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Abstract: A Cayley graph I' = Cay(G, S) on a group G with respective to a subset S C G, S =571 1¢ S, is said to
be normal edge-transitive if Nyy¢)(p(G)) is transitive on edges of I', where p(G) is a subgroup of Aut(I") isomorphic
to G. We determine all connected tetravalent normal edge-transitive Cayley graphs on the modular group of order 8n

in the case that every element of S is of order 4n.
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1. Introduction

Let G be a group and S a subset of G such that 1 € S. The Cayley graph Cay(G,S) is the graph with vertex
set V(Cay(G, S)) = G and edge set E(Cay(G, S)) = {(u,v)|vu~! € S}. The edge set can be identified with set
of ordered pairs {(g,sg)|g € G,s € S}. If S = S™1, that is, closed under taking the inverse, then Cay(G, S)
is an undirected graph. The degree of each vertex is |S| and it is obvious that Cay(G,S) is connected if and
only if G = (S).

A graph T is called vertex-transitive or edge-transitive if the automorphism group Aut(T") acts transitively
on the vertex-set or edge-set of I', respectively. Now let I' = Cay(G, S).

For g € G, let p, : G — G given by py(x) = xzg. The set of all p,, g € G, forms the subgroup p(G)
(isomorphic to G) of Aut(T"). Since p(G) < Aut(T) acts right regularly on the vertices of T', by definition, T’
is vertex-transitive, while I' is not edge-transitive in general.

In 1999, Praeger [9] introduced the concept of normal edge-transitive Cayley graphs, which plays an
important role for understanding Cayley graphs. The graph I' is called normal edge-transitive if Ny (p(G))
is transitive on the edges of I'.

The research on edge-transitive Cayley graphs is an active area of research. One of the standard problems
in this respect is the study of normal edge-transitive Cayley graphs of small valencies. Here we mention some
references on research about edge-transitive Cayley graphs. In [7] the edge-transitive tetravalent Cayley graphs
on groups of square-free order are recognized. In [4] the authors characterized all nonnormal Cayley digraphs
of outvalency 2 of all nonabelian groups of order 2p?, where p is an odd prime. In [1] the author found normal
edge-transitive Cayley graphs of abelian groups. In [6] all the tetravalent edge-transitive Cayley graphs on the
group PSLs(p) and in [2] the normal edge-transitive Cayley graphs of Frobenius groups of order pq, where p
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and ¢ are different primes, are determined. In [3] the authors studied normal edge-transitive Cayley graphs of
order 4p where p is an odd prime.

Our aim in this paper is to study connected tetravalent normal edge-transitive Cayley graphs of a certain
group of order 8n, n € N. According to [8] up to isomorphism there are four nonabelian groups of order 8n
with a cyclic subgroup of order 4n, if n is a power of 2. One of these groups is called the modular group, with

the following presentation:

Mg, = {(a,bla’™ = b* = 1,bab = a®"*1).

In the following we work with the modular group Msg, without assuming that n is a power 2.

We employ the following notation and terminology. The notation G = K x H is used to indicate that
G is a semidirect product of K by H. We denote by Aut(G,S) the subgroup of Aut(G) consisting of all
o € Aut(G) such that o(S) = 5. Tt is easy to see that Aut(G,.S) is a subgroup of the automorphisms group of
Cay(G,S). Z, denotes a cyclic group of order n, and S; denotes for a the symmetric group on four letters.
Dy is employed to denote the dihedral group of order 8.

The following theorem is the main result of this paper.

Main Theorem Let G = Mg, and S be a symmetric subset of Mg, with cardinality 4 such that each
element of S has order 4n and G = (S). If T' = Cay(G,S) is a normal edge-transitive Cayley graph, then

Naur(r)(p(G)) = p(G) % Zs.
2. Preliminaries

We start with a famous lemma.

Lemma 2.1 ([5, Lemma 2.1] or [9]) For a Cayley graph I' = Cay(G,S), we have Ny (p(G)) = p(G)
Aut(G, S).

