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Abstract: Codes over the finite sub-Hopf algebras A(n) of the (mod 2) Steenrod algebra A were studied by Dougherty

and Vergili. In this paper we study some Euclidean and Hermitian self-dual codes over A(n) by considering Milnor basis

elements.
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1. Introduction

The elements of the (mod 2) Steenrod algebra A are natural transformations between cohomology groups of

topological spaces and useful tools for computing the homotopy groups of n -spheres. The finite subalgebras

are determined by the profile functions h given in (4); each profile function constructs only one subalgebra [5].

Considering the function h(t) given in equation (5), we construct the subalgebras A(n) of A for all n ≥ 0.

These subalgebras are nested, i.e. A(n) is contained in A(m) if n < m , and their union is the entire algebra.

Further, A(n) is a noncommutative Frobenius ring, and so the MacWilliams theorems hold and one can study

codes over A(n) [8]. Dougherty and Vergili [2] studied the codes in A(n) by considering the Z -base system

over A(n), which can be extended to the whole algebra A [10]. In this paper, we study codes over A(n) by

changing the base system. We use the Milnor basis, which is constructed in A , compatible with A(n), and

provides a product formula for two Milnor basis elements. We examine a Euclidean and Hermitian self-dual

code over A(1) and show the generalization of that code to A(n) is also a Euclidean and Hermitian self-dual.

2. Definitions and notations

2.1. The Steenrod algebra A

The (mod 2) Steenrod algebra A is the free associative graded algebra generated by the following group

homomorphisms (called square operations)

Sqk : Hi(X;Z2) → Hi+k(X;Z2)

between the cohomology groups of topological spaces X for i, k ≥ 0. The axiomatic properties of these squares

are as follows [7]:
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1. The square Sq0 is an identity homomorphism and if i < k , then Sqk = 0.

2. If k = i , then Sqk(x) = x2 for all x ∈ Hi(X;Z2), where x2 = x ∪ x and ∪ is the cup product of the

cohomology ring H∗(X;Z2) :=
⊕
n≥0

Hn(X;Z2).

3. The Cartan formula for evaluating a Steenrod square on the cup product of cohomology classes x and y :

Sqk(x ∪ y) =
∑

k=k1+k2

Sqk1(x) ∪ Sqk2(y).

4. All relations in the Steenrod algebra are generated by the set of Adem relations: for k < 2j ,

SqkSqj =

⌊ k
2 ⌋∑

i=0

(
j − i− 1
k − 2i

)
Sqk+j−iSqi,

where ⌊k
2 ⌋ denotes the greatest integer less than or equal to k

2 and the binomial coefficients are taken

modulo 2.

Here k is called the grading of the square and the grading of the composition Sqi1 . . . Sqin is i1+ · · ·+ in .

For abbreviation, we use Sqi1,...,in for Sqi1 . . . Sqin .

Milnor [6] established that A is a Hopf algebra and finite dimensional vector space in each grading (we

say in algebraic topology that the algebra is of finite type) and so the dual algebra A∗ is also a Hopf algebra.

Thus if we know what the dual algebra is, then the base system of dual algebra will help us to determine the

base system of the Steenrod algebra.

Define the elements ξi in A∗ by the dual of Sq2
i−1,2i−2,...,1 in A . Note that the degree of ξi is equal to

the degree of Sq2
i−1,2i−2,...,1 , which is 2i − 1. Then the dual algebra A∗ is a polynomial algebra Z2[ξ1, ξ2, . . .] .

The dual to the monomial basis is a basis for the Steenrod algebra known as the Milnor basis. Denote the

correspondence of ξr11 ξr22 . . . ξrnn by Sq(r1, r2, . . . , rn). Formally, A is a graded vector space over Z2 with the

basis of all symbols Sq(r1, r2, . . .), where each ri ≥ 0 and all but a finite number of ri ’s is zero. Note that

Sq(0, 0, . . .) is the identity and Sq(k) = Sqk .

The Milnor basis is nice because it allows us to calculate the composition of the Steenrod operations in terms

of Milnor basis elements again [6]. The product on A has the following expression in terms of the Milnor basis:

Sq(r1, r2, . . .).Sq(s1, s2, . . .) =
∑
X

β(X)Sq(t1, t2, . . .), (1)

where the sum ranges over all matrices X of the form

X =

∥∥∥∥∥∥∥∥∥∥
∗ x01 x02 . . .
x10 x11 . . .

x20

...
...

