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Abstract: We study the foliation defined by a closed 1-form on a connected smooth closed orientable manifold. We call

such a foliation compactifiable if all its leaves are closed in the complement of the singular set. In this paper, we give

sufficient conditions for compactifiability of the foliation in homological terms. We also show that under these conditions,

the foliation can be defined by closed 1-forms with the ranks of their groups of periods in a certain range. In addition,

we describe the structure of the group generated by the homology classes of all compact leaves of the foliation.
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1. Introduction

Consider a closed 1-form ω on a connected smooth closed orientable n-dimensional manifold M ; denote by

Singω the set of its singularities. On M \ Singω , this form defines a codimension-one foliation Fω . Such

foliations have important applications in modern physics, for example, in the theory of supergravity [2, 3].

Compact foliations, that is, foliations that consist entirely of leaves closed in M , i.e. compact, are well

studied. However, the property of compactness of a foliation is too restrictive: say, manifolds that admit a

compact foliation defined by a Morse form (locally the differential of a Morse function) are sphere Sn and

bundle over S1 (Proposition 2.5). In addition, compactness is easily destroyed by a local perturbation of the

form, for example, by adding a local center – the trivial center-saddle pairing [4].

Instead, we study a weaker but more useful property: compactifiability of the foliation. We call a foliation

compactifiable if it consists entirely of leaves closed in M \Singω , i.e. such leaves γ that γ∪Singω is compact.

Compactifiable foliations exist on any manifold – say, foliations defined by the levels of a Morse function.

For Morse forms, compactifiability of a foliation has been extensively studied in homological terms related

to global characteristics of the manifold [6, 7, 18], as well as using graph-theoretic methods [5, 12, 15]. Using

the fact that Morse forms are dense in each cohomology class, in this paper we generalize some of the known

facts from Morse forms to arbitrary closed 1-forms.

Specifically, we show that the foliation of a closed 1-form is compactifiable if any of the following

conditions hold:

(i) For any cycle z ∈ H1(M) that has zero homological intersection with all compact leaves,
∫
z
ω = 0

(Theorem 4.2);
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(ii) For some compact leaves γ1, . . . , γk ∈ Fω , there is no cycle in Hn−1(M) homologically independent from

them and homologically nonintersecting with them (Theorem 5.3);

(iii) There exist h(M) homologically independent leaves, where the isotropy index h(M) is the maximum

number of homologically independent and mutually nonintersecting cycles in Hn−1(M) (Corollary 5.4).

The latter simple condition is what best works in practice, because h(M) can be easily computed for

many manifolds, such as direct products and connected sums; see (2). It can also be estimated in terms of

the structure of the cup product ⌣ : H1(M) ×H1(M) → H2(M) and the Betti numbers b1(M), b2(M); see

Proposition 2.4. In some cases, this condition allows us to judge on the topology of the whole foliation by

a single leaf: for example, if on a torus Tn there is one homologically nontrivial compact leaf, then Fω is

compactifiable, because h(Tn) = 1 (Example 5.5).

Under the same conditions, the form’s rank (rank of the group of periods) is bounded by c(ω), the

maximum number of homologically independent compact leaves of Fω . Moreover, unless all compact leaves of

Fω are homologically trivial, the same foliation can be defined by closed 1-forms of any rank 1, . . . , c(ω) close

to ω (Theorems 4.2 and 5.3). Forms that define the same foliation are called collinear; they have been studied

in [8].

As an important technical result useful to prove basic facts about closed 1-forms, we show that the

subgroup generated by the homology classes of all compact leaves of Fω has a basis consisting of homology

classes of compact leaves (Theorem 3.1).

The paper is organized as follows. In Section 2, we introduce necessary definitions and facts concerning

closed 1-form foliations, isotropic subgroups (subgroups in Hn−1 with zero homological intersection), isotropy

index h(M), Morse forms, and close cohomologous forms. In Section 3, we study the subgroup Hω ⊆ Hn−1(M)

generated by all compact leaves and specifically show that it contains a basis consisting of homology classes of

compact leaves. In Section 4, we prove a sufficient condition for the compactifiability of a closed 1-form foliation

in terms of integrals on cycles that do not intersect compact leaves. Finally, in Section 5 we give our main result:

a sufficient condition for the compactifiability of the foliation in terms of maximal isotropic subgroups and the

number of homologically independent compact leaves.

