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Abstract: This paper intends to study some dynamical properties of a stochastic three-dimensional Lotka–Volterra

system. Under some mild assumptions, we first introduce a simple method to show that the model has a global and

positive solution almost surely. Secondly, we prove that this model has a stationary distribution. Then we study the

global asymptotic stability of the positive solution. Finally, some numerical simulations are introduced to illustrate the

theoretical results.
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1. Introduction

When species interact with each other the population dynamics of each species is affected, and the predator–

prey interaction for the predation of one species by another is one of the important ecological phenomena. The

first predator–prey model is two species, which was proposed by Volterra and Lotka in the mid 1920s to explain

the oscillation of certain fish catches in the Adriatic (see [33]). The population dynamics become more complex

when the interacting species are three than when there are two. Nonetheless, such models attracted considerable

attention; for example, Pande [34] considered the coexistence of three species with one prey and two predators.

Krikorian [19] studied the global asymptotic stability and global boundedness of the classical Volterra equations

modeling with three-species predator–prey interactions. Farkas and Freedman [7] gave the stability criterion

for a system of a three-dimensional case when two predators compete for a single prey species. Chattopadhyay

and Arino [4] considered a three-species predator–prey eco-epidemiological system, and derived the persistence

and extinction conditions of the populations. There is a large amount of literature on interacting populations

of the predator–prey type; we only mention [3, 6, 14] and the references therein.

A classical three-species interacting predator–prey Lotka–Volterra model is the population described by

x1(t), x2(t) and x3(t), where x1(t) is always a prey population, x2(t) is not only a predator population feeding

on x1(t) but also a prey of x3(t), and x3(t) is a predator feeding exclusively on prey x1(t), x2(t) within the
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system. Such a food-chain model can be expressed by
dx1(t) = x1(t)[r1 − a11x1(t)− a12x2(t)− a13x3(t)]dt,

dx2(t) = x2(t)[−r2 + a21x1(t)− a22x2(t)− a23x3(t)]dt,

dx3(t) = x3(t)[−r3 + a31x1(t) + a32x2(t)− a33x3(t)]dt,

(1)

where x1(t), x2(t), x3(t) are the corresponding population densities, ri(i = 1, 2, 3) denote the growth rates of the

populations, aii(i = 1, 2, 3) are intraspecific competition rates, and aij(i ̸= j, i, j = 1, 2, 3) are the corresponding

interspecific competition rates of the system. Here all ri, aij(i, j = 1, 2, 3) are positive parameters. Freedman

and Waltman [8] studied a general case of model (1) and discussed persistence for all components of the

ecosystem. Freedman and So [9] considered the global stability and persistence of a food-chain model.

Since the population systems are inevitably affected by the environmental white noise, which plays an

important role in an ecosystem, several authors (see [1, 5, 16, 17, 20, 21, 24, 25, 29, 35, 39]) studied the stochastic

models by supposing that noises in the environment mainly affect the growth rates. In this paper, we incorporate

the white noise in each equation of system (1) in the following way:

r1 → r1 + σ1Ḃ1(t),

−r2 → −r2 + σ2Ḃ2(t),

−r3 → −r3 + σ3Ḃ3(t),

where (B1(t), B2(t), B3(t))
T (the superscript T on a matrix denotes transpose) is a three-dimensional standard

Brownian motion defined on a complete probability space (Ω,F ,P), and σ2
i (i = 1, 2, 3) denote the intensities of

the white noise. Then the stochastic three-species interacting predator–prey model corresponding to the above

deterministic system (1) is as follows:
dx1(t) = x1(t)[r1 − a11x1(t)− a12x2(t)− a13x3(t)]dt+ σ1x1(t)dB1(t),

dx2(t) = x2(t)[−r2 + a21x1(t)− a22x2(t)− a23x3(t)]dt+ σ2x2(t)dB2(t),

dx3(t) = x3(t)[−r3 + a31x1(t) + a32x2(t)− a33x3(t)]dt+ σ3x3(t)dB3(t),

(2)

with initial value xi(0) > 0(i = 1, 2, 3).

The above stochastic three-species predator–prey Lotka–Volterra model is very interesting and worth

studying. Several authors studied the dynamical properties of this stochastic predator–prey model, such as

[10, 21–23, 26–28, 36]. However, there is little work on the stationary distribution and global asymptotic

stability of the system (2).

