

http://journals.tubitak.gov.tr/math/

**Research Article** 

# On tetravalent normal edge-transitive Cayley graphs on the modular group

Hesam SHARIFI<sup>1,\*</sup>, Mohammad Reza DARAFSHEH<sup>2</sup>

<sup>1</sup>Department of Mathematics, Faculty of Science, Shahed University, Tehran, Iran <sup>2</sup>School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran

| Received: 27.04.2016 | • | Accepted/Published Online: 19.12.2016 | • | Final Version: 28.09.2017 |
|----------------------|---|---------------------------------------|---|---------------------------|
|----------------------|---|---------------------------------------|---|---------------------------|

**Abstract:** A Cayley graph  $\Gamma = Cay(G, S)$  on a group G with respective to a subset  $S \subseteq G$ ,  $S = S^{-1}, 1 \notin S$ , is said to be normal edge-transitive if  $N_{\mathbb{A}ut(\Gamma)}(\rho(G))$  is transitive on edges of  $\Gamma$ , where  $\rho(G)$  is a subgroup of  $\mathbb{A}ut(\Gamma)$  isomorphic to G. We determine all connected tetravalent normal edge-transitive Cayley graphs on the modular group of order 8n in the case that every element of S is of order 4n.

Key words: Cayley graph, edge-transitive, modular group

### 1. Introduction

Let G be a group and S a subset of G such that  $1 \notin S$ . The Cayley graph Cay(G, S) is the graph with vertex set V(Cay(G, S)) = G and edge set  $E(Cay(G, S)) = \{(u, v) | vu^{-1} \in S\}$ . The edge set can be identified with set of ordered pairs  $\{(g, sg) | g \in G, s \in S\}$ . If  $S = S^{-1}$ , that is, closed under taking the inverse, then Cay(G, S)is an undirected graph. The degree of each vertex is |S| and it is obvious that Cay(G, S) is connected if and only if  $G = \langle S \rangle$ .

A graph  $\Gamma$  is called vertex-transitive or edge-transitive if the automorphism group  $Aut(\Gamma)$  acts transitively on the vertex-set or edge-set of  $\Gamma$ , respectively. Now let  $\Gamma = Cay(G, S)$ .

For  $g \in G$ , let  $\rho_g : G \to G$  given by  $\rho_g(x) = xg$ . The set of all  $\rho_g, g \in G$ , forms the subgroup  $\rho(G)$ (isomorphic to G) of  $\operatorname{Aut}(\Gamma)$ . Since  $\rho(G) \leq \operatorname{Aut}(\Gamma)$  acts right regularly on the vertices of  $\Gamma$ , by definition,  $\Gamma$ is vertex-transitive, while  $\Gamma$  is not edge-transitive in general.

In 1999, Praeger [9] introduced the concept of normal edge-transitive Cayley graphs, which plays an important role for understanding Cayley graphs. The graph  $\Gamma$  is called normal edge-transitive if  $N_{\mathbb{A}ut(\Gamma)}(\rho(G))$  is transitive on the edges of  $\Gamma$ .

The research on edge-transitive Cayley graphs is an active area of research. One of the standard problems in this respect is the study of normal edge-transitive Cayley graphs of small valencies. Here we mention some references on research about edge-transitive Cayley graphs. In [7] the edge-transitive tetravalent Cayley graphs on groups of square-free order are recognized. In [4] the authors characterized all nonnormal Cayley digraphs of outvalency 2 of all nonabelian groups of order  $2p^2$ , where p is an odd prime. In [1] the author found normal edge-transitive Cayley graphs of abelian groups. In [6] all the tetravalent edge-transitive Cayley graphs on the group  $PSL_2(p)$  and in [2] the normal edge-transitive Cayley graphs of Frobenius groups of order pq, where p

<sup>\*</sup>Correspondence: hsharifi@shahed.ac.ir

<sup>2010</sup> AMS Mathematics Subject Classification: 20D60, 05B25

and q are different primes, are determined. In [3] the authors studied normal edge-transitive Cayley graphs of order 4p where p is an odd prime.

Our aim in this paper is to study connected tetravalent normal edge-transitive Cayley graphs of a certain group of order 8n,  $n \in \mathbb{N}$ . According to [8] up to isomorphism there are four nonabelian groups of order 8n with a cyclic subgroup of order 4n, if n is a power of 2. One of these groups is called the modular group, with the following presentation:

$$M_{8n} = \langle a, b | a^{4n} = b^2 = 1, bab = a^{2n+1} \rangle$$

In the following we work with the modular group  $M_{8n}$  without assuming that n is a power 2.