2. Definitions and useful facts

2.1. Foliations of closed 1-forms

Let M be a connected smooth closed orientable n -dimensional manifold and ω a smooth closed 1-form on it
with the singular set Singω = {x ∈ M | ωx = 0 } . Obviously, Singω is closed.

This form defines a codimension-one foliation Fω on M\Singω . Indeed, on the set M\Singω the equation

{ω(ξ) = 0} , where ξ ∈ T∗M , defines a (n − 1)-dimensional distribution. Since dω = 0, the distribution is

integrable, i.e. it is tangent to the leaves of a foliation; we denote this foliation by Fω .

A leaf of a codimension-one foliation is either proper (for example, closed in M \ Singω ), locally dense

(its closure has nonempty interior), or exceptional (its closure is transversally like a Cantor set).

We study leaves γ ∈ Fω closed in M \Singω , i.e. such that γ \γ ∈ Singω ; that is, γ∪Singω is compact.

Definition 1 A leaf γ ∈ Fω is called compactifiable if γ ∪ Singω is compact; otherwise, it is called noncom-

pactifiable. A foliation with all leaves being compactifiable is called compactifiable.
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Under this definition, compact leaves, i.e. the leaves closed in M , are compactifiable, too. A compact

leaf has a cylindrical neighborhood consisting of leaves diffeomorphic and homotopically equivalent to it:

Lemma 2.1 ([9, Lemma 3.1]) Let ω be a closed 1-form and γ ∈ Fω a compact leaf. Then for some neighbor-

hood U(γ) there exists a diffeomorphism

θ : γ × (−ε, ε) → U(γ)

such that θ(γ, t) = γt ∈ Fω for any t ∈ (−ε, ε) .

In such a neighborhood, we can vary integrals along curves by small perturbation of the form leaving the

foliation intact; see a more detailed discussion for Morse forms in [9, Lemma 4.6 ff.]:

Lemma 2.2 Let ω be a closed 1-form, γ ∈ Fω a compact leaf, and α : [0, 1] → M a curve transverse to leaves,

γ ∩α = p ∈ M . Then for any neighborhood U(ω) ⊆ Ω1(M) and any neighborhood U = U(γ) ⊂ M there exists

0 < δ ∈ R such that for any c ∈ (1 − δ, 1 + δ) there exists a closed 1-form ω′ ∈ U(ω) such that ω′ = ω on

M \ U , Fω′ = Fω , and
∫
α
ω′ = c

∫
α
ω .

Proof Consider a small enough cylindrical neighborhood Uε = Uε(γ) ⊂ U from Lemma 2.1 such that α

is transverse to leaves in Uε . On (−ε, ε) choose a positive function being large or small enough near 0 and

constant 1 near the ends. It induces on M a function f constant on leaves, f ≡ 1 outside Uε . Since f is

constant on leaves, we have d(fω) = df ∧ ω = 0 and thus the form ω′ = fω is closed and Fω′ = Fω , while∫
α
ω′ can be varied. 2

The rank of the form is rkω = rkQ im[ω] , where [ω] : H1(M) → R is the integration map. Obviously,

0 ≤ rkω ≤ b1(M), the Betti number. A form ω is exact if rkω = 0.

2.2. Isotropic subgroups

A subgroup H ⊆ Hn−1(M) is isotropic if it is dual to a subgroup with trivial cup-product, i.e. if it consists

of homologically nonintersecting cycles: z · z′ = 0 for any z, z′ ∈ H . Any subgroup generated by one cycle

is isotropic. Since leaves do not intersect, the subgroup Hω generated by the homology classes of all compact

leaves of Fω is isotropic.

Maximal isotropic subgroups are studied in [11, 19]. For a given manifold M , maximal isotropic subgroups

can have different ranks; see Example 2.3. The set H(M) of ranks of maximal isotropic subgroups can be

calculated for various types of manifolds [11]; in particular, for the connected sum and direct product, it holds:

H(M ♯ N) = H(M) +H(N),

H(M ×N) = { 1 } ∪ H(M) ∪H(N),
(1)

except that H(M ×N) = H(M) if b1(N) = 0, the Betti number; we denote A+ B = { a+ b | a ∈ A, b ∈ B } .
Obviously, H(S1) = { 1 } ; then H(Tn) = { 1 } and H(M2

g ) = { g } (surface of genus g ).