∥∥∥∥∥∥∥∥∥∥
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VERGİLİ and KARACA/Turk J Math

such that ∑
i

xij = sj ,
∑
j

2jxij = ri tk =
∑

i+j=k

xij

and

β(X) =
∏
k

(xk0 + ...+ x0k)!

xk0!...x0k!
(mod 2).

Example 2.1 Consider the Milnor product of Sq(1, 3, 2).Sq(2, 0, 1) . There are four matrices satisfying the

desired conditions:

X1 =

2 0 1
∗ 2 0 1

1 1 0 0 0
3 3 0 0 0
2 2 0 0 0

X2 =

2 0 1
∗ 1 0 1

1 1 0 0 0
3 3 0 0 0
2 0 1 0 0

X3 =

2 0 1
∗ 1 0 1

1 1 0 0 0
3 1 1 0 0
2 2 0 0 0

X4 =

2 0 1
∗ 0 0 1

1 1 0 0 0
3 1 1 0 0
2 0 1 0 0

For the matrix X1 , ti = 3 for all 1 ≤ i ≤ 3 , tj = 0 for all j ≥ 4 and

β(X1) =
3!

2!1!

3!

3!

3!

2!1!
= 1 (mod 2).

For the matrix X2 , t1 = 2 , t2 = 3 , t3 = 1 , t4 = 1 , tj = 0 for all j ≥ 5 and

β(X2) =
2!

1!1!

3!

3!

1!

1!

1!

1!
= 0 (mod 2).

For the matrix X3 , t1 = 2 , t2 = 1 , t3 = 4 , tj = 0 for all j ≥ 4 and

β(X3) =
2!

1!1!

1!

1!

4!

2!1!1!
= 0 (mod 2).

For the matrix X4 , t1 = 1 , t2 = 1 , t3 = 2 , t4 = 1 , tj = 0 for all j ≥ 5 and

β(X4) =
1!

1!

1!

1!

2!

1!1!

1!

1!
= 0 (mod 2).

Therefore, Sq(1, 3, 2).Sq(2, 0, 1) = Sq(3, 3, 3) .

The conjugation map (involution) [6] in A

τ : A −→ A (2)
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is defined on the Steenrod squares by [7]

τ(Sqk) =

k∑
i=1

Sqiτ(Sqk−i). (3)

In the literature the conjugation map in A is denoted by χ but we shall use τ to use the common notation in

[2] and to prevent confusion with the fact that the letter χ is used for a generating character of the character

module in coding theory.

Let A be a sub-Hopf algebra of A . Then the profile function defined by

hA : {1, 2, . . .} −→ {0, 1, . . . ,∞}

t 7−→ hA(t) = min{s : rt < 2s for all Sq(r1, . . .) in A}.

gives us a classification of the basis elements for A . (Note that if no such s exists, we take hA(t) = ∞ [5]).

The Milnor basis for A is

{Sq(r1, r2, . . .) : rt < 2hA(t)}.

Moreover, A is generated as an algebra by the set

{P s
t : s < hA(t)},

where P s
t = Sq(r1, . . . ) is a Milnor basis element in A with ri = 0 unless i = t and rt = 2s for t ≥ 1 and s ≥ 0.

In contrast, every function

h : {1, 2, . . .} −→ {0, 1, . . . ,∞} (4)

satisfying

h(u) ≤ v + h(u+ v) or h(v) ≤ h(u+ v), for all u, v ≥ 1

is a profile function and generates a sub-Hopf algebra of A [5]. Now we focus on a special profile function

h(t) = max{n+ 2− t, 0} (5)

to construct our desired sub-Hopf algebras A(n) of A for each n ≥ 0. From this construction A(n) is contained

in A(n + 1) for all n ≥ 0. Thus the Steenrod algebra A is then the union of an increasing chain of sub-Hopf

algebras A(n) [5].

Example 2.2 By the profile function h(t) given in (5), the basis elements for A(1) are

Sq(0) = 1, Sq(0, 1), Sq(1, 0), Sq(1, 1), Sq(2, 0), Sq(2, 1), Sq(3, 0), Sq(3, 1).

