-1}(x), \quad k = 1, 2, \dots,$$

thus,

$$A_k(x) = x^t (1 - kx)^{-1} A_{k-1}(x), \quad k = 1, 2, \dots$$

Hence,

$$A_{k-1}(x) = x^{t}(1 - (k - 1)x)^{-1}A_{k-2}(x),$$

$$A_{k-2}(x) = x^{t}(1 - (k - 2)x)^{-1}A_{k-3}(x),$$

$$\vdots$$

$$A_{2}(x) = x^{t}(1 - 2x)^{-1}A_{1}(x),$$

$$A_{1}(x) = x^{t}(1 - x)^{-1}A_{0}(x).$$

By substituting each term $A_{i-1}(x)$ in $A_i(x)$, i = 1, ..., k, we obtain

$$A_k(x) = x^t (1 - (k - 1)x)^{-1} x^t (1 - (k - 2)x)^{-1} \cdots x^t (1 - x)^{-1} A_0(x).$$

According to the initial conditions, we get the result.

An explicit expression is given in the following result.

Theorem 7 The t-successive associated Stirling numbers ${n \atop k}^{[t]}$ have the following explicit formula. For $n \ge tk$, we have

$$\binom{n}{k}^{[t]} = \frac{1}{k!} \sum_{p=1}^{k} (-1)^{(k-p)} \binom{k}{p} p^{n-(t-1)k}.$$
(5)

Proof Formula (5) satisfies the recurrence relation (2),

$$\begin{split} {n \atop k}^{n} \\ {}^{[t]} &= k \left\{ {n-1 \atop k}^{n-1} \right\}^{[t]} + \left\{ {n-t \atop k-1} \right\}^{[t]} \\ &= k \frac{1}{k!} \sum_{p=1}^{k} (-1)^{(k-p)} {k \choose p} p^{n-1-(t-1)k} \\ &+ \frac{1}{(k-1)!} \sum_{p=1}^{k-1} (-1)^{(k-p-1)} {k-1 \choose p} p^{n-1-(t-1)k} \\ &= \frac{1}{(k-1)!} \sum_{p=1}^{k} (-1)^{(k-p)} {k \choose p} p^{n-1-(t-1)k} \\ &- \frac{1}{(k-1)!} \sum_{p=1}^{k} (-1)^{(k-p)} {k-1 \choose p} p^{n-1-(t-1)k} \\ &= \frac{1}{(k-1)!} \left(\sum_{p=1}^{k} (-1)^{(k-p)} p^{n-1-(t-1)k} \left({k \choose p} - {k-1 \choose p} \right) \right) \right) \\ &= \frac{1}{(k-1)!} \sum_{p=1}^{k} (-1)^{(k-p)} p^{n-1-(t-1)k} {k-1 \choose p-1} \\ &= \sum_{p=1}^{k} (-1)^{(k-p)} p^{n-(t-1)k} \frac{1}{(k-1)!} \frac{1}{p} \frac{(k-1)!}{(p-1)!(k-p)!} \\ &= \frac{1}{k!} \sum_{p=1}^{k} (-1)^{(k-p)} p^{n-(t-1)k} {k! \choose p}, \end{split}$$

which ends the proof.

3. Unimodality of 3-successive associated Stirling numbers

Following Bòna's approach [7], we prove the strict log-concavity of the 3-successive associated Stirling numbers. Let

$$P_n(x) := \sum_{j=0}^n \left\{ \begin{matrix} n \\ j \end{matrix} \right\}^{[t]} x^j.$$

Proposition 8 Let $d \in \mathbb{N}$ be the degree of $P_n(x)$ for a fixed t. If n is a multiple of t then $P_{n-1}(x)$ and $P_{n-2}(x), \ldots, P_{n-t}(x)$ are of degree d-1, where d = n/t. Moreover, if n is not a multiple of t, $n \equiv i[t]$, $1 \leq i \leq t-1$ then $P_n(x), \ldots, P_{n-i}(x)$ are of degree d and $P_{n-i-1}(x), \ldots, P_{n-t}$ are of degree d-1, where $d = \lfloor n/t \rfloor$.