We employ the following notation and terminology. The notation  $G = K \rtimes H$  is used to indicate that G is a semidirect product of K by H. We denote by Aut(G, S) the subgroup of Aut(G) consisting of all  $\sigma \in Aut(G)$  such that  $\sigma(S) = S$ . It is easy to see that Aut(G, S) is a subgroup of the automorphisms group of Cay(G, S).  $\mathbb{Z}_n$  denotes a cyclic group of order n, and  $\mathbb{S}_4$  denotes for a the symmetric group on four letters.  $D_8$  is employed to denote the dihedral group of order 8.

The following theorem is the main result of this paper.

**Main Theorem** Let  $G = M_{8n}$  and S be a symmetric subset of  $M_{8n}$  with cardinality 4 such that each element of S has order 4n and  $G = \langle S \rangle$ . If  $\Gamma = Cay(G, S)$  is a normal edge-transitive Cayley graph, then  $N_{\mathbb{A}ut(\Gamma)}(\rho(G)) \cong \rho(G) \rtimes \mathbb{Z}_2$ .

#### 2. Preliminaries

We start with a famous lemma.

**Lemma 2.1** ([5, Lemma 2.1] or [9]) For a Cayley graph  $\Gamma = Cay(G, S)$ , we have  $N_{\mathbb{A}ut(\Gamma)}(\rho(G)) = \rho(G) \rtimes \mathbb{A}ut(G, S)$ .

Therefore,  $\Gamma$  is normal edge-transitive when  $\rho(G) \rtimes \operatorname{Aut}(G, S)$  is transitive on the edge-set of  $\Gamma$ .

Xu in [10] defined a Cayley graph  $\Gamma = Cay(G, S)$  to be normal if  $\rho(G)$  is a normal subgroup of  $Aut(\Gamma)$ , i.e.  $N_{Aut(\Gamma)}(\rho(G)) = Aut(\Gamma)$ .

The following lemma is very useful in this paper.

**Lemma 2.2** ([9, Proposition 1(c)]) Consider the Cayley graph  $\Gamma = Cay(G,S)$ . Then the following are equivalent:

- (i)  $\Gamma$  is normal edge-transitive;
- (ii)  $S = T \cup T^{-1}$ , where T is an Aut(G, S)-orbit in G;
- (iii) There exists  $H \leq Aut(G)$  and  $g \in G$  such that  $S = g^H \cup g^{-H}$ , where  $g^H = \{g^h | h \in H\}$ .

Moreover,  $\rho(G) \rtimes \operatorname{Aut}(G,S)$  is transitive on the arcs of  $\Gamma$  if and only if  $\operatorname{Aut}(G,S)$  is transitive on S.

#### 3. Proof of the main theorem

First we are going to specify the automorphism group of  $M_{8n}$ .

Elements of  $M_{8n}$  are of the form  $a^k$  or  $a^k b$ ,  $0 \le k < 4n$ . Using the defining relations of  $M_{8n}$  we can find the orders of elements in  $M_{8n}$  as follows:  $o(a^k) = \frac{4n}{(k,4n)}$  and

$$o(a^k b) = \begin{cases} \frac{4n}{(k,2n)}, & \text{if k is even,} \\ \frac{4n}{(n+k,2n)}, & \text{if k is odd,} \end{cases}$$

where  $0 \le k < 4n$ .

Elements of order 2 in  $M_{8n}$  are of the form  $a^{2n}, a^{2n}b, b$  and if n is odd in addition to the above elements,  $a^n b$  and  $a^{3n}b$  are also of order 2.

Elements of order 4n in  $M_{8n}$  are of the form  $a^k$ , (k, 4n) = 1, and  $a^k b$ , k odd, (n + k, 2n) = 1,  $0 \le k < 4n$ . Of course in the latter case n must be even.

**Lemma 3.1**  $|\mathbb{A}ut(M_{8n})| = 4\varphi(4n)$ , where  $\varphi$  refers to the Euler phi function.

**Proof**  $f \in Aut(M_{8n})$  is completely ascertained by f(a) and f(b). The elements f(a) and f(b) have orders 4n and 2, respectively.

- Case(1). n is odd. By what we mentioned earlier we must have  $f(a) = a^k, (k, 4n) = 1, 1 \le k < 4n$  and  $f(b) \in \{a^{2n}, a^{2n}b, b, a^nb, a^{3n}b\}$ . The case  $f(b) = a^{2n}$  is impossible and it verified that all other possibilities can happen. Therefore,  $|Aut(M_{8n})| = 4\varphi(4n)$ .
- Case(2). *n* is even. In this case  $f(a) = a^k$ ,  $(k, 4n) = 1, 1 \le k < 4n$ , or  $f(a) = a^l b, l$  odd,  $(n + l, 2n) = 1, 0 \le l < 4n$ , and  $f(b) \in \{a^{2n}, a^{2n}b, b\}$ . The automorphisms of  $M_{8n}$  are of two kinds. One kind is defined by  $f(a) = a^k$ ,  $(k, 4n) = 1, 1 \le k < 4n$  and  $f(b) = a^{2n}b$  or *b*. The number of these automorphisms is  $2\varphi(4n)$ . The other kind of automorphisms of  $M_{8n}$  is defined by  $f(a) = a^l b, l$  odd,  $(n + l, 2n) = 1, 0 \le l < 4n$ , and  $f(b) \in \{a^{2n}, a^{2n}b, b\}$ . However,  $Z(M_{8n}) = \langle a^2 \rangle$  and hence  $f(a^2) = a^{2t}$  and  $f(b) = a^{2n}$  make a contradiction. Therefore,  $f(b) = a^{2n}b$  or *b*.