The aim of this paper is to consider the dynamic behavior of equation (2). We show that model (2)

has a global positive solution almost surely (for short a.s.) by introducing a simple method. The stability of

positive equilibrium of model (1) is one of the most interesting problems, while there is no equilibrium for the

stochastic system (2). Then we show that system (2) has a stationary distribution under some simple parametric

conditions. We also study the global asymptotic stability of the positive solution.

The rest of this paper is organized as follows. In Section 2, we show that system (2) has a global positive

solution under some mild conditions. In Section 3, we prove that system (2) has a stationary distribution that

is ergodic when the noises are small enough. In Section 4 we consider the global attractivity of model (2). In

Section 5, we work out some figures to illustrate the main results.
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2. Global positive solutions

Throughout this paper, we denote by lR3
+ = {x ∈ lR3 : xi > 0, i = 1, 2, 3} . Now we will show the uniqueness

and existence of the global positive solution.

Theorem 1 If ri, aij > 0(i, j = 1, 2, 3) , then for any given initial value x(0) = (x1(0), x2(0), x3(0))
T ∈ lR3

+ ,

system (2) has a unique solution x(t) = (x1(t), x2(t), x3(t))
T on t ≥ 0 and the solution will remain in lR3

+

almost surely (a.s.).

Proof For the positiveness of x(t), we first consider the following auxiliary equation:

du1(t) =

[
r1 −

1

2
σ2
1 − a11e

u1(t) − a12e
u2(t) − a13e

u3(t)

]
dt+ σ1dB1(t),

du2(t) =

[
−r2 −

1

2
σ2
2 + a21e

u1(t) − a22e
u2(t) − a23e

u3(t)

]
dt+ σ2dB2(t),

du3(t) =

[
−r3 −

1

2
σ2
3 + a31e

u1(t) + a32e
u2(t) − a33e

u3(t)

]
dt+ σ3dB3(t),

(3)

with ui(0) = lnxi(0)(i = 1, 2, 3). Let u(t) = (u1(t), u2(t), u3(t))
T , B(t) = (B1(t), B2(t), B3(t))

T , f(u) =

(f1(u), f2(u), f3(u))
T , g(u) = (gij(u))3×3 . Then we can rewrite the above equation in the following form:

du(t) = f(u)dt+ g(u)dB(t) (4)

with 

f1(u) = r1 −
1

2
σ2
1 − a11e

u1(t) − a12e
u2(t) − a13e

u3(t),

f2(u) = −r2 −
1

2
σ2
2 + a21e

u1(t) − a22e
u2(t) − a23e

u3(t),

f3(u) = −r3 −
1

2
σ2
3 + a31e

u1(t) + a32e
u2(t) − a33e

u3(t),

and

g(u) =

 σ1 0 0

0 σ2 0

0 0 σ3

 .

Then for every integer n ≥ 1 and u, ũ ∈ lR3
+ with |u| ∨ |ũ| ≤ n , we have

|f(u)− f(ũ)|2 =
3∑

i=1

(fi(u)− fi(ũ))
2 ≤ 3

3∑
i,j=1

a2i,j
(
euj − eũj

)2
≤ 3

3∑
i,j=1

a2i,je
2n (uj − ũj)

2 ≤ Ln|u− ũ|2

with Ln = 3e2n
(

max
1≤i,j≤3

{a2i,j}
)
. By the above inequality and the local boundedness of f(u), we can conclude

that (for some constant L̃n )

|f(u)| ≤ L̃n(1 + |u|), |u| ≤ n.
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Since the corresponding coefficients of equation (3) satisfy the local Lipschitz condition, equation (3) has a unique

local solution (Theorem 3.15 on p. 91 of [32]). Then the Itô’s formula shows that xi(t) = eui(t) > 0(i = 1, 2, 3)

is the unique local solution to equation (2) with initial value xi(0) > 0, (i = 1, 2, 3).

Next, we claim that the solution of system (2) is global. Consider the following equation:


dy1(t) = y1(t)[r1 − a11y1(t)]dt+ σ1y1(t)dB1(t),

dy2(t) = y2(t)[−r2 + a21y1(t)− a22y2(t)]dt+ σ2y2(t)dB2(t),

dy3(t) = y3(t)[−r3 + a31y1(t) + a32y2(t)− a33y3(t)]dt+ σ3y3(t)dB3(t),

(5)

with yi(0) = xi(0)(i = 1, 2, 3). According to Theorem 2.2 in Jiang et al. [16], it is easy to show that the above