Therefore, I' is normal edge-transitive when p(G) x Aut(G, S) is transitive on the edge-set of T'.
Xu in [10] defined a Cayley graph I' = Cay(G, S) to be normal if p(G) is a normal subgroup of Aut(T"),
e, Nuuwry(p(G)) = Aut(T).

The following lemma is very useful in this paper.

Lemma 2.2 (/9, Proposition 1(c)]) Consider the Cayley graph T' = Cay(G,S). Then the following are

equivalent:
(i) T is normal edge-transitive;
(ii)) S=TUT™ ', where T is an Aut(G,S)-orbit in G;
(iii) There exists H < Aut(G) and g € G such that S = g U g~ | where g% = {¢"|h € H}.

Moreover, p(G) x Aut(G,S) is transitive on the arcs of T if and only if Aut(G,S) is transitive on S.

3. Proof of the main theorem

First we are going to specify the automorphism group of Mg, .
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Elements of Mg, are of the form a* or a*b, 0 < k < 4n. Using the defining relations of Mg, we can

find the orders of elements in Mg, as follows: o(a*) = (k‘l—;‘n) and

4n

o(a*b) = { T2n) if k is even,

b, i kis odd,

where 0 < k < 4n.

Elements of order 2 in Ms,, are of the form a?"

,a®™b,b and if n is odd in addition to the above elements,
a™b and a3"b are also of order 2.
Elements of order 4n in Mg, are of the form a*, (k,4n) = 1, and a*b, k odd, (n + k,2n) = 1,

0 < k < 4n. Of course in the latter case n must be even.

Lemma 3.1 |Aut(Msg,)| = 4p(4n), where ¢ refers to the Euler phi function.

Proof f € Aut(Ms,) is completely ascertained by f(a) and f(b). The elements f(a) and f(b) have orders
4n and 2, respectively.

Case(1). n is odd. By what we mentioned earlier we must have f(a) = a*,(k,4n) = 1,1 < k < 4n and
f(b) € {a®",a*b,b,a"b,a®"b}. The case f(b) = a®" is impossible and it verified that all other possibilities
can happen. Therefore, |Aut(Msz,)| = 4p(4n).

Case(2). n is even. In this case f(a) = a¥, (k,4n) = 1,1 < k < 4n, or f(a) = a'b,l odd, (n+1,2n) = 1,0 <
[ < 4n, and f(b) € {a®",a*"b,b}. The automorphisms of Mg, are of two kinds. One kind is defined by
fla) = a*, (k,4n) = 1,1 < k < 4n and f(b) = a®"b or b. The number of these automorphisms is 2¢(4n).
The other kind of automorphisms of Mg, is defined by f(a) = a'b,l odd, (n+1,2n) = 1,0 <[ < 4n,
and f(b) € {a®",a®"b,b}. However, Z(Ms,) = (a*) and hence f(a?) = a®' and f(b) = a®" make a

contradiction. Therefore, f(b) = a®"b or b.

However, it is easy to see that (n+1,2n) =1 if and only if (I,n) =1 (note that n is even and [ is odd),
and (I,n) =1 if and only if ({,4n) = 1. Therefore, the number of automorphisms f is equal to 2¢(4n)
and altogether we have 4¢p(4n) possibilities for elements of Aut(Ms,). This completes the proof.

O
Let us consider the Cayley graph I' = Cay(Msg,, S) where |S| =4 and Mg, = (S). We are interested in

the case where T' is normal edge-transitive. By Lemma 2.2 elements of S have the same order and Aut(Mg,,, S)
on S is either transitive or has two orbits, T and T~ 1.
We are interested in the case where each element of S has order 4n. Therefore, elements of S are of the

form a*, (k,4n) = 1,0 < k < 4n or a'b,(n+1,2n) = 1,1 odd, 0 < k < 4n. It is obvious that n must be even.

Therefore, from now on, we will assume that n is even.

Theorem 3.1 Let n be an even number and T' = Cay(Msg,,S) be a normal connected edge-transitive Cayley
graph where |S| = 4 and each element of S has order 4n. Then S is of the following form: {a,zab,a™t, z7tb=ta"1},
where z € Z(Mgy,) .

