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Abstract: Subdirectly irreducible regular bands whose structural semilattices are finite chains are characterized in terms

of a refined semilattice of semigroups.
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1. Introduction and preliminaries

Every nontrivial semigroup is a subdirect product of some subdirectly irreducible semigroups. Therefore, it

is certainly of great importance to describe kinds of subdirectly irreducible semigroups. It is known that a

nontrivial semigroup S is subdirectly irreducible if and only if S contains the least nontrivial congruence. In

[1], Gerhard gave a representation of subdirectly irreducible bands (also called idempotent semigroups) in terms

of transformations. However, it is not easy to construct an arbitrary subdirectly irreducible band according

to Gerhard’s representation. In this paper, we give a construction for a special kind of subdirectly irreducible

regular bands, whose structural semilattices form finite chains, by using a structure theorem of regular bands.

To date, we are not able to give a construction of a general subdirectly irreducible regular band.

First we introduce some notations and concepts. Let X be a nonempty set. Then we write the identity

relation on X as εX and write the universal relation on X as ωX . If X is a partially ordered set, then for

any x, y ∈ X , x is said to immediately cover y if whenever x ≥ z ≥ y , one has x = z or y = z for any z ∈ X ,

written as x ≻ y . Let A,B be nonempty sets. Usually, a mapping from A to the power set 2B of B (the set

of all subsets of B ) is called a set-valued mapping from A to B . Let ρ be an equivalence on B . A relational

mapping ξ from A to B over ρ (see [5]) is a set-valued mapping from A to B such that

(∀a ∈ A & ∀b ∈ B) |aξ ∩ bρ| = 1,

denoted by ξ : A
ρ−→ 2B . Note that a relational mapping ξ : A

ωB−→ 2B is a usual mapping from A to B

if one does not differentiate a singleton set {x} from the element x itself. For ξ : A
ρ−→ 2B and b ∈ B , by

ξb : A → bρ (or A → B ), we represent the usual mapping that maps a in A to the unique element in the set

aξ ∩ bρ . Obviously,

(∀b1, b2 ∈ B) b1 ρ b2 ⇐⇒ ξb1 = ξb2 ⇐⇒ (∃a ∈ A)aξb1 = aξb2 .

∗Correspondence: zpwang@swu.edu.cn

2010 AMS Mathematics Subject Classification: 20M17

Partially supported by the National Natural Science Foundation of China (11501467) and the Fundamental Research Funds for the

Central Universities (XDJK2016B038).

1337



WANG et al./Turk J Math

Let S be a semigroup. If I is an ideal of S , then we write the Rees congruence determined by I , i.e. ωI ∪ εS ,

as ρI . We denote the lattice of all congruences on S by C(S). For notation and terminology not explained in

this paper, the reader is referred to [2, 3].

Now we give some results required in the next section.

Lemma 1.1 [[4, Theorem 3.6]] Semigroups S and S1 are simultaneously subdirectly irreducible or reducible.

Note that all subdirectly irreducible bands with 2 elements can be easily listed. Let B be a band with

|B| > 2. If B contains an identity 1B , then it is clear that C = B − {1B} is also a band. Suppose that

B is subdirectly irreducible. From the proof of the above lemma given in [4], one can see that σ is the least

nontrivial congruence on C if and only if σ ∪ {(1B, 1B)} is the least nontrivial congruence on B . Thus, C

contains no identity. Otherwise, assume that 1C is the identity of C . It is clear that ω{1B ,1C} ∪ εB ∈ C(B);

hence, B has no least nontrivial congruence. Thus, by Theorem 1.1 in [1], we have the following:

Remark 1.2 To characterize all subdirectly irreducible bands, it suffices to characterize those subdirectly irre-

ducible bands with neither identity nor zero.

Lemma 1.3 Let B = (Y,Bα) be a subdirectly irreducible band. Then Y contains a zero. Moreover, let B

contain no zero, 0 be the zero of Y , and ρ be the least nontrivial congruence on B . Then ρ ⊆ ρB0 .

Proof Let ρ be the least nontrivial congruence on B . Then there exist a ∈ Bα and b ∈ Bβ with a ̸= b such

that (a, b) ∈ ρ . Suppose that Y does not contain a zero. Then there exists γ ∈ Y satisfying that γ ⪇ αβ .

Thus, I =
∪

γ≱αβ Bγ ̸= ϕ . It is obvious that I is an ideal of B and ρI ̸= εB . However, ρ ⊈ ρI , contradicting

the fact that ρ is the least nontrivial congruence on B . Therefore, Y contains a zero. Now the second statement

is clear since B0 is a nonzero ideal of B . 2

One can see from the following lemma that, to describe all subdirectly irreducible regular bands, it suffices

to investigate subdirectly irreducible left (or right) regular ones.