For the proof of Lemma 2.3, we use Gallant’s formula for conjugation of the special Milnor basis element

P s
t defined above. Let R = (0, . . . , r1, 0, . . . , r2, . . .) be a sequence whose components are zero except possibly

for the elements ri in the (i)-th place and Sq(R) be a Milnor basis element corresponding to R . Then τ(P s
t )

is the sum of all Milnor basis elements Sq(R), where the grading of R is 2s(2t − 1) [3]:

τ(P s
t ) =

∑
R

Sq(R). (6)

By means of the equation (6), we have the following lemma.
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Lemma 2.3 Let P 0
n+1 := Sq(0, . . . , 0, 1) be a Milnor basis element in A(n) , where 1 occurs in position n+1 .

Then τ(P 0
n+1) = P 0

n+1 .

Proof Note that the grading of P 0
n+1 is 2n+1 − 1. Here the only sequence R = (0, . . . , r1, 0, . . . , r2, . . .) with

the grading 2n+1−1 is R = (0, . . . , 0, 1) where 1 is in position n+1. Hence τ(P 0
n+1) = Sq(0, . . . , 1) = P 0

n+1 . 2

2.2. Codes and rings

Let R be a ring with identity and τ be an involution on R . Then a subset C of length m in Rm is called a

code and a left (right) linear code C of length m over R is a left (right) submodule of Rm .

Let υ , ω be in Rm . The Euclidean and Hermitian inner-products are defined as

[υ,ω] =
∑

υiωi. (7)

[υ,ω]H =
∑

υiτ(ωi) (8)

respectively.

For a code C in Rm , the left (and the right) Euclidean orthogonal of C is

L(C) = {υ ∈ Rm : [υ,ω] = 0, ∀ω ∈ C}, (9)

R(C) = {υ ∈ Rm : [ω,υ] = 0, ∀ω ∈ C} (10)

respectively.

Similarly the left (and the right) Hermitian orthogonal of C is

LH(C) = {υ ∈ Rm : [υ,ω]H = 0, ∀ω ∈ C}, (11)

RH(C) = {υ ∈ Rm : [ω,υ]H = 0, ∀ω ∈ C} (12)

respectively.

It follows easily that L(C) is always a left linear code and R(C) is always a right linear code [1].

Moreover, it is shown in [2] that for any code C , LH(C) is a left linear code but RH(C) is not necessarily

right linear.

3. Self-dual codes in A(n)

The definition for a self-dual code over a noncommutative ring is as follows:

Definition 3.1 A linear code C is said to be Euclidean self-dual if C = L(C) .

Dougherty and Leroy [1] proved that a code C that is equal to R(C) is also equal to L(C) and vice

versa. Hence for a Euclidean self-dual code C , we have C = L(C) = R(C).
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Definition 3.2 A linear code C is said to be Hermitian self-dual if C = LH(C) .

Note that for a code C over A(n), we have RH(C) = LH(C) and so a Hermitian self-dual code satisfies

C = LH(C) = RH(C) [2].

In [1], it is stated that all self-dual codes of length 1 are two-sided ideals contained in the Jacobson

radical of the ring. Since the Steenrod algebra A is a prime ring [4], the Jacobson radical of the Steenrod

algebra is trivial and hence no self-dual code of length 1 exists in A .

For a ring R with identity, we define the submodule R[a] := {ra : r ∈ R} .

Example 3.3 [9] Take the submodule C = A(1)[Sq(0, 1)] of A(1) . Considering the Milnor product of the

Milnor basis elements for A(1) and Sq(0, 1) , we get

Sq(0).Sq(0, 1) = Sq(0, 1), Sq(0, 1).Sq(0, 1) = 0, Sq(1, 0).Sq(0, 1) = Sq(1, 1),

Sq(1, 1).Sq(0, 1) = 0, Sq(2, 0).Sq(0, 1) = Sq(2, 1), Sq(2, 1).Sq(0, 1) = 0,

Sq(3, 0).Sq(0, 1) = Sq(3, 1), Sq(3, 1).Sq(0, 1) = 0.

Hence the submodule C is spanned by these elements and contains their Z2 linear sums:

C =< Sq(0, 1), Sq(1, 1), Sq(2, 1), Sq(3, 1) > .

Then C is a Euclidean and a Hermitian self-dual code in A(1) , i.e. R(C) = C = RH(C) .

The Example 3.3 can be generalized for the self-dual codes in A(n) for n ≥ 1. Consider the Milnor basis

element Sq(0, . . . , 0, 1), where 1 is in position n + 1. The following two lemmas are needed for the proofs of

Theorem 3.6 and Theorem 3.7.