Example 2.3 By (1), H(M2
2 ×S1) = { 1, 2 } ; see Figure 1: one maximal isotropic subgroup is ⟨[N ]⟩ , with N =

M2
2 ; the other is ⟨[T1], [T2]⟩ , where T i = zi × S1 , z1, z2 ⊂ N being homologically independent nonintersecting

closed curves.
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Figure 1. Two maximal subgroups of different ranks: ⟨[N ]⟩ and ⟨[T1], [T2]⟩ . The sides of each cube are identified to

form a 3-torus. In each 3-torus, a solid 2-torus represented by the vertical cylinder is removed, and the two obtained

boundaries are identified to form one 3-manifold. In this 3-manifold, three 2-submanifolds are shown: N is a double

2-torus represented by the two horizontal squares glued by the central circles, and T1 and T2 are 2-tori represented by

the vertical squares. Figure borrowed from [11].

Isotropy index h(M) = maxH(M) is the maximum rank of an isotropic subgroup; (1) gives

h(M ♯ N) = h(M) + h(N),

h(M ×N) = max{h(M), h(N) }.
(2)

For instance, h(Tn) = 1, h(M2
g ) = g , and h(M2

2 × S1) = 2.

The value h(M) can be estimated in terms of the cup product

⌣ : H1(M)×H1(M) → H2(M)

and the Betti numbers bi(M):

Proposition 2.4 ([11, Proposition 15]) Let dimM ≥ 2 . Denote k = dimker⌣ . Then:

(i) It holds that

b1(M) + k b2(M)

b2(M) + 1
≤ h(M) ≤ b1(M) b2(M) + k

b2(M) + 1
,

in particular, if b2(M) = 1 , then

h(M) =
1

2
(b1(M) + k).

(ii) If ⌣ is surjective, then

h(M) ≤ k +
1

2
+

√(
b1(M)− k − 1

2

)2

− 2 b2(M).

In this paper, we give a sufficient condition for the compactifiability of a foliation in terms of h(M)

(Corollary 5.4).
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2.3. Morse form foliation

A Morse form ω is a closed 1-form that is locally the differential of a Morse function. A Morse form foliation

is much simpler than that of a general closed 1-form. Its singular set Singω is finite; its leaves are either

compactifiable, i.e. closed in M \Singω , or locally dense ([1, 13]), the number of its noncompact compactifiable

leaves being finite. The structure of Morse form foliations is well studied [7, 14].

Compactifiable Morse form foliations exist on any manifold, though compact Morse form foliations exist

on a very restricted class of manifolds:

Proposition 2.5 Let ω be a Morse form. If all leaves of Fω are compact, then M is either a sphere or a

bundle over S1 .

Proof If Singω = ∅ , then M is a bundle over S1 [22]. Now let Singω ̸= ∅ . Near a singularity p ∈ Singω ,

ind p = k , in a suitable coordinate system xi the leaves of a Morse form are defined by the equation

−
k∑

i=1

(xi)2 +
n∑

i=k+1

(xi)2 = const, (3)

with xi(p) = 0 for all i . If there are different signs in (3), i.e. k ̸= 0, n , then a suitable section of a leaf

containing the level (xi)2−(xj)2 = 0 is conic and thus its closure includes the singularity. Therefore, a compact

Fω cannot have singularities other than centers (ind p = 0, n). By the Reeb theorem [21], M is homeomorphic

to Sn . 2

In this paper, we partially generalize the following statements from Morse forms to arbitrary closed

1-forms.

Denote by Hω ⊆ Hn−1(M) a subgroup generated by the homology classes of all compact leaves of Fω .

Proposition 2.6 ([17, Theorem in Section 2]) Let ω be a Morse form. If Hω is a maximal isotropic subgroup,

then the foliation Fω is compactifiable.

For a subgroup H ⊆ Hn−1(M), denote

H‡ = {z ∈ H1(M) | z ·H = 0},

where · is the cycle intersection. Obviously, A ⊆ B implies B‡ ⊆ A‡ .

Proposition 2.7 ([6, Theorem 7]) Let ω be a Morse form. The foliation Fω is compactifiable if and only if

H‡
ω ⊆ ker[ω] .