Lemma 1.4 [[3, Proposition V.1.3]] A band is regular if and only if it is a subdirect product of a left regular

band and a right regular band.

Combining the definition of a relational mapping and the revised definition of a refined semilattice of

semigroups in [5] or [6] with Theorem 3.6 in [7], we have the following:

Lemma 1.5 Let Y be a semilattice and {Lα : α ∈ Y } be a family of pairwise disjoint left zero semigroups. For

any α, β ∈ Y with α ≥ β , let ρα,β be an equivalence on Lβ and ϕα,β : Lα
ρα,β−→ 2Lβ be a relational mapping.

Suppose also that:

(1) for any α ∈ Y , ρα,α = ωLα and ϕα,α is the identity mapping on Lα ;

(2) for any α, β, γ ∈ Y with α ≥ β ≥ γ and for any a ∈ Lα , b ∈ Lβ and c ∈ Lγ ,

ρα,γ ⊆ ρβ,γ , (1.1)

aϕα,βϕβ,γ ⊆ aϕα,γ , (1.2)
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(∃c′ ∈ Lγ) (bρα,β)ϕ
c
β,γ ⊆ c′ρα,γ ; (1.3)

(3) for any α, β, γ ∈ Y with αβ ≥ γ and for any a ∈ Lα and c ∈ Lγ ,

(∃c′ ∈ Lγ) aϕα,γ ∩ cραβ,γ ⊆ c′ρβ,γ .

Define an operation ◦ on L =
∪

α∈Y Lα by

a ◦ b = (aϕx
α,αβ)(bϕ

y
β,αβ) (a ∈ Lα, b ∈ Lβ), (1.4)

where bϕβ,αβ ⊆ xρα,αβ and aϕα,αβ ⊆ yρβ,αβ . Then (L, ◦) is a left regular band, denoted by L = [Y ;Lα, ρα,β , ϕα,β ] .

Conversely, every left regular band can be so constructed.

Corollary 1.6 Let L = [Y ;Lα, ρα,β , ϕα,β ] be a left regular band. Then for any α, β ∈ Y with α ≥ β and for

any a ∈ Lα and b ∈ Lβ , ab = aϕb
α,β .

Proof Noticing that Lβ is a left zero semigroup, we can directly obtain the lemma from the definition of a

relational mapping and (1.4). 2

2. Main result and proof

The aim of this section is to describe a kind of subdirectly irreducible left regular bands whose structural

semilattices are finite chains, but most lemmas in this section are suitable for more general subdirectly irreducible

bands. Noticing Remark 1.2 and Lemmas 1.3 and 1.5, we suppose that, in the following lemmas, L =

[Y ;Lα, ρα,β , ϕα,β ] always represents a subdirectly irreducible left regular band without zero where 0 is the zero

of Y .

Lemma 2.1 [[4, Theorem 4.7]] For any u, v ∈ L , ux = vx for all x ∈ L0 implies that u = v .

Lemma 2.2 For any α ∈ Y − {0} , ρα,0 ̸= ωL0 .

Proof Suppose that there exists α1 ∈ Y − {0} such that ρα1,0 = ωL0 . Then ϕα1,0 is a usual mapping from

Lα1
to L0 . Thus, for any a ∈ Lα1

and u ∈ L0 , we see from Corollary 1.6 that

au = aϕα1,0 = (aϕα1,0)u.

It follows from Lemma 2.1 that a = aϕα1,0 , a contradiction. 2

Lemma 2.3 For any α ∈ Y , ρα,0 = εL0 implies that |
∪

δ≥α Lδ| = 1 .

Proof Arbitrarily take α ∈ Y and suppose that ρα,0 = εL0 . It follows from (1.1) that for any δ ≥ α ,

ρδ,0 = εL0 . Thus, for any x ∈ Lδ1 , y ∈ Lδ2 with δ1, δ2 ≥ α , we see from Corollary 1.6 that

xu = xϕu
δ1,0 = u = yϕu

δ2,0 = yu

for all u ∈ L0 . It follows from Lemma 2.1 that x = y . Therefore, |
∪

δ≥α Lδ| = 1. 2
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Lemma 2.4 Let Y be a chain. Then ρα,0 = εL0 for some α ∈ Y implies that Lα contains the identity of L .