However, it is easy to see that (n + l, 2n) = 1 if and only if (l, n) = 1 (note that n is even and l is odd), and (l, n) = 1 if and only if (l, 4n) = 1. Therefore, the number of automorphisms f is equal to  $2\varphi(4n)$ and altogether we have  $4\varphi(4n)$  possibilities for elements of  $Aut(M_{8n})$ . This completes the proof.

Let us consider the Cayley graph  $\Gamma = Cay(M_{8n}, S)$  where |S| = 4 and  $M_{8n} = \langle S \rangle$ . We are interested in the case where  $\Gamma$  is normal edge-transitive. By Lemma 2.2 elements of S have the same order and  $Aut(M_{8n}, S)$ on S is either transitive or has two orbits, T and  $T^{-1}$ .

We are interested in the case where each element of S has order 4n. Therefore, elements of S are of the form  $a^k$ ,  $(k, 4n) = 1, 0 \le k < 4n$  or  $a^l b$ , (n + l, 2n) = 1, l odd,  $0 \le k < 4n$ . It is obvious that n must be even. Therefore, from now on, we will assume that n is even.

**Theorem 3.1** Let n be an even number and  $\Gamma = Cay(M_{8n}, S)$  be a normal connected edge-transitive Cayley graph where |S| = 4 and each element of S has order 4n. Then S is of the following form:  $\{a, zab, a^{-1}, z^{-1}b^{-1}a^{-1}\},$  where  $z \in Z(M_{8n})$ .

**Proof** Elements of order 4n in  $M_{8n}$ , n even, are of the following types:

Type I:  $a^k, 0 \le k < 4n, (k, 4n) = 1.$ 

## Type II: $a^{l}b, 0 \leq l < n, l \text{ odd}, (n+l, 2n) = 1.$

Let S be a generating set for  $M_{8n}$  such that  $o(x) = 4n, \forall x \in S$ , and  $|S| = 4, S = S^{-1}$ . Since  $a^{l}ba^{l'}b = a^{l+l'(2n+1)}$  is a central element of  $M_{8n}$ , two elements of the same type can not generate  $M_{8n}$ . Therefore, we have to choose one element from each type. Let  $S = \{x, y, x^{-1}, y^{-1}\}, M_{8n} = \langle S \rangle = \langle x, y \rangle$ . Let  $x = a^k, 0 \leq k < 4n, (k, 4n) = 1$ , and  $y = a^l b, 0 \leq l < 4n, l$  odd, (n + l, 2n) = 1. From  $a^k \in S$  it is easy to deduce that  $a \in \langle S \rangle$ ; hence,  $b \in \langle S \rangle$ . Therefore, for any x and y with the above conditions S is a generating set for  $M_{8n}$ .

If we take the automorphism  $f \in Aut(M_{8n})$  with  $f(a) = a^{k'}, f(b) = b$ , and choose k' in such a way that  $kk' \equiv 1 \pmod{4n}$ , then  $f(a^k) = a$  and  $f(a^l b) = a^{k'l} b$ . Since k' and l are odd, we can write k'l = 1 + 2t, and hence  $a^{k'l}b = a^{1+2t}b = a^{2t}ab$ . However,  $Z(M_{8n}) = \langle a^2 \rangle$ , and we see that  $a^{2t} = z \in Z(M_{8n})$  and  $f(S) = \{a, zab, a^{-1}, z^{-1}b^{-1}a^{-1}\}$ , and the theorem is proved.

Now we are going to prove the main theorem.

By Theorem 3.1, S is equivalent to  $\{a, zab, a^{-1}, (zab)^{-1}\}$ , and by Lemma 2.1 we have  $N_{\mathbb{A}ut(\Gamma)}(\rho(G)) = \rho(G) \rtimes \mathbb{A}ut(G, S)$ . It is enough to find  $\mathbb{A}ut(G, S)$ . Because of  $G = \langle S \rangle$ , we have  $\mathbb{A}ut(G, S) \in \mathbb{S}_4$ . The group  $\mathbb{A}ut(G, S)$  does not contain elements of order 3 because if  $\sigma \in \mathbb{A}ut(G, S)$  fixes  $x \in S$ , then it will fix  $x^{-1}$  as well. Therefore,  $|\mathbb{A}ut(G, S)| | 8$ , and  $\mathbb{A}ut(G, S) \cong \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_4, D_8$ .