Proof The proof is easy; we leave it to the reader (see also the Appendix).

Expression of $P_n(x)$ for $n \le 10$ and $t \le 4$

```
• t = 2:
  P_0(x) = 1,
  P_1(x) = 0,
  P_2(x) = x,
  P_3(x) = x,
  P_4(x) = x + x^2,
  P_5(x) = x + 3x^2,
  P_6(x) = x + 7x^2 + x^3,
  P_7(x) = x + 15x^2 + 6x^3,
  P_8(x) = x + 31x^2 + 25x^3 + x^4,
  P_9(x) = x + 63x^2 + 90x^3 + 10x^4,
  P_{10}(x) = x + 127x^2 + 301x^3 + 65x^4 + x^5.
• t = 3:
  P_0(x) = 1,
  P_1(x) = 0,
  P_2(x) = 0,
  P_3(x) = x,
  P_4(x) = x,
  P_5(x) = x,
  P_6(x) = x + x^2,
  P_7(x) = x + 3x^2,
  P_8(x) = x + 7x^2,
  P_9(x) = x + 15x^2 + x^3,
  P_{10}(x) = x + 31x^2 + 6x^3.
• t = 4:
  P_0(x) = 1,
  P_1(x) = 0,
  P_2(x) = 0,
  P_3(x) = 0,
  P_4(x) = x,
  P_5(x) = x,
  P_6(x) = x,
  P_7(x) = x,
  P_8(x) = x + x^2,
  P_9(x) = x + 3x^2,
  P_{10}(x) = x + 7x^2.
```

Now we prove the log-concavity and the unimodality of the 3-successive associated Stirling numbers.

Theorem 9 The roots of $P_n(x)$ are real, distinct, and nonpositive for n = 1, 2, ...

Furthermore, the roots of $P_n(x)$, $P_{n-1}(x)$ and $P_{n-2}(x)$ are interlacing in the following sense:

If $P_n(x)$, $P_{n-1}(x)$ et $P_{n-2}(x)$ are all of degree d and their roots are, respectively: $0 = x_0^{(n)} > x_1^{(n)} > \cdots > x_{d-1}^{(n)} > x_d^{(n)}$, $0 = x_0^{(n-1)} > x_1^{(n-1)} > \cdots > x_{d-1}^{(n-1)}$, $0 = x_0^{(n-2)} > x_1^{(n-2)} > \cdots > x_{d-1}^{(n-2)}$, then

$$0 > x_1^{(n)} > x_1^{(n-1)} > x_1^{(n-2)} > \dots > x_{d-2}^{(n)} > x_{d-2}^{(n-1)} > x_{d-2}^{(n-2)} >$$

$$> x_{d-1}^{(n)} > x_{d-1}^{(n-1)} > x_{d-1}^{(n-2)}$$
 (6)

. If $P_n(x)$ and $P_{n-1}(x)$ are of degree d and $P_{n-2}(x)$ is of degree d-1 and their roots are, respectively: $0 = x_0^{(n)} > x_1^{(n)} > \cdots > x_{d-1}^{(n)} > x_d^{(n)}, \ 0 = x_0^{(n-1)} > x_1^{(n-1)} > \cdots > x_{d-1}^{(n-1)}, \ 0 = x_0^{(n-2)} > x_1^{(n-2)} > \cdots > x_{d-2}^{(n-2)},$ then

$$0 > x_1^{(n)} > x_1^{(n-1)} > x_1^{(n-2)} > \dots > x_{d-2}^{(n)} > x_{d-2}^{(n-1)} > x_{d-2}^{(n-2)} > x_{d-1}^{(n)} > x_{d-1}^{(n-1)}$$
(7)

. While if $P_n(x)$ is of degree d and $P_{n-1}(x)$ and $P_{n-2}(x)$ are of degree d-1 and their roots are, respectively: $0 = x_0^{(n)} > x_1^{(n)} > \cdots > x_{d-1}^{(n)}, \ 0 = x_0^{(n-1)} > x_1^{(n-1)} > \cdots > x_{d-2}^{(n-1)}, \ 0 = x_0^{(n-2)} > x_1^{(n-2)} > \cdots > x_{d-2}^{(n-2)}$, then

$$0 > x_1^{(n)} > x_1^{(n-1)} > x_1^{(n-2)} > \dots > x_{d-2}^{(n)} > x_{d-2}^{(n-1)} > x_{d-2}^{(n-2)} > x_{d-1}^{(n)}.$$
(8)