Lemma 3.4 Let Sq(0, . . . , 0, 1) be a Milnor basis element where 1 is in position n+ 1 . Then

Sq(r1, r2, . . . , rn).Sq(0, . . . , 0, 1) = Sq(r1, r2, . . . , rn, 1),

where Sq(r1, r2, . . . , rn) is in A(n) for all n ≥ 1 .

Proof To make the number of entries of the given basis elements equal, consider Sq(r1, r2, . . . , rn) as

Sq(r1, r2, . . . , rn, 0). Then there is only one matrix X satisfying the desired conditions:

X=

0 0 · · · 0 1
∗ 0 0 . . . 0 1

r1 r1 0 0 . . . 0 0
r2 r2 0 0 . . . 0 0
...

...
...

...
...

...
...

rn rn 0 0 . . . 0 0
0 0 0 0 . . . 0 0

Here for the matrix X , ti = ri for 1 ≤ i ≤ n , tn+1 = 1 and

β(X) =
∏ ri!

ri!

1!

1!
= 1 (mod 2).
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Hence Sq(r1, r2, . . . , rn).Sq(0, . . . , 0, 1) = Sq(r1, r2, . . . , rn, 1). 2

Lemma 3.5 Consider the Milnor basis Sq(0, . . . , 0, 1) , where 1 is in position n+ 1 . Then

Sq(r1, r2, . . . , rn, 1).Sq(0, 0, . . . , 0, 1) = 0

for all Milnor basis elements Sq(r1, . . . , rn, 1) in A(n) .

Proof Since Sq(r1, r2, . . . , rn, 1) is a Milnor basis element in A(n) then all ri ’s are less than 2n+1 and so the

only matrix satisfying the desired conditions for the Milnor product of the given basis elements is

X=

0 0 · · · 0 1
∗ 0 0 . . . 0 1

r1 r1 0 0 . . . 0 0
r2 r2 0 0 . . . 0 0
...

...
...

...
...

...
...

rn rn 0 0 . . . 0 0
1 1 0 0 . . . 0 0

In this matrix, ti = ri for 1 ≤ i ≤ n , tn+1 = 2 and

β(X) =
n∏

i=1

ri!

ri!

2!

1!1!
= 0 (mod 2).

Hence Sq(r1, r2, . . . , rn, 1).Sq(0, . . . , 0, 1) = 0. 2

The generalizations of Example 3.3 for the Euclidean and the Hermitian self-dual codes in A(n) for n ≥ 1

are as follows:

Theorem 3.6 The submodule C = A(n)[Sq(0, . . . , 0, 1)] in A(n) is a Euclidean self-dual code for all n ≥ 1 .

Proof Note that the sub-Hopf algebra A(n) is spanned by the Milnor basis elements Sq(r1, r2, . . . , rn+1),

where

rn+1 < 2, rn < 4, . . . , r2 < 2n, r1 < 2n+1.

If rn+1 = 1, we have

Sq(r1, . . . , rn, 1).Sq(0, . . . , 0, 1) = 0

by Lemma 3.5 and if rn+1 = 0, by Lemma 3.4 the product

Sq(r1, . . . , rn, 0).Sq(0, . . . , 0, 1) = Sq(r1, . . . , rn, 1)

is again a Milnor basis element for A(n). Thus the submodule C is spanned by all Milnor basis elements of

the form
Sq(r1, r2, . . . , rn, 1)

and their Z2 linear sums. We claim that C = R(C). Hence we must show that any Milnor basis element for

A(n) in C is in R(C) and vice versa. Let c be a Milnor basis element in C of the form

c = Sq(s1, s2, . . . , sn, 1).
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By the product formula given in (1), we have

Sq(r1, r2, . . . , rn, 1).c = Sq(r1, r2, . . . , rn, 1).Sq(s1, s2, . . . , sn, 1) = 0,

for all Milnor basis element Sq(r1, r2, . . . , rn, 1) in C and thus c is in R(C).

Now let c be a Milnor basis element in R(C) of the form

Sq(s1, s2, . . . , sn, sn+1).

Take any Milnor basis element Sq(r1, r2, . . . , rn, 1) in C . Since c is in R(C), we have

Sq(r1, r2, . . . , rn, 1).c = Sq(r1, r2, . . . , rn, 1).Sq(s1, s2, . . . , sn, sn+1) = 0.