Proof By Lemma 2.3 we may set Lα = {a} . Now we prove that a is the identity of L . Note that Y is a

chain. For any u ∈ L0 and b, c ∈ Sβ with (b, c) ∈ ρα,β , we see from (1.3) that (bϕu
β,0, cϕ

u
β,0) ∈ ρα,0 . Hence,

bϕu
β,0 = cϕu

β,0 since ρα,0 = εL0 . Thus, we see from Corollary 1.6 that

bu = bϕu
β,0 = cϕu

β,0 = cu.

It follows from Lemma 2.1 that b = c , which means that ρα,β = εLβ
. Thus, for any x ∈ Lβ , again we see from

Corollary 1.6 that

ax = aϕx
α,β = x,

as required. 2

Lemma 2.5 Let Y be a chain. Then for any α ∈ Y and a ∈ L0 , ρ = ωaρα,0 ∪ εL ∈ C(L) .

Proof Obviously, ρ is an equivalence on L . Note that L0 is a left zero semigroup. To show that ρ ∈ C(L), it
suffices to verify that ρ is left compatible. Now suppose that u, v ∈ aρα,0 and c ∈ L with c ∈ Lδ and δ ∈ Y .

It follows from Corollary 1.6 that

cu = cϕu
δ,0, cv = cϕv

δ,0

and from the definition of a relational mapping that

(cϕu
δ,0, u), (cϕv

δ,0, v) ∈ ρδ,0.

If δ ≥ α , then we obtain from (1.1) that cϕu
δ,0, cϕ

v
δ,0 ∈ aρα,0 . If δ < α , then it follows from (1.1) that

(u, v) ∈ ρδ,0 . Thus, we see from the definition of a relational mapping that cu = cv . Therefore, ρ ∈ C(L). 2

Lemma 2.6 Let Y be a chain. Then for any α ∈ Y , there exists Nα ⊆ L0 such that ρα,0 = ωNα ∪ εL0 .

Proof Assume that there exists a, b ∈ L0 such that both |aρα,0| > 1 and |bρα,0| > 1. Then it follows from

Lemma 2.5 that both η1 = ωaρα,0 ∪ εL and η2 = ωbρα,0 ∪ εL are nontrivial congruence on L while η1 ∩ η2 = εL ,

a contradiction. 2

Lemma 2.7 Let Y be a chain. Then for any α, β ∈ Y with α ⪈ β , Nα ⊊ Nβ .

Proof First it follows from Lemma 2.6 and (1.1) that Nα ⊆ Nβ . Suppose that Nα = Nβ . Then we have

ρα,0 = ρβ,0 . Pick a ∈ Lα and b ∈ Lβ . For any u ∈ Nα = Nβ , noticing from (1.2) that aϕα,βϕβ,0 ⊆ aϕα,0 , we

see from Corollary 1.6 and the definition of a relational mapping that

(aϕb
α,β)u = aϕb

α,βϕ
u
β,0 = aϕu

α,0 = au.

For any u ∈ L0−Nα , au = u = (aϕb
α,β)u , so we have au = (aϕb

α,β)u for all u ∈ L0 . It follows from Lemma 2.1

that a = aϕb
α,β , which leads to α = β , a contradiction. 2

1340



WANG et al./Turk J Math

Lemma 2.8 Let Y be a chain. Then for any α ∈ Y and a ∈ Nα , ϕa
α,0 is injective.

Proof Arbitrarily take x, y ∈ Lα . Suppose that xϕa
α,0 = yϕa

α,0 . Then for any u ∈ L0 , if u ∈ Nα , then we

obtain from Corollary 1.6 and the definition of a relational mapping that

xu = xϕu
α,0 = xϕa

α,0 = yϕa
α,0 = yϕu

α,0 = yu;

if u ̸∈ Nα , then we see from Corollary 1.6 and Lemma 2.6 that xu = yu = u . It follows from Lemma 2.1 that

x = y . Hence, ϕa
α,0 is injective. 2

Lemma 2.9 Let Y be a chain. Then for any α, β ∈ Y with α ≥ β , there exists Nα,β ⊆ Lβ such that

ρα,β = ωNα,β
∪ εLβ

.

Proof Suppose that there exist x, y ∈ Lβ such that |xρα,β | > 1, |yρα,β | > 1 but (x, y) ̸∈ ρα,β . Pick a ∈ Nα .

It follows from (1.3) and Lemmas 2.6 and 2.8 that

xρα,βϕ
a
β,0, yρα,βϕ

a
β,0 ⊆ Nα.