Proof The recurrence relation of ${n \atop j}^{[t]}$, for t = 3, yields

$$P_n(x) = x \left[P'_{n-1}(x) + P_{n-3}(x) \right],$$
(9)

where $P_0(x) = 1, P_i(x) = 0$, if i < 3 and $P_i(x) = x$, if $3 \le i < 6$.

We prove our theorem by induction on n. For $n \leq 4$, the statements are true.

Supposing the theorem true for n-1, we prove it for n.

First we consider the case where $P_n(x)$, $P_{n-1}(x)$, and $P_{n-2}(x)$ are of degree d, which means that $n \equiv 2[3]$.

Let $0 = x_0^{(n-1)} > x_1^{(n-1)} > \dots > x_{d-1}^{(n-1)}$ be the roots of $P_{n-1}(x)$.

Step 1: Consider the two largest roots of $P_{n-1}(x)$, which are 0 and $x_1^{(n-1)}$. By Rolle's theorem, there exists $c \in]x_1^{(n-1)}, 0[$ such that $P'_{n-1}(c) = 0$. Since the coefficients of $P_{n-1}(x)$ are positive, $P_{n-1}(x)$ is monotone decreasing in $]x_1^{(n-1)}, c[$ and monotone increasing in]c, 0[. This implies that $P_{n-1}(x) < 0$ for all $x \in]x_1^{(n-1)}, 0[$.

Step 2: Consider the case when $x = x_1^{(n-1)}$ in (9).

• By induction hypothesis, the roots of $P_{n-3}(x)$ are: $0 = x_0^{(n-3)} > x_1^{(n-3)} > \cdots > x_{d-2}^{(n-3)}$, and they are interlacing with the roots of $P_{n-1}(x)$ and $P_{n-2}(x)$ as follows: $0 > x_1^{(n-1)} > x_1^{(n-2)} > x_1^{(n-3)} > \cdots > x_{d-2}^{(n-3)} > x_{d-2}^{(n-3)} > x_{d-2}^{(n-3)} > x_{d-1}^{(n-2)} > x_{d-1}^{(n-2)}$.

From Step 1, we have $P_{n-3}(x) < 0$ for $x \in]x_1^{(n-3)}, 0[$, in particular for $x = x_1^{(n-1)}$ which implies that $P_{n-3}(x_1^{(n-1)}) < 0.$

• We know that $P_{n-1}(x)$ has d nonpositive real roots and so $P'_{n-1}(x)$ must have d-1.

By Rolle's theorem, we know that there exists a root of $P'_{n-1}(x)$ between any two consecutive roots of $P_{n-1}(x)$, and so there is a root of $P'_{n-1}(x)$ between $]x_1^{(n-1)}, 0[$, and the sign of $P'_{n-1}(x_1^{(n-1)})$ is the opposite sign of $P'_{n-1}(0)$, which is positive, and so $P'_{n-1}(x_1^{(n-1)}) < 0$.

For $x = x_1^{(n-1)}$, we have shown that $x_1^{(n-1)} \left[P'_{n-1}(x_1^{(n-1)}) + P_{n-3}(x_1^{(n-1)}) \right]$ is positive as a product of two nonpositive numbers. Hence $P_n(x_1^{(n-1)})$ must be positive as well.

Moreover, we have $P_n(x) < 0$ in $]x_1^{(n-1)}, 0[$ because $P'_{n-1}(x) > 0$ is in $]x_1^{(n-1)}, 0[$ from Step 1 and $P_{n-3}(x) < 0$, and so $P_n(x)$ has a root in $]x_1^{(n-1)}, 0[$.

