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Abstract: A Cayley graph Γ = Cay(G,S) on a group G with respective to a subset S ⊆ G , S = S−1, 1 ̸∈ S , is said to

be normal edge-transitive if NAut(Γ)(ρ(G)) is transitive on edges of Γ, where ρ(G) is a subgroup of Aut(Γ) isomorphic

to G . We determine all connected tetravalent normal edge-transitive Cayley graphs on the modular group of order 8n

in the case that every element of S is of order 4n .
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1. Introduction

Let G be a group and S a subset of G such that 1 ̸∈ S . The Cayley graph Cay(G,S) is the graph with vertex

set V(Cay(G,S)) = G and edge set E(Cay(G,S)) = {(u, v)|vu−1 ∈ S} . The edge set can be identified with set

of ordered pairs {(g, sg)|g ∈ G, s ∈ S} . If S = S−1 , that is, closed under taking the inverse, then Cay(G,S)

is an undirected graph. The degree of each vertex is |S| and it is obvious that Cay(G,S) is connected if and

only if G = ⟨S⟩ .
A graph Γ is called vertex-transitive or edge-transitive if the automorphism group Aut(Γ) acts transitively

on the vertex-set or edge-set of Γ, respectively. Now let Γ = Cay(G,S).

For g ∈ G , let ρg : G → G given by ρg(x) = xg . The set of all ρg, g ∈ G , forms the subgroup ρ(G)

(isomorphic to G) of Aut(Γ). Since ρ(G) ⩽ Aut(Γ) acts right regularly on the vertices of Γ, by definition, Γ

is vertex-transitive, while Γ is not edge-transitive in general.

In 1999, Praeger [9] introduced the concept of normal edge-transitive Cayley graphs, which plays an

important role for understanding Cayley graphs. The graph Γ is called normal edge-transitive if NAut(Γ)(ρ(G))

is transitive on the edges of Γ.

The research on edge-transitive Cayley graphs is an active area of research. One of the standard problems

in this respect is the study of normal edge-transitive Cayley graphs of small valencies. Here we mention some

references on research about edge-transitive Cayley graphs. In [7] the edge-transitive tetravalent Cayley graphs

on groups of square-free order are recognized. In [4] the authors characterized all nonnormal Cayley digraphs

of outvalency 2 of all nonabelian groups of order 2p2 , where p is an odd prime. In [1] the author found normal

edge-transitive Cayley graphs of abelian groups. In [6] all the tetravalent edge-transitive Cayley graphs on the

group PSL2(p) and in [2] the normal edge-transitive Cayley graphs of Frobenius groups of order pq , where p
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and q are different primes, are determined. In [3] the authors studied normal edge-transitive Cayley graphs of

order 4p where p is an odd prime.

Our aim in this paper is to study connected tetravalent normal edge-transitive Cayley graphs of a certain

group of order 8n , n ∈ N . According to [8] up to isomorphism there are four nonabelian groups of order 8n

with a cyclic subgroup of order 4n , if n is a power of 2. One of these groups is called the modular group, with

the following presentation:

M8n = ⟨a, b|a4n = b2 = 1, bab = a2n+1⟩.

In the following we work with the modular group M8n without assuming that n is a power 2.

We employ the following notation and terminology. The notation G = K ⋊H is used to indicate that

G is a semidirect product of K by H . We denote by Aut(G,S) the subgroup of Aut(G) consisting of all

σ ∈ Aut(G) such that σ(S) = S . It is easy to see that Aut(G,S) is a subgroup of the automorphisms group of

Cay(G,S). Zn denotes a cyclic group of order n , and S4 denotes for a the symmetric group on four letters.

D8 is employed to denote the dihedral group of order 8.

The following theorem is the main result of this paper.

Main Theorem Let G = M8n and S be a symmetric subset of M8n with cardinality 4 such that each

element of S has order 4n and G = ⟨S⟩ . If Γ = Cay(G,S) is a normal edge-transitive Cayley graph, then

NAut(Γ)(ρ(G)) ∼= ρ(G)⋊ Z2 .

2. Preliminaries

We start with a famous lemma.

Lemma 2.1 ([5, Lemma 2.1] or [9]) For a Cayley graph Γ = Cay(G,S) , we have NAut(Γ)(ρ(G)) = ρ(G) ⋊
Aut(G,S) .

Therefore, Γ is normal edge-transitive when ρ(G)⋊Aut(G,S) is transitive on the edge-set of Γ.