Note that sn+1 is either 1 or 0. However, sn+1 cannot be zero since Sq(0, . . . , 0, 1) is in C and the product

Sq(0, 0, . . . , 1).Sq(s1, s2, · · · , sn, 0) = Sq(s1, s2, . . . , sn, 1)

is not zero. Therefore sn+1 = 1 and this shows that c is in C .

The equality C = R(C) leads to C = L(C) and so C is a Euclidean self-dual code in A(n). 2

Theorem 3.7 The submodule C = A(n)[Sq(0, . . . , 0, 1)] of A(n) is a Hermitian self-dual code for all n ≥ 1 .

Proof We know that the submodule C is spanned by all the elements in the Milnor basis in A(n) whose

entry in the (n+1)th place is 1. We will show that C = RH(C) (hence C = LH(C)). Again we only consider

the Milnor basis elements. Let c be a Milnor basis element for A(n) in C of the form

c = Sq(s1, s2, . . . , sn, 1)

By the product formula in (1) and Lemma 3.5, we have

Sq(r1, r2, . . . , rn, 1).τ(c) = Sq(r1, r2, . . . , rn, 1).τ(Sq(s1, s2, . . . , sn, 1))

= Sq(r1, r2, . . . , rn, 1).τ(Sq(s1, s2, . . . , sn, 0).Sq(0, . . . , 0, 1))

= Sq(r1, r2, . . . , rn, 1).τ(Sq(0, . . . , 0, 1)).τ(Sq(s1, s2, . . . , sn, 0))

= Sq(r1, r2, . . . , rn, 1).Sq(0, . . . , 0, 1).τ(Sq(s1, s2, . . . , sn, 0))

= 0

and so c is in RH(C).

Now let c be a Milnor basis element in RH(C) of the form

Sq(s1, s2, . . . , sn, sn+1).

Then

Sq(r1, r2, . . . , rn, 1).τ(c) = Sq(r1, r2, . . . , rn, 1).τ(Sq(s1, s2, . . . , sn, sn+1)) = 0
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for any Milnor basis element Sq(r1, r2, . . . , rn, 1). Here sn+1 is either 1 or 0. However, sn+1 again cannot be

zero. If so, the product

Sq(0, . . . , 0, 1).τ(Sq(s1, s2, . . . , sn, 0))

would be zero but then

τ(Sq(0, . . . , 0, 1).τ(Sq(s1, s2, . . . , sn, 0)))

and

τ(Sq(0, . . . , 0, 1).τ(Sq(s1, s2, . . . , sn, 0))) = Sq(s1, s2, . . . , sn, 0).τ(Sq(0, . . . , 0, 1))

= Sq(s1, s2, . . . , sn, 0).Sq(0, . . . , 0, 1)

= Sq(s1, s2, . . . , sn, 1)

would be zero, which is impossible. Therefore sn+1 = 1 and this shows that c is in C .

The equality C = RH(C) leads to C = LH(C) and so C is a Hermitian self-dual code in A(n). 2

In [2], it has been shown that Euclidean self-dual codes exist for all even lengths over A(n) for all n .

By the existence of self-dual codes over A(n) of length 1, the existence can be generalized to all lengths over

A(n).

Corollary 3.8 There exist Euclidean and Hermitian self-dual codes of all lengths over A(n) for all n .

Proof The result follows from the fact that C ×D is a self-dual code of length m + k whenever C and D

are self-dual codes of length m and k , respectively. 2

Now we have a Euclidean self-dual code C = A(n)[Sq(0, · · · , 0, 1)] in A(n) so that A(n) is not semiprime

since every ideal I in a semiprime ring is idempotent, I2 = I . Moreover, the (mod 2) Steenrod algebra A is a

prime ring [4]. Let a1, a2, · · · , at be the Milnor basis of A(n) with a1 = Sq(0) and at = Sq(2n+1−1, 2n−1, ..., 1).

Note that A(n) is a local ring [2] with a unique maximal ideal A(n)[a2, a3, · · · , at] .

Corollary 3.9 The sub-Hopf algebra A(n) of the Steenrod algebra A is not prime for all n ≥ 1 .

Proof A ring R is prime iff the right annihilator of every nonzero right ideal of R is zero. Since a submodule

C = A(n)[Sq(0, · · · , 0, 1)] has a nonzero right annihilator R(C) = L(C), A(n) is not a prime ring. 2

Corollary 3.10 The sub-Hopf algebra A(n) of the Steenrod algebra A is not simple for all n ≥ 1 .

Proof Primality of a left Artinian ring is equivalent to being simple. 2
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