equation (5) has a unique global solution on [0,+∞) and the explicit solution is

y1(t) =
exp{(r1 − σ2

1/2)t+ σ1B1(t)}
[x1(0)]−1 + a11

∫ t

0
exp{(r1 − σ2

1/2)s+ σ1B1(s)}ds
,

y2(t) =
exp{

∫ t

0
(−r2 − σ2

2/2 + a21y1(s))ds+ σ2B2(t)}
[x2(0)]−1 + a22

∫ t

0
exp{

∫ s

0
(−r2 − σ2

2/2 + a21y1(τ))dτ + σ2B2(s)}ds
,

y3(t) =
exp{

∫ t

0
(−r3 − σ2

3/2 + a21y1(s) + a32y2(s))ds+ σ3B3(t)}
[x3(0)]−1 + a33

∫ t

0
exp{

∫ s

0
(−r3 − σ2

3/2 + a21y1(τ) + a32y2(τ))dτ + σ3B3(s)}ds
.

(6)

In view of the stochastic comparison theorem (by the proof of Theorem 1.1 in [15], it is enough that the condition

(1.4) in [15] is satisfied locally for xi ), we can see that

xi(t) ≤ yi(t), i = 1, 2, 3.

Then x(t) is a global solution of our system (2). 2

Remark 2 There are some relevant results on the above problem (see [10, 20]), but for the completeness of the

paper, we give a detailed and much simpler proof on it that is different from the standard methods.

The next lemma will be used later to prove lemma 4.2, which is necessary in the proof of globally

asymptotically stable.

Lemma 3 For any initial value x(0) ∈ lR3
+ and p > 0 , if a22 > a21 and a33 > a31 + a32 there is a constant

K = K(p) > 0 such that the solution x(t) of model (2) satisfies

lim sup
t→+∞

E[xp
i (t)] ≤ K, i = 1, 2, 3. (7)

Proof We shall prove (7) for p > 0 first. Define a Lyapunov function V (x) = xp, x ∈ lR+ . By the Itô’s

formula, one can derive

detV (x1(t)) = petxp
1(t)

[
1

p
+ r1 − a11x1(t)− a12x2(t)− a13x3(t) +

p− 1

2
σ2
1

]
dt

+pσ1e
txp

1(t)dB1(t)

(8)

1295



QIU and DENG/Turk J Math

Then taking expectations on both sides, we have (noting that the K1(p)may change from line to line)

E [etV (x1(t))] = xp
1(0) + pE

∫ t

0

esxp
1(s)

[
1

p
+ r1 − a11x1(s)− a12x2(s)− a13x3(s) +

p− 1

2
σ2
1

]
ds

≤ xp
1(0) + pE

∫ t

0

esxp
1(s)

[
1

p
+ r1 − a11x1(s) +

p

2
σ2
1

]
ds

≤ xp
1(0) + pE

∫ t

0

esK1(p)ds

≤ xp
1(0) + (et − 1)K1(p),

(9)

where

K1(p) =

(
1 + pr1 +

1
2p

2σ2
1

)(p+1)

(p+ 1)(p+1)ap11
.

Thus we have

lim sup
t→+∞

E[xp
1(t)] ≤ K1(p).

Similarly,

detV (x2(t)) = petxp
2(t)

[
1

p
− r2 + a21x1(t)− a22x2(t)− a23x3(t) +

p− 1

2
σ2
2

]
dt

+pσ2e
txp

2(t)dB2(t).

(10)

By taking expectations on both sides, we obtain (noting that a22 > a21 and the K2(p) may change from line

to line)

E [etV (x2(t))] = xp
2(0) + pE

∫ t

0

esxp
2(s)

[
1

p
− r2 + a21x1(s)− a22x2(s)− a23x3(t) +

p− 1

2
σ2
2

]
ds

≤ xp
2(0) + pE

∫ t

0

esxp
2(s)

[
1

p
+ a21x1(s)− a22x2(s) +

p

2
σ2
2

]
ds

≤ xp
2(0) + p

∫ t

0

esE

[
xp
2(s)

(
1

p
− a22x2(s) +

p

2
σ2
2

)]
ds+ pa21

∫ t

0

esE [xp
2(s)x1(s)] ds

≤ xp
2(0) + p

∫ t

0

esE

[
xp
2(s)

(
1

p
+

p

2
σ2
2 − (a22 − a21)x2(s)

)]
ds+

pa21
p+ 1

∫ t

0

esE
[
xp+1
1 (s)

]
ds.