Xu in [10] defined a Cayley graph Γ = Cay(G,S) to be normal if ρ(G) is a normal subgroup of Aut(Γ),
i.e. NAut(Γ)(ρ(G)) = Aut(Γ).

The following lemma is very useful in this paper.

Lemma 2.2 ([9, Proposition 1(c)]) Consider the Cayley graph Γ = Cay(G,S) . Then the following are

equivalent:

(i) Γ is normal edge-transitive;

(ii) S = T ∪ T−1 , where T is an Aut(G,S)-orbit in G ;

(iii) There exists H ≤ Aut(G) and g ∈ G such that S = gH ∪ g−H , where gH = {gh|h ∈ H} .

Moreover, ρ(G)⋊Aut(G,S) is transitive on the arcs of Γ if and only if Aut(G,S) is transitive on S .

3. Proof of the main theorem

First we are going to specify the automorphism group of M8n .
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Elements of M8n are of the form ak or akb , 0 ≤ k < 4n . Using the defining relations of M8n we can

find the orders of elements in M8n as follows: o(ak) = 4n
(k,4n) and

o(akb) =

{
4n

(k,2n) , if k is even,
4n

(n+k,2n) , if k is odd,

where 0 ≤ k < 4n .

Elements of order 2 in M8n are of the form a2n, a2nb, b and if n is odd in addition to the above elements,

anb and a3nb are also of order 2.

Elements of order 4n in M8n are of the form ak , (k, 4n) = 1, and akb , k odd, (n + k, 2n) = 1,

0 ≤ k < 4n . Of course in the latter case n must be even.

Lemma 3.1 |Aut(M8n)| = 4φ(4n) , where φ refers to the Euler phi function.

Proof f ∈ Aut(M8n) is completely ascertained by f(a) and f(b). The elements f(a) and f(b) have orders

4n and 2, respectively.

Case(1). n is odd. By what we mentioned earlier we must have f(a) = ak, (k, 4n) = 1, 1 ≤ k < 4n and

f(b) ∈ {a2n, a2nb, b, anb, a3nb} . The case f(b) = a2n is impossible and it verified that all other possibilities

can happen. Therefore, |Aut(M8n)| = 4φ(4n).

Case(2). n is even. In this case f(a) = ak, (k, 4n) = 1, 1 ≤ k < 4n, or f(a) = alb, l odd, (n + l, 2n) = 1, 0 ≤
l < 4n , and f(b) ∈ {a2n, a2nb, b}. The automorphisms of M8n are of two kinds. One kind is defined by

f(a) = ak, (k, 4n) = 1, 1 ≤ k < 4n and f(b) = a2nb or b . The number of these automorphisms is 2φ(4n).

The other kind of automorphisms of M8n is defined by f(a) = alb, l odd, (n + l, 2n) = 1, 0 ≤ l < 4n,

and f(b) ∈ {a2n, a2nb, b}. However, Z(M8n) = ⟨a2⟩ and hence f(a2) = a2t and f(b) = a2n make a

contradiction. Therefore, f(b) = a2nb or b .

However, it is easy to see that (n+ l, 2n) = 1 if and only if (l, n) = 1 (note that n is even and l is odd),

and (l, n) = 1 if and only if (l, 4n) = 1. Therefore, the number of automorphisms f is equal to 2φ(4n)

and altogether we have 4φ(4n) possibilities for elements of Aut(M8n). This completes the proof.

2

Let us consider the Cayley graph Γ = Cay(M8n, S) where |S| = 4 and M8n = ⟨S⟩ . We are interested in

the case where Γ is normal edge-transitive. By Lemma 2.2 elements of S have the same order and Aut(M8n, S)

on S is either transitive or has two orbits, T and T−1 .

We are interested in the case where each element of S has order 4n . Therefore, elements of S are of the

form ak, (k, 4n) = 1, 0 ≤ k < 4n or alb, (n+ l, 2n) = 1, l odd, 0 ≤ k < 4n . It is obvious that n must be even.

Therefore, from now on, we will assume that n is even.

Theorem 3.1 Let n be an even number and Γ = Cay(M8n, S) be a normal connected edge-transitive Cayley

graph where |S| = 4 and each element of S has order 4n . Then S is of the following form: {a, zab, a−1, z−1b−1a−1} ,
where z ∈ Z(M8n) .

Proof Elements of order 4n in M8n , n even, are of the following types:
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Type I: ak, 0 ≤ k < 4n, (k, 4n) = 1.