Now we prove that $P_n(x)$ has a root in each interval $]x_{i+1}^{(n-1)}, x_i^{(n-1)}[$. In order to do so, it is enough to show that $P_n(x_i^{(n-1)})$ and $P_n(x_i^{(n-1)})$ have opposite signs.

- By Rolle's theorem, we conclude that $P'_{n-1}(x_{i+1}^{(n-1)})$ and $P'_{n-1}(x_i^{(n-1)})$ have opposite signs.
- By induction hypothesis, we conclude that $P_{n-3}(x_{i+1}^{(n-1)})$ and $P_{n-3}(x_i^{(n-1)})$ have opposite signs.
- Based on Rolle's theorem, P'_{n-1} changes its sign *i* times in $]x_i^{(n-1)}, 0[$, and by induction hypothesis, P_{n-3} changes its sign i-1 times; however, there exists a small neighborhood of 0 where $P'_{n-1}(x) > 0$ and $P_{n-3} < 0$, and so $P'_{n-1}(x_i^{(n-1)})$ and $P_{n-3}(x_i^{(n-1)})$ have equal signs.

By Equation (9), $P_n(x_i^{(n-1)})$ and $P_n(x_{i+1}^{(n-1)})$ have opposite signs, which implies that $P_n(x)$ has a root in each interval $]x_{i+1}^{(n-1)}, x_i^{(n-1)}[$.

Furthermore, $P_n(x)$ has an odd number of roots in such interval because it has different signs in the limits of such interval, and we know that the number of the roots of $P_n(x)$ is at most one larger than $P_{n-1}(x)$. Then $P_n(x)$ has exactly one root in each interval $[x_{i+1}^{(n-1)}, x_i^{(n-1)}]$.

Now we prove that the polynomial $P_n(x)$ has exactly one root in each interval $]x_{i+1}^{(n-2)}, x_i^{(n-2)}[$. To do this, we just have to prove that $P_n(x_i^{(n-2)})$ and $P_n(x_{i+1}^{(n-2)})$ have opposite signs. We know by induction hypothesis that $P_{n-3}(x_i^{(n-1)})$ and $P_{n-3}(x_i^{(n-2)})$ have equal signs. For this, we just have to show that for $0 \le i \le d-1$, $P'_{n-1}(x_i^{(n-1)})$ and $P'_{n-1}(x_i^{(n-2)})$ have equal signs.

Consider the case where P'_{n-1}(x⁽ⁿ⁻¹⁾_i) is nonpositive and so by induction hypothesis P_{n-1}(x) is nonnegative in the interval]x⁽ⁿ⁻¹⁾_{i+1}, x⁽ⁿ⁻¹⁾_i[, P_{n-2}(x) is nonnegative in the interval]x⁽ⁿ⁻¹⁾_{i+1}, x⁽ⁿ⁻²⁾_i[and nonpositive in]x⁽ⁿ⁻²⁾_i, x⁽ⁿ⁻¹⁾_i[, knowing that P'_{n-2}(x) achieves its maximum at x⁽ⁿ⁻²⁾_i and so P'_{n-2}(x⁽ⁿ⁻²⁾_i) is nonpositive; moreover, P'_{n-2}(x⁽ⁿ⁻¹⁾_i) is nonnegative, then P'_{n-2} has a root in such interval, denoted as γ_i. For this, P'_{n-2}(x) is monotone increasing and nonpositive in the interval]x⁽ⁿ⁻²⁾_i, γ_i[and monotone increasing and nonpositive in the interval]x⁽ⁿ⁻²⁾_i, γ_i[and monotone increasing and nonnegative in the interval]γ_i, x⁽ⁿ⁻¹⁾_i[.

Supposing that $P'_{n-1}(x_i^{(n-2)})$ is nonnegative and β_i the root of $P'_{n-1}(x)$, we have $P_{n-1}(x)$ monotone increasing in the interval $]x_{i+1}^{(n-1)}, \beta_i[$ and monotone decreasing in the interval $]\beta_i, x_i^{(n-1)}[$.