(11)

Then for all large t , we have

E [etV (x2(t))] ≤ xp
2(0) + p

∫ t

0

esK2(p)ds+
pa21
p+ 1

∫ t

0

esK1(p+ 1)ds

≤ xp
2(0) + (et − 1) (K2(p) +K1(p+ 1)) ,

(12)
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where

K2(p) =

(
1 + 1

2p
2σ2

2

)(p+1)

(p+ 1)(p+1)(a22 − a21)p
.

The third inequality is following from the Young’s inequality with p = p, q = 1, ε = 1 (see p. 52 [32])

|a|p|b|q ≤ |a|p+q +
q

p+ q

(
p

(p+ q)

)p/q

|b|p+q,

which holds for ∀a, b ∈ lR and ∀p, q, ε > 0. Then

lim sup
t→+∞

E[xp
2(t)] ≤ K2(p).

Furthermore, we can prove lim supt→+∞ E[xp
3(t)] ≤ K3(p) similarly under the assumption a33 > a31 + a32 .

Then (7) can be obtained by taking K(p) = max{K1(p),K2(p),K3(p)} . 2

Remark 4 The idea of this proof is inspired from Cheng [5]. Their result on the ultimate boundedness holds

only for p = 1 . Li et al. [20] just present a similar result for a competitive system without a proof. Here, for

the three-species stochastic food-chain system we present a detailed proof for p > 0 . The stochastic ultimate

boundedness of the solutions can be obtained by the above lemma and Chebyshev’s inequality.

From Lemma 3 there exists a T > 0 such that E[xp
i (t)] ≤ 2K for t ≥ T . At the same time note

that E[xp
i (t)] is continuous; then there is a constant K̃ > 0 such that E[xp

i (t)] < K̃ for 0 ≤ t < T . Define

K̂ = max{2K, K̃} . Then

E [xp
i (t)] ≤ K̂ = K̂(p), t ≥ 0, p > 0, i = 1, 2, 3. (13)

3. Stationary distribution

In this section, we firstly introduce the following notations for simplicity:

D =

∣∣∣∣∣∣∣
a11 a12 a13

−a21 a22 a23

−a31 −a32 a33

∣∣∣∣∣∣∣ , D1 =

∣∣∣∣∣∣∣
r1 a12 a13

−r2 a22 a23

−r3 −a32 a33

∣∣∣∣∣∣∣ ,

D2 =

∣∣∣∣∣∣
a11 r1 a13
−a21 −r2 a23
−a31 −r3 a33

∣∣∣∣∣∣ , D3 =

∣∣∣∣∣∣
a11 a12 r1
−a21 a22 −r2
−a31 −a32 −r3

∣∣∣∣∣∣ ,
where all the elements of the above determinants are the parameters of system (2).

Before we go any further, let us introduce some lemmas given by Gard and detailed proofs are available

in [11]. Let X(t) be a homogeneous Markov process satisfying the following stochastic differential equation:

dX(t) = b(X)dt+
k∑

m=1

βm(X)dBm(t), (14)

where b(·) and βm(·) are continuous n-vector valued functions for t > 0, X ∈ lRn and Bm(t)(m = 1, 2, · · · , k)

are independent scalar Wiener processes. The diffusion matrix is A(x) = (αij(x)), αij =
∑k

m=1 β
(i)
m (x)β

(j)
m (x).
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Lemma 5 (p. 132 Theorem 5.3 in [11]) Let U and Un (for each positive integer n) be open sets in lRn with

Un ⊆ Un+1, Un ⊆ U, and U =
∪
n

Un,

and suppose b(.); βm(·) satisfy the existence and uniqueness conditions for solutions of (14) on each set t > 0 ,

X(t) ∈ Un . Suppose further there is a nonnegative continuous function V (t,X(t)) with continuous partial

derivatives ∂V
∂t ,

∂V
∂Xi

, and ∂2V
∂Xi∂Xj

satisfying LV ≤ cV for t > 0, X ∈ U , where c is a positive constant and

LV (t,X(t)) =

[
∂V

∂t
+∇xV · b+ 1

2
tr (AVxx)

]
(t,X(t)). (15)

If also

inf
t>0,X∈U\Un

V (t,X(t)) → ∞, as n → ∞,

then for any X0 independent of B(t) such that

P (X0 ∈ U) = 1,

there is a unique solution X(t) of (14) with X(0) = X0 , and X(t) ∈ U for all t > 0 , that is, P (τU = ∞) = 1 ,

where τU is the first exit time from U and which is given by τU = inf{t : X(t) /∈ U} .