Type II: alb, 0 ≤ l < n, l odd, (n+ l, 2n) = 1.

Let S be a generating set for M8n such that o(x) = 4n, ∀x ∈ S, and |S| = 4, S = S−1. Since

albal
′
b = al+l′(2n+1) is a central element of M8n, two elements of the same type can not generate M8n .

Therefore, we have to choose one element from each type. Let S = {x, y, x−1, y−1},M8n = ⟨S⟩ = ⟨x, y⟩.
Let x = ak, 0 ≤ k < 4n, (k, 4n) = 1, and y = alb, 0 ≤ l < 4n, l odd, (n + l, 2n) = 1. From ak ∈ S it is

easy to deduce that a ∈ ⟨S⟩; hence, b ∈ ⟨S⟩ . Therefore, for any x and y with the above conditions S is

a generating set for M8n .

If we take the automorphism f ∈ Aut(M8n) with f(a) = ak
′
, f(b) = b, and choose k′ in such a way that

kk′ ≡ 1(mod 4n), then f(ak) = a and f(alb) = ak
′lb . Since k′ and l are odd, we can write k′l = 1+ 2t ,

and hence ak
′lb = a1+2tb = a2tab . However, Z(M8n) = ⟨a2⟩ , and we see that a2t = z ∈ Z(M8n) and

f(S) = {a, zab, a−1, z−1b−1a−1} , and the theorem is proved.

2

Now we are going to prove the main theorem.

By Theorem 3.1, S is equivalent to {a, zab, a−1, (zab)−1} , and by Lemma 2.1 we have NAut(Γ)(ρ(G)) =

ρ(G) ⋊ Aut(G,S). It is enough to find Aut(G,S). Because of G = ⟨S⟩ , we have Aut(G,S) ⩽ S4 . The group

Aut(G,S) does not contain elements of order 3 because if σ ∈ Aut(G,S) fixes x ∈ S , then it will fix x−1 as

well. Therefore, |Aut(G,S)| | 8, and Aut(G,S) ∼= Z2,Z2 × Z2,Z4, D8 .

We consider the following cases:

Case I. Aut(G,S) does not contain elements of order 4.

Let σ ∈ Aut(G,S) be of order 4. Then σ induces a cycle of length 4 on S . If x ∈ S , obviously

σ(x) = x−1 is impossible because then σ would be the product of two cycles. Therefore, we may assume

that σ = (a, zab, a−1, (zab)−1). Since z ∈ Z(M8n) = ⟨a2⟩ , we set z = a2t, t ∈ N .

From σ(a) = zab, σ(zab) = a−1 we obtain:

a−1 = σ(zab) = σ(z)σ(a)σ(b) = σ(z)zabσ(b) ⇒ σ(z) = z−1a−2 or z−1a−2−2n.

However, σ(a) can only be of the form σ(a) = alb where l is odd and hence alb = zab , from which it

follows that l = 2t+ 1.

Now:

σ(z) = σ(a2t) = σ(a)2t = (alb)2t = a2(l−1)t(ab)2t = a2(l−1)ta(2n+2)t = zn+l

. If σ(z) = z−1a−2 = zn+l , then zn+l+1a2 = 1, from which we obtain 2t(n+ l + 1) + 2 = 4mn for some

m ∈ N . It follows that t(n+ l+ 1) = 2mn− 1, but the left-hand side of the last equality is even whereas

its right-hand side is odd, a contradiction.

Similarly, the case σ(z) = z−1a−2−2n results in a contradiction. Therefore, Aut(G,S) cannot be

isomorphic to Z4, D8 .

1311



SHARIFI and DARAFSHEH/Turk J Math

Case II. Aut(G,S) does not contain a subgroup isomorphic to Z2 × Z2 .

It is enough to prove that Aut(G,S) does not contain an element σ with σ(a) = zab and σ(zab) = a .

From the form of the automorphism of Aut(G) we have σ(a) = ak for some k , (k, 4n) = 1. If σ(a) = zab ,

then ak = zab , from which we obtain b = a−2t+k−1 , which is not the case because a and b are independent

generators of G .

Case III. Aut(G,S) contains an element of order 2.

If we define σ(a) = a−1 , σ(b) = a2nb , we see that the cycle structure of σ ∈ Aut(G,S) on S is

(a, a−1)(zab, (zab)−1).

Therefore, Aut(G,S) is isomorphic to Z2 . This completes the proof.
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