We consider the following cases:

Case I. Aut(G, S) does not contain elements of order 4.

Let  $\sigma \in Aut(G, S)$  be of order 4. Then  $\sigma$  induces a cycle of length 4 on S. If  $x \in S$ , obviously  $\sigma(x) = x^{-1}$  is impossible because then  $\sigma$  would be the product of two cycles. Therefore, we may assume that  $\sigma = (a, zab, a^{-1}, (zab)^{-1})$ . Since  $z \in Z(M_{8n}) = \langle a^2 \rangle$ , we set  $z = a^{2t}, t \in \mathbb{N}$ .

From  $\sigma(a) = zab, \sigma(zab) = a^{-1}$  we obtain:

$$a^{-1} = \sigma(zab) = \sigma(z)\sigma(a)\sigma(b) = \sigma(z)zab\sigma(b) \Rightarrow \sigma(z) = z^{-1}a^{-2} \text{ or } z^{-1}a^{-2-2n}.$$

However,  $\sigma(a)$  can only be of the form  $\sigma(a) = a^l b$  where l is odd and hence  $a^l b = zab$ , from which it follows that l = 2t + 1.

Now:

$$\sigma(z) = \sigma(a^{2t}) = \sigma(a)^{2t} = (a^l b)^{2t} = a^{2(l-1)t} (ab)^{2t} = a^{2(l-1)t} a^{(2n+2)t} = z^{n+l}$$

. If  $\sigma(z) = z^{-1}a^{-2} = z^{n+l}$ , then  $z^{n+l+1}a^2 = 1$ , from which we obtain 2t(n+l+1) + 2 = 4mn for some  $m \in \mathbb{N}$ . It follows that t(n+l+1) = 2mn-1, but the left-hand side of the last equality is even whereas its right-hand side is odd, a contradiction.

Similarly, the case  $\sigma(z) = z^{-1}a^{-2-2n}$  results in a contradiction. Therefore, Aut(G, S) cannot be isomorphic to  $\mathbb{Z}_4, D_8$ .

Case II. Aut(G, S) does not contain a subgroup isomorphic to  $\mathbb{Z}_2 \times \mathbb{Z}_2$ .

It is enough to prove that Aut(G, S) does not contain an element  $\sigma$  with  $\sigma(a) = zab$  and  $\sigma(zab) = a$ . From the form of the automorphism of Aut(G) we have  $\sigma(a) = a^k$  for some k, (k, 4n) = 1. If  $\sigma(a) = zab$ , then  $a^k = zab$ , from which we obtain  $b = a^{-2t+k-1}$ , which is not the case because a and b are independent generators of G.

Case III. Aut(G, S) contains an element of order 2.

If we define  $\sigma(a) = a^{-1}$ ,  $\sigma(b) = a^{2n}b$ , we see that the cycle structure of  $\sigma \in Aut(G, S)$  on S is  $(a, a^{-1})(zab, (zab)^{-1})$ .

Therefore, Aut(G, S) is isomorphic to  $\mathbb{Z}_2$ . This completes the proof.

#### Acknowledgment

The authors express their deep gratitude to the referees for their extensive comments leading to a much clearer presentation.

#### References

- Alaeiyan M. On normal edge-transitive Cayley graphs of some abelian groups. Southeast Asian Bull Math 2009; 33: 13-19.
- [2] Corr BP, Praeger CE. Normal edge-transitive Cayley graphs of Frobenius groups. J Algebr Comb 2015; 42: 803-827.
- [3] Darafsheh MR, Assari A. Normal edge-transitive Cayley graphs on non-abelian groups of order 4p, where p is a prime number. Sci China Math 2013; 56: 213-219.
- [4] Feng YQ, Wang DJ, Chen JL. A family of non-normal Cayley digraphs. Acta Math Sin 2001; 17: 147-152.
- [5] Godsil CD. On the full automorphism group of a graph. Combinatorica 1981; 1: 243-256.
- [6] Hua XH, Xu SJ, Deng YP. Tetravalent edge-transitive Cayley graphs of PGL(2, p). Acta Math Appl Sin 2013; 29: 837-842.
- [7] Li CH, Liu Z, Lu ZP. The edge-transitive tetravalent Cayley graphs of square-free order. Discrete Math 2012; 312: 1952-1967.
- [8] Michailov I. Noether's problem for some groups of order 16 n. Acta Arith 2010; 143: 277-290.
- [9] Praeger CE. Finite normal edge-transitive Cayley graphs. Bull Austral Math Soc 1999; 60: 207-220.
- [10] Xu MY. Automorphism groups and isomorphisms of Cayley digraphs. Discrete Math 1998; 182: 309-319.