Hence, taking u ∈ Lα , we have uϕx
α,βϕ

a
β,0, uϕ

y
α,βϕ

a
β,0 ∈ Nα . By (1.2) and the definition of a relational mapping,

we see that

uϕx
α,βϕ

a
β,0 = uϕy

α,βϕ
a
β,0,

contradicting Lemma 2.8 since uϕx
α,β ̸= uϕy

α,β . 2

Lemma 2.10 Let Y be a chain. Then for any α, β ∈ Y with α ≥ β and |Nα,β | > 1 , and for any x ∈ Nα,β ,

ϕx
α,β is injective.

Proof Suppose that there exist distinct u, v ∈ Lα such that uϕx
α,β = vϕx

α,β . Noticing |Nα,β | > 1, we see

from (1.3) and Lemmas 2.6 and 2.8 that Nα,βϕ
a
β,0 ⊆ Nα so that uϕx

α,βϕ
a
β,0 = vϕx

α,βϕ
a
β,0 ∈ Nα , where a ∈ Nα .

It follows from (1.2) and the definition of a relational mapping that uϕa
α,0 = vϕa

α,0 , contradicting Lemma 2.8. 2

Lemma 2.11 Let L contain no identity and Y be a chain. Then for any α, β ∈ Y with α ≻ β , |Nβ−Nα| = 1 .

Proof Suppose that there exist distinct x, y ∈ Nβ −Nα . We claim that η = ω{x,y} ∪ εL ∈ C(L). In fact, it

suffices to verify that η is left compatible. Arbitrarily take u ∈ L with u ∈ Lδ and δ ∈ Y . If δ ≥ α , then

we see from Corollary 1.6, (1.1), and Lemma 2.6 that (ux, uy) = (x, y) ∈ η . If δ < α , then again we see from

Lemma 1.6, (1.1), and Lemma 2.6 that ux = uy since x, y ∈ Nδ . Therefore, η ∈ C(L) − {εL} . Note that L

contains no identity. It follows from Lemmas 2.6 and 2.4 that |Nα| > 1, so we obtain from Lemma 2.5 that

ρ = ωNα ∪ εL ∈ C(L)− {εL} . However, ρ ∩ η = εL , contradicting the fact that L is subdirectly irreducible. 2

Lemma 2.12 Let L contain no identity and Y be a chain. Then there exist a1, b1 ∈ L0 such that
∩

α∈Y Nα =

{a1, b1} . Moreover, ω{a1,b1} ∪ εL is the least nontrivial congruence on L .
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Proof Note that L contains no identity. We see from Lemmas 2.4 and 2.6 that for any α ∈ Y , |Nα| > 1. By

Lemma 2.5, we have |
∩

α∈Y Nα| > 1 since

∩
α∈Y

(ωNα ∪ εL) = ω∩
α∈Y Nα

∪ εL ̸= εL.

If N =
∩

α∈Y Nα contains at least three elements, say, a, b, c ∈ N , then we now can easily verify that both

η1 = ω{a,b} ∪ εL and η2 = ω{b,c} ∪ εL are congruences on L . However, η1 ∩ η2 = εL , contradicting the fact that

L is subdirectly irreducible.

The second part is now trivial. 2

Lemma 2.13 Let L contain no identity and Y be a finite chain. Then for any α ∈ Y , |Lα| > 1 .

Proof Suppose that Lα = {u} . Obviously, α ̸= 0, since otherwise u is the zero element of L . Picking β ∈ Y

such that α ≻ β , set Nβ −Nα = {c} according to Lemma 2.11 and let uϕa1
α,0 = d . Clearly, c ̸= d . We claim

that ρ = ω{c,d} ∪ εL ∈ C(L). To see this, we only need to verify that for any x ∈ L , (xc, xd) ∈ ρ . We may

suppose that x ∈ Lδ with δ ∈ Y . If δ ≥ α , then no matter whether d belongs to Nδ or not, from (1.1), (1.2),

Corollary 1.6, and the definition of a relational mapping, we always have xd = xϕd
δ,0 = d . Moreover, xc = c . If

δ < α , we see from Lemma 2.6, (1.1), and the definition of a relational mapping that xc = xd . Hence, ρ is a

congruence on L . However, this contradicts Lemma 2.12. 2

Lemma 2.14 Let L contain no identity and Y be a finite chain. Then for any α, β ∈ Y with α ≥ β ,

ρα,β ̸= εLβ
.

Proof Assume that ρα,β = εLβ
and note Lemma 2.13. Since Y is finite, we may suppose that for any δ, η ∈ Y

with α ≥ δ ⪈ η ≥ β ,

{δ, η} ̸= {α, β} ⇒ ρδ,η ̸= εLη .