Lemma 6 (p. 144 Theorem 5.9 in [11]) Suppose the conditions of Lemma 5 hold together with the following

two conditions: for some positive integer n0 , there are positive constants M and c1 such that

(i)
k∑

i,j=1

αij(X(t))θiθj > M |θ|2, X(t) ∈ Un0 , θ ∈ lRk,

(ii) LV (X(t)) ≤ −c1, for all X(t) ∈ U\Un0 .

Then there exists an invariant distribution (stationary distribution) P̃ with nowhere zero density in U such

that for any Borel set B ⊆ U

P (t, x,B) → P̃ (B), as t → ∞,

where P (t, x,B) is the transition probability P (X(t) ∈ B|X(0) = x) for the solution X(t) of the SDE (14).

Here we define −δ =
1

2
λmax

(
B +BT

)
, where λmax

(
B +BT

)
stands for the maximal eigenvalue of the

matrix B +BT and

B =

 −a11 −a12 −a13

a21 −a22 −a23

a31 a32 −a33

 . (16)

Next we will give the main result of this section.
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Theorem 7 Suppose that D > 0, Di > 0(i = 1, 2, 3) . If δ > 0 and the noises are sufficiently small such that

1

2

3∑
i=1

σ2
i x

∗
i < δ min

i=1,2,3

{
(x∗

i )
2
}
, (17)

where (x∗
1, x

∗
2, x

∗
3) is a solution of the following equation:

a11x1 + a12x2 + a13x3 = r1,

−a21x1 + a22x2 + a23x3 = −r2,

−a31x1 − a32x2 + a33x3 = −r3.

(18)

Then there is a stationary distribution µ(·) for system (2).

Proof From equation (18), we know that x∗
i =

Di

D
> 0(i = 1, 2, 3). Then let

V (x) =
3∑

i=1

[
xi −

1

2
x∗
i − x∗

i ln
xi

x∗
i

]
.

By the Itô’s formula

dV (x) = LV (x)dt+

3∑
i=1

(xi − x∗
i )σidBi(t),

where

LV (x) = (x1 − x∗
1)[r1 − a11x1 − a12x2 − a13x3] +

1

2
σ2
1x

∗
1

+(x2 − x∗
2)[−r2 + a21x1 − a22x2 − a23x3] +

1

2
σ2
2x

∗
2

+(x3 − x∗
3)[−r3 + a31x1 + a32x2 − a33x3] +

1

2
σ2
3x

∗
3

= −(x1 − x∗
1)[a11(x1 − x∗

1) + a12(x2 − x∗
2) + a13(x3 − x∗

3)] +
1

2
σ2
1x

∗
1

−(x2 − x∗
2)[−a21(x1 − x∗

1) + a22(x2 − x∗
2) + a23(x3 − x∗

3)] +
1

2
σ2
2x

∗
2

−(x3 − x∗
3)[−a31(x1 − x∗

1)− a32(x2 − x∗
2) + a33(x3 − x∗

3)] +
1

2
σ2
3x

∗
3

≤ (x1 − x∗
1, x2 − x∗

2, x3 − x∗
3)

1

2
λmax

(
B +BT

)
(x1 − x∗

1, x2 − x∗
2, x3 − x∗

3)
T

+
1

2

3∑
i=1

σ2
i x

∗
i

=

3∑
i=1

−δ(xi − x∗
i )

2 +
1

2

3∑
i=1

σ2
i x

∗
i .

(19)

From the conditions δ > 0 and (17) we know that the sphere (noting that x∗
i > 0 for i = 1, 2, 3)

3∑
i=1

−δ(xi − x∗
i )

2 +
1

2

3∑
i=1

σ2
i x

∗
i = 0, (20)
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is entirely included in lR3
+ . Let Un0 be a neighborhood of the sphere with Un0 ⊆ lR3

+ , and then LV (x) < −c1

for some constant c1 > 0 and any x ∈ lR3
+\Un0 . This makes the Assumption (ii) of Lemma 6 hold with

U = lR3
+ . Moreover, for all x ∈ lR3

+ , we have V (x) ≥
3∑

i=1

1

2
x∗
i > 0. Thus we can easily get LV (x) ≤ cV (x) for

all x ∈ lR3
+ . On the other hand, since the diffusion matrix of our system (2) is