Denote c(ω) = rkHω . For a Morse form foliation, c(ω) is the maximum number of homologically

independent compact leaves of Fω [6, Theorem 4]. In the case of compactifiable foliation, this number bounds

the rank of a form that can define Fω :

Proposition 2.8 ([8, Proposition 4.8]) Let ω be a Morse form. If Fω is compactifiable, then there exists a

Morse form ω′ such that Fω′ = Fω and rkω′ = k if and only if

α ≤ k ≤ c(ω),

where α = 0 or 1 , depending on the topology of the so-called directed foliation graph of Fω .
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2.4. Close cohomologous forms

Foliations defined by close forms can have very different topological structure: for example, a form with rational

coefficients on a torus defines a compact foliation, while a close form with an irrational coefficient defines a

winding, i.e. a minimal foliation.

However, foliations of closed 1-forms that are both cohomologous and close have, in some sense, similar

topology. For example, compact leaves are stable under small perturbations of the form in its cohomology class.

In particular, denote by F (Ω) the space of closed 1-forms representing a class Ω ∈ H1(M,R); then:

Proposition 2.9 ([9, Theorem 3.1]) Let ω be a closed 1-form. There exists a neighborhood U(ω) ⊆ F ([ω])

such that for any ω′ ∈ U(ω) it holds that Hω ⊆ Hω′ .

The following statement makes facts concerning Morse form foliations useful in the study of arbitrary

closed 1-form foliations:

Proposition 2.10 ([20, Ch. 2, Theorem 1.25]) Let M be a closed manifold. The set of Morse forms is open

and dense in each cohomology class Ω ∈ H1(M,R) .

3. The subgroup Hω ⊆ Hn−1(M) generated by all compact leaves

Denote by Hω the group generated by the homology classes of all compact leaves.

A generating set of a free group might not contain its basis, e.g., Z = ⟨2, 3⟩ ; the generators in

Z2 = ⟨(1, 0), (2, 3), (3, 2)⟩ are indivisible. However, any set of homology classes of nonintersecting connected

codimension-one submanifolds of M contains a basis of the group it generates (unless the latter is trivial); in

particular:

Theorem 3.1 Let Fω be a closed 1-form foliation on M and Hω ⊆ Hn−1(M) be the subgroup generated by

the homology classes of all compact leaves; Hω ̸= 0 . Then:

(i) In Hω , there exists a basis e consisting of homology classes of leaves: e = {[γ1], . . . , [γc(ω)]} , γi ∈ Fω ,

c(ω) = rkHω .

(ii) For any compact leaf γ ∈ Fω , it holds that [γ] =
∑

i∈I ±[γi] , where [γi] ∈ e and I ⊆ {1, . . . , c(ω)} .

Proof (i) Since M is closed and oriented, its Hn−1(M) is a finitely generated free abelian group, and

so is Hω ⊆ Hn−1(M). Since it is Noetherian, from any set of its generators a finite subset can be chosen:

Hω = ⟨[γ1], [γ2], . . . , [γm]⟩ .
Suppose that [γi] are dependent. Let M ′ be the result of cutting M open along all γi ; then M ′ =

∪
j M

′
j

has at least two connected components M ′
j , ∂M

′ consisting of two copies γ±
i of each γi . Since M is connected,

there is γk ⊂ M such that γ+
k and γ−

k lie in different components: assume γ+
k ∈ ∂M ′

1 . Then [γk] =
∑

i∈I1
±[γi] ,

where the signs depend on the orientation. Thus, we can remove γk from the generating set and repeat the

process until obtaining a basis e of Hω .

(ii) Consider a compact leaf γ ∈ Fω , [γ] /∈ e . Obviously, γ ⊂ Int(M ′) and cutting M ′ along γ will result

in two connected components, M ′
+ and M ′

− , with ∂M ′
+ = γ+ ∪

∪
γ+
i ; thus, [γ] =

∑
i∈I ±[γi] . 2

The same fact about Morse form foliations has been proved using the finiteness of the foliation graph [6,

Theorem 4].
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4. Compactifiability of foliations with H‡
ω ⊆ ker[ω]

Here we generalize the sufficient condition from Proposition 2.7, and partially Proposition 2.8, from Morse forms

to arbitrary closed 1-forms.

Lemma 4.1 Let ω̃ be an exact 1-form on a compact manifold M̃ with boundary. Then Fω̃ is compactifiable.