Proof Elements of order 4n in Msg,, , n even, are of the following types:
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Type I: a*,0 <k < 4n, (k,4n) = 1.

Type II: a'b,0 <1< n,l odd, (n+1,2n) =1.

Let S be a generating set for Mg, such that o(z) = 4n,Voz € S, and |S| = 4,5 = S~!. Since
a'bal'b = a2+ ig g central element of Mg, two elements of the same type can not generate Mg, .
Therefore, we have to choose one element from each type. Let S = {z,y,27 1,y '}, Mg, = (S) = (x,9).
Let * = a¥,0 < k < 4n,(k,4n) =1, and y = a'b,0 <1 < 4n,l odd, (n +1,2n) = 1. From a* € § it is
easy to deduce that a € (S); hence, b € (S). Therefore, for any = and y with the above conditions S is

a generating set for Mg, .

If we take the automorphism f € Aut(Ms,) with f(a) = a*, f(b) = b, and choose k' in such a way that
kk' = 1(mod 4n), then f(a*) = a and f(a'b) = a*''b. Since k' and I are odd, we can write k'l = 1+ 2t,
and hence a*''b = a2t = o®'ab. However, Z(Mg,) = (a2), and we see that a?* = z € Z(Ms,) and

f(S) ={a,zab,a™t, 27'v"ta"1}, and the theorem is proved.

Now we are going to prove the main theorem.

By Theorem 3.1, S is equivalent to {a, zab,a™', (zab)~'}, and by Lemma 2.1 we have Ny (p(G)) =
p(G) x Aut(G, S). Tt is enough to find Aut(G,S). Because of G = (S), we have Aut(G,S) < S4. The group
Aut(G,S) does not contain elements of order 3 because if o € Aut(G, S) fixes x € S, then it will fix 27! as
well. Therefore, |Aut(G,S)| |8, and Aut(G,S) =2 Zy,Zy X Za,Zy, Ds.

We consider the following cases:

Case I. Aut(G,S) does not contain elements of order 4.

Let 0 € Aut(G,S) be of order 4. Then o induces a cycle of length 4 on S. If z € S, obviously

! is impossible because then ¢ would be the product of two cycles. Therefore, we may assume

o(x) =a~
that o = (a, zab,a™!, (zab)™!). Since z € Z(Msg,,) = (a®), we set z = a* ¢t € N.

-1

From o(a) = zab,o(zab) = a~' we obtain:

a~t = o(zab) = o(2)o(a)a(b) = 0(2)zabo(b) = o(2) = 2 ta"? or 27 ta" 27",
However, o(a) can only be of the form o(a) = a'b where [ is odd and hence a'b = zab, from which it
follows that [ =2t + 1.

Now:

O'(Z) _ O,(a2t) _ U(Q)Zt _ (alb)Qt _ a2<l*1)t(ab)2t _ a2(lfl)ta(2n+2)t _ ZnJrl

CIfo(2) = 27ta"2 = 2"+ then 2"T!*T1q% = 1, from which we obtain 2¢t(n + [+ 1) + 2 = 4mn for some
m € N. It follows that t(n+1+4 1) = 2mn — 1, but the left-hand side of the last equality is even whereas

its right-hand side is odd, a contradiction.

Similarly, the case o(z) = 2z 'a=272" results in a contradiction. Therefore, Aut(G,S) cannot be

isomorphic to Zy4, Dg.
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Case II. Aut(G, S) does not contain a subgroup isomorphic to Zg X Zs.
It is enough to prove that Aut(G,S) does not contain an element o with o(a) = zab and o(zab) = a.
From the form of the automorphism of Aut(G) we have o(a) = a* for some k, (k,4n) = 1. If o(a) = zab,
then a® = zab, from which we obtain b = a~2**t#~1 which is not the case because a and b are independent
generators of G.
Case III. Aut(G,S) contains an element of order 2.
If we define o(a) = a=!, o(b) = a®'b, we see that the cycle structure of ¢ € Aut(G,S) on S is
(a,a=1)(zab, (zab)~1).
Therefore, Aut(G,S) is isomorphic to Zs. This completes the proof.
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