A(x) =

 σ2
1x

2
1 0 0

0 σ2
2x

2
2 0

0 0 σ2
3x

2
3

 , (21)

then there exists a constant c > 0 such that

3∑
i=1

σ2
i (xi)

2θ2i > c|θ|2,

for x ∈ Un0 and θ ∈ lR3 ( | · | means the Euclidean norm of a vector), which verifies the Assumption (i) of

Lemma 6. Consequently, from Lemma 6 we obtain that system (2) has a stationary distribution µ(·). 2

Remark 8 We know that assumption (i) of Lemma 3.2 shows that the operator L is uniformly elliptical in

Un0 , which can guarantee that the smallest eigenvalue of the diffusion matrix A is bounded away from zero (see

p. 103 of Gard [11]and p. 349 of Strang [37]). Assumption (ii) of Lemma 3.2 shows that the mean time τ at

which a path issuing from x reaches the set Un0
is finite for any x ∈ U\Un0

, and supx∈U0
Exτ < +∞ for

every compact subset U0 ⊂ U (see p. 1163 of Zhu and Yin [38]). Then by adopting the conclusion of Theorem

5.1 on p. 121 of Khasminskii [12], we can conclude that under the assumption of Theorem 3.1 system (2) has

the ergodic property with U = lR3
+

P

{
lim

t→+∞

1

t

∫ t

0

xi(s)ds =

∫
lR3

+

ziµ(dz1, dz2, dz3)

}
= 1, for all zi ∈ lR+, i = 1, 2, 3.

4. Global asymptotic stability

In this section, let us first introduce the definition of global stability and some useful lemmas.

Definition 9 Let x(t) and x̃(t) be two arbitrary solutions of system (2) with initial values x(0) ∈ lR3
+ and

x̃(0) ∈ lR3
+ , respectively. If for every x(0), x̃(0) ∈ lR3

+ , limt→∞ |xi(t)− x̃i(t)| = 0, (i = 1, 2, 3) a.s., then we say

(2) is globally asymptotically stable (or globally attractive).

Lemma 10 (See [18, 31]) Suppose that an n-dimensional stochastic process X(t) on t ≥ 0 satisfies the

condition

E|X(t)−X(s)|λ1 ≤ c|t− s|1+λ2 , 0 ≤ s, t < ∞,
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for some positive constants λ1, λ2 , and c . Then there exists a continuous modification X̃(t) of X(t) which has

the property that for every γ ∈ (0, λ2/λ1) there is an almost surely positive random variable h(ω) such that

P

{
ω : sup

0<|t−s|<h(ω),0≤s,t<∞

|X̃(t, ω)− X̃(s, ω)|
|t− s|γ

≤ 2

1− 2−γ

}
= 1.

In other words, almost every sample path of X̃(t) is locally but uniformly Hölder continuous with exponent γ .

Lemma 4.1 is the well-known Kolmogorov–C̆entsov theorem on the continuity of a stochastic process.

Karatzas and Shreve [18] give a proof of this result in the case when the stochastic process X(t) is on the finite

interval [0, T ] . Mao [31] points out that a little bit of modification of the proof works for the case when X(t)

is on the entire lR+ .

Lemma 11 Let x(t) be a positive solution of system (2); if a22 > a21 and a33 > a31 + a32 , then almost every

sample path of xi(t)(i = 1, 2, 3) is uniformly continuous.

Proof The equivalent integral equation of system (2) is

x1(t) = x1(0) +

∫ t

0

x1(s)[r1 − a11x1(s)− a12x2(s)− a13x3(s)]ds

+

∫ t

0

σ1x1(s)dB1(s),

x2(t) = x2(0) +

∫ t

0

x2(s)[−r2 + a21x1(s)− a22x2(s)− a23x3(s)]ds

+

∫ t

0

σ2x2(s)dB2(s),

x3(t) = x3(0) +

∫ t

0

x3(s)[−r3 + a31x1(s) + a32x2(s)− a33x3(s)]ds

+

∫ t

0

σ3x3(s)dB3(s).