From our supposition, we have $P'_{n-1}(x_i^{(n-2)}) > 0$, which means that $\beta_i \in]x_i^{(n-2)}, x_i^{(n-1)}[$, and we discuss two cases:

- 1. $\beta_i \in]x_i^{(n-2)}, \gamma_i[$, from the supposition, $P_{n-1}(\beta_i) P_{n-1}(x_i^{(n-2)}) \ge 0$, which implies $\beta_i P'_{n-2}(\beta_i) + \beta_i P_{n-4}(\beta_i) x_i^{(n-2)} P'_{n-2}(x_i^{(n-2)}) x_i^{(n-2)} P_{n-4}(x_i^{(n-2)}) \ge 0$; however, by induction hypothesis and from the previous paragraph, we have $\beta_i P'_{n-2}(\beta_i) x_i^{(n-2)} P'_{n-2}(x_i^{(n-2)}) \le 0$ and $\beta_i P_{n-4}(\beta_i) x_i^{(n-2)} P_{n-4}(x_i^{(n-2)}) \le 0$, a contradiction, and so $P'_{n-1}(x_i^{(n-2)})$ is nonpositive, which means that it has the same sign of $P'_{n-1}(x_i^{(n-1)})$.
- 2. $\beta_i \in]\gamma_i, x_i^{(n-1)}[$, from the supposition, $P_{n-1}(\beta_i) P_{n-1}(x_i^{(n-2)}) \ge 0$, which implies $\beta_i P'_{n-2}(\beta_i) + \beta_i P_{n-4}(\beta_i) \gamma_i P'_{n-2}(\gamma_i) \gamma_i P_{n-4}(\gamma_i) \ge 0$, $\beta_i P'_{n-2}(\beta_i) + \beta_i P_{n-4}(\beta_i) \gamma_i P_{n-4}(\gamma_i) \ge 0$; however, by induction hypothesis and from the previous paragraph, we have $\beta_i P'_{n-2}(\beta_i) \le 0$ and $\beta_i P_{n-4}(\beta_i) \gamma_i P_{n-4}(\gamma_i) \le 0$, a contradiction, and so $P'_{n-1}(x_i^{(n-2)})$ is nonpositive, which means that it has the same sign of $P'_{n-1}(x_i^{(n-1)})$.
- For the second case, where $P'_{n-1}(x_i^{(n-1)})$ is nonnegative, the proof is the same.

This completes the proof.

Consider now the case when $P_n(x)$ is of degree d and $P_{n-1}(x)$, $P_{n-2}(x)$ are of degree d-1, which means that $n \equiv 0[3]$. We follow the same method of proof presented in the previous case.

For the case when $P_n(x)$ and $P_{n-1}(x)$ are of degree d and $P_{n-2}(x)$ is of degree d-1, $n \equiv 1[3]$. We follow the same approach of proof presented in the previous case. We know that the last root of $P_n(x)$ has to be nonpositive and it cannot be in any interval $]x_{i+1}^{(n-2)}, x_i^{(n-1)}[$, which means that it should be in $] -\infty, x_{d-2}^{(n-2)}[$. This concludes the proof.

Theorem 10 The sequence $\left({n \atop k} \right)_k^{[3]}_k$ is strictly log-concave and thus unimodal with at most two consecutive modes.

Proof It follows by Theorem 1 and Theorem 9.

4. Link with the Stirling numbers of second kind and the *t*-Fibonacci–Stirling numbers

In this section, we give the relation between the t-successive associated Stirling numbers and the Stirling numbers of second kind. We also introduce the t-Fibonacci–Stirling numbers.

4.1. The Stirling numbers of second kind

The *t*-successive associated Stirling numbers are defined as the second kind's Stirling triangle elements of direction $(\alpha, 1)$, $\alpha = t - 1$. The sequence $\binom{n-\alpha k}{k}$ associated with the direction $(\alpha, 1)$ is illustrated by the theorem below.

BELBACHIR and TEBTOUB/Turk J Math

n/k	0	1	<u>f</u> 2	3	4
0	1	7			
1	0	\uparrow^1			
2	0	r^1	1		
3	0	r^1	3 7	1	
4	0		7	_6 ≁	1
5	0		15	25	10
6	0	1	31	90	65

Figure. Direction (2, 1) in second kind's Stirling triangle.