Given that there exists ζ ∈ Y such that α ⪈ ζ ⪈ β , we have ρα,ζ ̸= εLζ
and ρζ,β ̸= εLβ

. If x, y ∈ Lζ ,

x ̸= y , (x, y) ∈ ρα,ζ and u ∈ Nζ,β , then we obtain (xϕu
ζ,β , yϕ

u
ζ,β) ∈ ρα,β from (1.3) and xϕu

ζ,β ̸= yϕu
ζ,β from

Lemma 2.10. However, it follows from ρα,β = εLβ
that xϕu

ζ,β = yϕu
ζ,β , a contradiction. Hence, we conclude

that α ≻ β . Now we obtain from Lemmas 2.6 and 2.12 that Lβϕ
a1

β,0 ⊆ Nβ . Noticing that ρα,β = εLβ
, for any

c ∈ Lβ , we have Lαϕ
c
α,βϕ

a1

β,0 = {cϕa1

β,0} . Thus, we know from (1.2) and Lemmas 2.8 and 2.13 that cϕa1

β,0 ̸∈ Nα .

Therefore, we obtain that Lβϕ
a1

β,0 ∩ Nα = ∅ . Moreover, note from Lemmas 2.8 and 2.13 that |Lβϕ
a1

β,0| > 1.

Hence, we have |Nβ −Nα| > 1, contradicting Lemma 2.7. 2

Lemma 2.15 Let L contain no identity and Y be a finite chain. If there exists u ∈ Lα such that uϕa1
α,0 = a1 ,

then for any β ∈ Y with β ≤ α , there exists v ∈ Lβ such that vϕa1

β,0 = a1 .

Proof Noticing (1.2), (1.3), and Lemmas 2.8, 2.9, and 2.14, we only need to choose v = uϕx
α,β , where

x ∈ Nα,β . 2

Now we present the main result.
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Theorem 2.16 Let L = [Y ;Lα, ρα,β , ϕα,β ] be a left regular band with neither zero nor identity, where Y is a

finite chain with zero 0 and identity ι . Then L is subdirectly irreducible if and only if the following statements

hold:

(a) for all α ∈ Y , there exists Nα ⊆ L0 such that ρα,0 = ωNα ∪ εL0 ;

(b) there exist a1, b1 ∈ L0 such that Nι = {a1, b1} ;
(c) for all α ∈ Y , ϕa1

α,0 is injective;

(d) for all α, β ∈ Y , α ≻ β implies that |Nβ −Nα| = 1 ;

(e) for all α ∈ Y , there exist u, v ∈ Lα such that uϕa1
α,0 = a1, vϕ

b1
α,0 = b1 .

Proof Necessity. We only need to prove (e) since we already have Lemmas 2.6, 2.8, and 2.11 and one can

directly deduce (b) from Lemma 2.12. It follows from Lemmas 2.8 and 2.13 that |Lι| = 2, so ϕa1
ι,0 is a bijection.

Thus, there must exist u, v ∈ Lι such that uϕa1
ι,0 = a1 and vϕb1

ι,0 = b1 . Now we obtain (e) from Lemma 2.15.

Sufficiency. One can easily verify that ρ0 = ω{a1,b1} ∪ εL ∈ C(L) by noticing Lemma 1.5. Arbitrarily

take σ ∈ C(L) − εL . Then there exist distinct x, y ∈ L , say, x ∈ Lα and y ∈ Lβ , with (x, y) ∈ σ . If α = β ,

then we obtain from (c) that

xa1 = xϕa1
α,0 ̸= yϕa1

α,0 = ya1.

If α ̸= β , then we may suppose that α > β . If yϕa1

β,0 ∈ Nβ −Nα , then

xa1 = xϕa1
α,0 ̸= yϕa1

β,0 = ya1

since xϕa1
α,0 ∈ Nα . If yϕ

a1

β,0 ∈ Nα , then taking z ∈ Nβ −Nα , we have

xz = z ̸= yϕa1

β,0 = yz.

Thus, we see that there always exist s, t ∈ L0 such that s ̸= t and (s, t) ∈ σ . If {s, t} = {a1, b1} , then we have

ρ0 ⊆ σ . If {s, t} ̸= {a1, b1} , then we obtain from (d) that there exists δ ∈ Y such that exactly one of s, t , say

s , lies in Nδ but the other does not. According to (e), there exist u, v ∈ Lδ such that uϕa1

δ,0 = a1, vϕ
b1
δ,0 = b1 .

Thus, we have

(us, ut) = (a1, t), (vs, vt) = (b1, t).

Then (a1, b1) ∈ σ , which again leads to ρ0 ⊆ σ , so we obtain that ρ0 is the least nontrivial congruence on L

and hence L is subdirectly irreducible. 2
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