(22)

For 0 < τ < t < ∞, t− τ ≤ 1, p > 2, and i = 1, 2, 3, it is obvious

E |xi(t)− xi(τ)|p

≤ E

∣∣∣∣∣∣
∫ t

τ

xi(s)

ri + 3∑
j=1

aijxj(s)

 ds+

∫ t

τ

σixi(s)dBi(s)

∣∣∣∣∣∣
p

≤ 2p−1E

∣∣∣∣∣∣
∫ t

τ

xi(s)

ri + 3∑
j=1

aijxj(s)

ds

∣∣∣∣∣∣
p

+ 2p−1E

∣∣∣∣∫ t

τ

σixi(s)dBi(s)

∣∣∣∣p

≤ [2(t− τ)]p−1

∫ t

τ

E

∣∣∣∣∣∣xi(s)

ri + 3∑
j=1

aijxj(s)

∣∣∣∣∣∣
p

ds

+
1

2
[2p(p− 1)]

p
2 |σi|p (t− τ)

p−2
2

∫ t

τ

E |xi(s)|p ds.

(23)
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Here the last inequality is followed from the continuous Hölder inequality and Theorem 7.1 from p. 39 [30]. By

using the discrete Hölder inequality, one can deduce the following useful inequality:

∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣
p

≤ n(p−1)
n∑

i=1

|ai|p,

where p ≥ 1, ai ∈ lR, n ≥ 2. Then we note that (from the above inequality and Lemma 3)

E

∣∣∣∣∣∣xi

ri + 3∑
j=1

aijxj

∣∣∣∣∣∣
p

≤ 1

2
E |xi|2p +

1

2
E

∣∣∣∣∣∣ri +
3∑

j=1

aijxj

∣∣∣∣∣∣
2p

≤ 1

2

E |xi|2p + 42p−1

|ri|2p + a2pii E |xi|2p +
3∑

j=1,j ̸=i

a2pij E |xj |2p


≤ 1

2

K̂(2p) + 42p−1

|ri|2p + a2pii K̂(2p) + K̂(2p)

3∑
j=1,j ̸=i

a2pij

 =: K(p).

(24)

One should take note that K̂(2p) is from(13). By taking the inequality (24) into (23)

E |xi(t)− xi(τ)|p

≤ [2(t− τ)]p−1

∫ t

τ

K̄(p)ds+
1

2
[2p(p− 1)]

p
2 |σi|p (t− τ)

p−2
2

∫ t

τ

K̂(p)ds

= 2p−1(t− τ)pK̄(p) + 2p−1

(
p(p− 1)

2

) p
2

|σi|p (t− τ)
p
2 K̂(p)

≤ 2p−1(t− τ)
p
2

[
(t− τ)

p
2 +

(
p(p− 1)

2

) p
2

]
K0(p)

≤ 2p−1(t− τ)
p
2

[
1 +

(
p(p− 1)

2

) p
2

]
K0(p),

(25)

where K0(p) = max{K(p), |σi|p K̂(p)} . Then since p > 2 we can get that almost every sample path of

xi(t)(i = 1, 2, 3) is local uniformly Hölder continuous with exponent γ ∈ (0, p−2
2p ), which is following from

Lemma 10. Therefore almost every sample path of xi(t)(i = 1, 2, 3) is uniformly continuous on t > 0. 2

Lemma 12 (Barbalat’s Lemma [2]) Let f be a nonnegative function defined on [0,+∞) such that f is

integrable and is uniformly continuous. Then lim
t→∞

f(t) = 0.

Then we give the main theorem of this section.
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Theorem 13 System (2) is globally asymptotically stable if B̃ is irreducible and

aii >
3∑

j=1,j ̸=i

aji, i = 1, 2, 3, (26)

where

B̃ =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 . (27)

Proof Suppose x(t), x̃(t) be two solution of equation (2) with initial values x(0), x̃(0) ∈ lR3
+ and x(0) ̸= x̃(0),

respectively. Let ci be the cofactor of the i -th diagonal element of LB̃ , where

LB̃ =

 a12 + a13 −a12 −a13

−a21 a21 + a23 −a23

−a31 −a32 a31 + a32

 . (28)

Then ci > 0. Consider the following Lyapunov function:

V (t) =

3∑
i=1

ci |lnxi(t)− ln x̃i(t)| .

By calculating the right differential d+V (t), we obtain

d+V (t) =
3∑

i=1

cisgn (xi(t)− x̃i(t)) d (lnxi(t)− ln x̃i(t))

= c1sgn (x1 − x̃1) [−a11(x1 − x̃1)− a12(x2 − x̃2)− a13(x3 − x̃3)] dt

+c2sgn (x2 − x̃2) [a21(x1 − x̃1)− a22(x2 − x̃2)− a23(x3 − x̃3)] dt

+c3sgn (x3 − x̃3) [a31(x1 − x̃1) + a32(x2 − x̃2)− a33(x3 − x̃3)] dt

≤
3∑

i=1

−ciaii |xi − x̃i|+
3∑

j=1,j ̸=i

ciaji |xi − x̃i|

dt

= −
3∑

i=1

ci

aii − 3∑
j=1,j ̸=i

aji

 |xi − x̃i| dt.