Theorem 11 For $n \ge tk$, we have

$$\binom{n}{k}^{[t]} = \binom{n - \alpha k}{k}.$$
 (10)

Proof It is a consequence of (2).

Remark 12 For $n \ge tk$, we have

$$\binom{n}{k}^{[t]} = \binom{n-k}{k}^{[t-1]} = \binom{n-\alpha k}{k}.$$

The following theorem is an analogue of Tanny and Zuker's theorem [14, 16].

Theorem 13 The sequence $\left(\binom{n-2k}{k}\right)_k$ is log-concave and thus unimodal with at most two consecutive modes. **Proof** It follows from Theorem 11, for t = 3, and Theorem 10.

4.2. The *t*-Fibonacci–Stirling numbers

It is well known that Fibonacci numbers are defined as the sum of diagonal elements of Pascal's triangle; see for instance [1]. Hence we introduce the t-Fibonacci–Stirling numbers as well.

Definition 14 We define the t-Fibonacci–Stirling numbers $\left(\varphi_n^{(t)}\right)_n$, for $n \ge tk$, by

$$\varphi_{n+1}^{(t+1)} \coloneqq \sum_{k} \left\{ \begin{matrix} n - tk \\ k \end{matrix} \right\},\tag{11}$$

where, $\varphi_0^{(t)} = 1, \varphi_1^{(t)} = 0.$

For some values of the t-Fibonacci–Stirling numbers, see Tables 4–6.

Corollary 15 The *t*-Fibonacci–Stirling numbers are linked to the *t*-successive associated Stirling numbers by the following expression:

$$\varphi_{n+1}^{(t+1)} = \sum_{k} \left\{ \begin{matrix} n \\ k \end{matrix} \right\}^{[t]}.$$
(12)

Proof It follows by (10) in (11).

The sequence $\left(\varphi_n^{(t)}\right)$ is called the sequence of the *t*-successive associated Bell numbers.

5. The 2-successive associated Stirling numbers

In this section, we give some complementary identities specific to the 2-successive associated Stirling numbers; see [6].

Remark 16 For all $n \ge 3$, we have $\binom{n}{2}^{[2]} = 2^{n-3} - 1$.

Corollary 17 Expression of the generating function in terms of noncentral ascending factorial

$$\sum_{n \ge 2k} \left\{ n \atop k \right\}^{[2]} \frac{1}{z^n} = \frac{1}{z^k(z)_{k+1}},\tag{13}$$

where $(z)_{k+1} = z(z-1)\cdots(z-k)$.

Proof We have to set x = 1/z in (4), with t = 2.

The 2-successive associated Stirling numbers $\binom{n}{k}^{[2]}$ are given by the following sum. It is the main result of this section.

Theorem 18 For k = 0, 1, ..., |n/2|, we have,

$$\binom{n}{k}^{[2]} = \sum 1^{r_1} 2^{r_2} \cdots k^{r_k}, \tag{14}$$

where the summation is extended over all integers $r_j \ge 0$, j = 1, ..., k, with $r_1 + r_2 + \cdots + r_k = n - 2k$. **Proof** Expanding each factor in (4), where t = 2, and using the geometric series, we find

$$A_{k}(x) = \sum_{n \ge 2k} \left\{ \begin{matrix} n \\ k \end{matrix} \right\}^{[2]} x^{n}$$

$$= x^{2k} \prod_{j=1}^{k} \left(\sum_{r_{j}=0}^{\infty} k^{r_{j}} x^{r_{j}} \right)$$

$$= \sum_{n \ge 2k} \left(\sum_{r_{1}+r_{2}+\dots+r_{k}=n-2k} 1^{r_{1}} 2^{r_{2}} \dots k^{r_{k}} \right) x^{n}$$

The result follows by identification.

Corollary 19 The following relation, with symmetric functions, holds:

$$\binom{2n+k}{n}^{[2]} = \sum_{1 \le i_1 \le \dots \le i_k \le n} i_1 i_2 \cdots i_k.$$

$$(15)$$

Proof See [8, Th. 8].

We give now an exponential generating function and double generating function for ${\binom{n+k}{k}}^{[2]}$.