The above inequality is equivalent to

V (t) ≤ V (0)−
∫ t

0

3∑
i=1

ci

aii − 3∑
j=1,j ̸=i

aji

 |xi(s)− x̃i(s)|ds.

That is

V (t) +

∫ t

0

3∑
i=1

ci

aii − 3∑
j=1,j ̸=i

aji

 |xi(s)− x̃i(s)| ds ≤ V (0) < +∞.
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Since V (t) > 0 is obvious and with assumption (26), we can see that |xi(t)− x̃i(t)| is integrable.
Then by using Lemma 11 and Lemma 12, the solution of our system (2) is globally asymptotically stable.

2

5. Example and numerical simulations

We consider the following example:
dx1(t) = x1(t)[1− 1.6x1(t)− 1.2x2(t)− 0.3x3(t)]dt+ σ1x1(t)dB1(t),

dx2(t) = x2(t)[−0.4 + 0.85x1(t)− 2.5x2(t)− 0.4x3(t)]dt+ σ2x2(t)dB2(t),

dx3(t) = x3(t)[−0.05 + 0.4x1(t) + x2(t)− 3x3(t)]dt+ σ3x3(t)dB3(t),

(29)

with
σ2
1

2
=

σ2
2

2
=

σ2
3

2
= 0.001. We give the simulations of the solution of Eq. (29) by using Milstein’s method

(see e.g. [13]). Consider the following discretization equation:

x
(n+1)
1 = x

(n)
1 + x

(n)
1 [1− 1.6x

(n)
1 − 1.2x

(n)
2 − 0.3x

(n)
3 ]∆t

+σ1x
(n)
1

√
∆tξ(n) +

σ2
1

2
x
(n)
1

[
(ξ(n))2∆t−∆t

]
,

x
(n+1)
2 = x

(n)
2 + x

(n)
2 [−0.4 + 0.85x

(n)
1 − 2.5x

(n)
2 − 0.4x

(n)
3 ]∆t

+σ2x
(n)
2

√
∆tζ(n) +

σ2
2

2
x
(n)
2

[
(ζ(n))2∆t−∆t

]
,

x
(n+1)
3 = x

(n)
3 + x

(n)
3 [−0.05 + 0.4x

(n)
1 + x

(n)
2 − x

(n)
3 ]∆t

+σ3x
(n)
3

√
∆tη(n) +

σ2
3

2
x
(n)
3

[
(η(n))2∆t−∆t

]
.

(30)

(i) By calculating we get x∗
1 = 0.5898, x∗

2 = 0.0291, x∗
3 = 0.0692, δ = 3.1499 and then

1

2

3∑
i=1

σ2
i x

∗
i − δ min

i=1,2,3

{
(x∗

i )
2
}
= −0.0909 < 0. Therefore system (29) has a stationary distribution according to

Theorem 4 (see Figure 1).

(ii) The matrix B̃ corresponding to system (29) is irreducible and satisfying aii >

3∑
j=1,j ̸=i

aji, (i = 1, 2, 3)

which satisfy the conditions of Theorem 13; then the system (29) is globally asymptotically stable (see Figure 2).

6. Conclusion

In this paper, we formulate a three-species stochastic food-chain model (2) based on deterministic model (1) by

considering the growth rate influenced by random fluctuations. Under our assumption that deterministic model

(1) has a globally stable positive equilibrium, if the intensities of the noises are sufficiently small, we conclude

that the stochastic system (2) has a stationary distribution. This shows that the population distribution of

the stochastic model will be around the positive equilibrium point. Then the sufficient conditions for global

asymptotic stability are established. That is to say no matter what the initial population may be each population

change will be almost the same after some time.
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Figure 1. Distribution of Eq. (29) with step size ∆t = 0.001
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Figure 2. Solution of Eq. (29) for initial data x1(0) = 0.5, x2(0) = 0.1, x3(0)) = 0.05, y1(0) = 0.4, y2(0) = 0.3, y3(0) =

0.1, step size ∆t = 0.001.

There still are some interesting further questions that deserve to be considered. One may study the

dynamic properties of the nonautonomous food-chain models. One can also consider the persistence and

extinction properties of the three-species Lotka–Volterra model under regime switching.
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