Corollary 20 We have the following generating functions:

$$\sum_{n \ge k} \binom{n+k}{k}^{[2]} \frac{x^n}{n!} = \frac{1}{k!} e^x (e^x - 1)^k, \tag{16}$$

$$\sum_{n} \sum_{k} \left\{ \binom{n+k}{k} \right\}^{[2]} \frac{x^{n}}{n!} y^{k} = e^{y(e^{x}-1)}.$$
(17)

Proof See [8, Th. 16].

6. Commentaries

In this section, we give some commentaries related to the log-concavity and the unimodality of the t-successive associated Stirling numbers.

Let

$$P_n(x) = x \left[P'_{n-1}(x) + P_{n-t}(x) \right].$$

We are convinced that the roots of $P_n(x)$ are real, distinct, and nonpositive for $n = 1, 2, \ldots$. Furthermore, the roots of $P_n(x)$, $P_{n-1}(x), \ldots, P_{n-t+1}(x)$ are interlacing in the following sense: If $P_n(x)$ is of degree d and $P_{n-1}(x), \ldots, P_{n-(t-1)}(x)$ are of degree d-1 and their roots are, respectively: $0 = x_0^{(n)} > x_1^{(n)} > \cdots > x_{d-1}^{(n)}, 0 = x_0^{(n-1)} > x_1^{(n-1)} > \cdots > x_{d-2}^{(n-1)}, \cdots, 0 = x_0^{(n-(t-1))} > x_1^{(n-(t-1))} > \cdots > x_{d-2}^{(n-(t-1))}$, then

$$0 > x_1^{(n)} > x_1^{(n-1)} > \dots > x_1^{(n-(t-1))} > \dots > x_{d-2}^{(n)} > x_{d-2}^{(n-1)} > \dots$$

$$\dots > x_{d-2}^{(n-(t-1))} > x_{d-1}^{(n)}.$$
(18)

While if $P_n(x), \ldots, P_{n-i}(x)$ are of degree d and $P_{n-i-1}(x), \ldots, P_{n-(t-1)}, 1 \le i \le t-1$, are of degree d-1 and their roots are, respectively:

$$0 = x_0^{(n)} > x_1^{(n)} > \dots > x_{d-1}^{(n)} > x_d^{(n)}, \dots, 0 = x_0^{(n-i)} > x_1^{(n-i)} > \dots > x_{d-1}^{(n-i)}, \dots, 0 = x_0^{(n-(t-1))} > x_1^{(n-(t-1))} > \dots > x_{d-2}^{(n-(t-1))}, \text{ then}$$

$$0 > x_1^{(n)} > \dots > x_1^{(n-i)} > \dots > x_1^{(n-(t-1))} > \dots > x_{d-2}^{(n)} > \dots > x_{d-2}^{(n-i)} > \dots$$

$$\dots > x_{d-2}^{(n-(t-1))} > x_{d-1}^{(n)} > \dots > x_{d-1}^{(n-i)}. \tag{19}$$

We can then conclude that

- 1. The sequence $\left({n \atop k} {[t] \atop k} \right)_k$, for a fixed t, is strictly log-concave and thus unimodal with at most two consecutive modes.
- 2. The sequence $\left(\binom{n-(t-1)k}{k}\right)_k$ is log-concave and thus unimodal with at most two consecutive modes.

Acknowledgments

The work is partially supported by Tassili-Maghreb project 14MDU929M. The authors wish to express their thanks to Professor M Josuat-Verges and Professor I Mező for their comments. They also thank the referee for valuable advice and comments.

References

- [1] Belbachir H, Bencherif F. Linear recurrent sequences and powers of a square matrix. Integers 2006; 6: A12.
- Belbachir H, Bencherif F. Unimodality of sequences associated to Pell numbers. Ars Combinatoria 2011; 102: 305-311.
- Belbachir H, Bencherif F, Szalay L. Unimodality of certain sequences connected with binomial coefficients. J Integer Seq 2007; 10: 2.
- [4] Belbachir H, Bousbaa IE. Associated Lah numbers and r-Stirling numbers. arXiv: 1404.5573v2 2014.
- [5] Belbachir H, Szalay L. Unimodal rays in the regular and generalized Pascal triangles. J Integer Seq 2008; 11: 2.
- [6] Belbachir H, Tebtoub AF. Les nombres de Stirling associés avec succession d'ordre 2, nombres de Fibonacci-Stirling et unimodalité. C R Acad Sci Paris 2015; 353: 767-771.
- [7] Bóna M, Mező I. Real Zeros and Partitions without singleton blocks. European J Combinatorics 2016; 51: 500-510.
- [8] Broder AZ. The r-Stirling numbers. Discrete Math 1984; 49: 241-259.
- [9] Canfield ER. Location of the maximum Stirling number(s) of second kind. Studies in App Math 1978; 59: 83-93.
- [10] Erdös P. On a conjecture of Hammersley. J London Math Soc 1953; 28: 232-236.
- [11] Hammersley JM. The sum of products of the natural numbers. Proc London Math Soc 1951; 31: 435-452.
- [12] Harper LH. Stirling behaviour is asymptotically normal. Ann Math Stat 1967; 38: 410-414.
- [13] Lieb EH. Concavity properties and a generating function for Stirling numbers. J Combinatorial Theory 1968; 5: 203-206.
- [14] Tanny S, Zuker M. Analytic methods applied to a sequence of binomial coefficients. Discrete Math 1978; 24: 299-310.
- [15] Tanny S, Zuker M. On unimodality sequence of binomial coefficients. Discrete Math 1974; 9: 79-89.
- [16] Tanny S, Zuker M. On unimodal sequence of binomial coefficients II. Combin Inform System Sci 1976; 1: 81-91.
- [17] Wilf HS. Generatingfunctionology. San Diego, CA, USA: Academic Press, 1994.

Appendix

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	0							
2	0	1						
3	0	1						
4	0	1	1					
5	0	1	3					
6	0	1	7	1				
7	0	1	15	6				
8	0	1	31	25	1			
9	0	1	63	90	10			
10	0	1	127	301	65	1		
11	0	1	255	966	350	15		
12	0	1	511	3025	1701	140	1	
13	0	1	1023	9330	7770	1050	21	
14	0	1	2047	28501	34105	6951	266	1
15	0	1	4095	86526	145750	42525	2646	28

 Table 1. Some values for the 2-successive associated Stirling numbers.

 Table 2. Some values for the 3-successive associated Stirling numbers.

$n \setminus k$	0	1	2	3	4	5
0	1					
1	0					
2	0					
3	0	1				
4	0	1				
5	0	1				
6	0	1	1			
7	0	1	3			
8	0	1	7			
9	0	1	15	1		
10	0	1	31	6		
11	0	1	63	25		
12	0	1	127	90	1	
13	0	1	255	301	10	
14	0	1	511	966	65	
15	0	1	1023	3025	350	1

$n \setminus k$	0	1	2	3
0	1			
1	0			
2	0			
3	0			
4	0	1		
5	0	1		
6	0	1		
7	0	1		
8	0	1	1	
9	0	1	3	
10	0	1	7	
11	0	1	15	
12	0	1	31	1
13	0	1	63	6
14	0	1	127	25
15	0	1	255	90

 Table 3. Some values for the 4-successive associated Stirling numbers.

Table 4. Some values for the 2-Fibonacci–Stirling numbers, (Sloane, A171367).

n	0	1	2	3	4	5	6	7	8	9	10	11	12
$\varphi_n^{(2)}$	1	0	1	1	2	4	9	22	58	164	495	1587	5379

Table 5. Some values for the 4-Fibonacci-Stirling numbers.

n	0	1	2	3	4	5	6	7	8	9	10	11	12
$\varphi_n^{(3)}$	1	0	0	1	1	1	2	4	8	17	38	89	219

Table 6. Some values for the 3-Fibonacci–Stirling numbers.

ſ	n	0	1	2	3	4	5	6	7	8	9	10	11	12
Ì	$\varphi_n^{(4)}$	1	0	0	0	1	1	1	1	2	4	8	16	33