Proof Let ω̃ = df . A leaf γ ∈ Fω̃ is a connected component of S = f−1(a) \ Crit(f), a level set of f

without critical points Crit(f) = Sing ω̃ ; since S is locally path-connected, its connected components are path-

connected. Consider p ∈ γ . Then p ∈ f−1(a) and in some spherical neighborhood of p there exist coordinates

xi such that f−1(a) = {x1 = 0 } ; thus, p ∈ γ . We obtained that γ is closed in M \ Sing ω̃ ; in particular,

γ ∪ Sing ω̃ is compact. 2

Recalling that for an H ⊆ Hn−1(M), we denote

H‡ = { z ∈ H1(M) | z ·H = 0 },

where · is the cycle intersection. Recall also that c(ω) = rkHω is the maximum number of homologically

independent compact leaves of Fω (Theorem 3.1).

If the integral along any cycle that does not intersect compact leaves is zero, then the foliation is

compactifiable:

Theorem 4.2 Let ω be a closed 1-form on M such that H‡
ω ⊆ ker[ω] , where [ω] : H1(M) → R is the

integration map. Then:

(i) Fω is compactifiable;

(ii) rkω ≤ c(ω) and, if c(ω) ≥ 1 , for any k = 1, . . . , c(ω) in any neighborhood of ω there exists a closed

1-form ω′ defining the same foliation, Fω′ = Fω , with rkω′ = k .

Proof (i) By Theorem 3.1, we have Hω =
⟨
[γ1], . . . , [γc(ω)]

⟩
, where γi ∈ Fω are homologically independent

compact leaves. Let M̃ be the result of cutting M open along γi . Then M̃ is connected, and ∂M̃ consists of

two copies of each γi . Denote by φ : M̃ → M the gluing map; the induced form ω̃ = φ∗ω defines on M̃ \Sing ω̃
a foliation Fω̃ that coincides with Fω defined on the whole M \ Singω , i.e. φ(Fω̃) = Fω .

Consider a closed curve s ⊂ M̃ . Obviously, [φ(s)] ·Hω = 0, so [φ(s)] ∈ H‡
ω ⊆ ker[ω] . We have∫

s

ω̃ =

∫
s

φ∗ω =

∫
φ(s)

ω = 0,

i.e. the form ω̃ is exact. By Lemma 4.1, the foliation Fω̃ is compactifiable, and so is Fω .

(ii) Since the form ω̃ = df is exact on M̃ , the periods of ω are defined by the cycles D[γ1], . . . , D[γc(ω)] ∈
H1(M); thus, rkω ≤ c(ω).

Denote by si curves realizing D[γi] and transverse to leaves in mutually nonintersecting neighborhoods

Ui = U(γi). Then si = αi∪s′i , where αi = si∩Ui ; see Figure 2. By Lemma 2.2, all
∫
αi

ω can be independently

varied by small perturbation of the form, ω′ , without changing the foliation, thus varying

rkω′ = rkQ{
∫
si

ω′ | i = 1, . . . , c(ω) }
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γ1 γ2

U1 U2

s′1 s′2

α1 α2

Figure 2. By small perturbation of the form in the neighborhoods U1 , U2 of the compact leaves γ1 , γ2 without changing

the foliation, the integrals along the closed curves si = αi ∪ s′i can be made commensurable or incommensurable.

from 1 to c(ω). 2

Whether Fω can be defined by an exact form, rkω′ = 0, depends on other factors; see, e.g., Proposi-

tion 2.8.

Corollary 4.3 Let ω be a closed 1-form on a closed orientable surface M2
g of genus g . If Fω has g

homologically independent compact leaves, then it is compactifiable.

Proof We exploit the fact that dimFω = codimFω . Let γ1, . . . , γg be homologically independent leaves of

Fω . Then

H1(M
2
g ) = ⟨[γ1], . . . , [γg], D[γ1], . . . , D[γg]⟩

is a basis, where D is a Poincaré duality map, i.e. D[γi] · [γj ] = δij ; thus, c(ω) = g and Hω = ⟨[γ1], . . . , [γg]⟩ .
For any z ∈ H‡

ω we have

0 = z · [γj ] =
(∑

ni[γi] +
∑

miD[γi]
)
· [γj ] = mj

for all j ; thus, H‡
ω ⊆ Hω . Since obviously Hω ⊆ ker[ω] , by Theorem 4.2, the foliation Fω is compactifiable.

2

For Morse form foliations, this fact has been known [16].

5. Compactifiability of foliations with maximal isotropic Hω

As our main result, we generalize Proposition 2.6 from Morse forms to arbitrary closed 1-forms, using the fact

that Morse forms are dense in any cohomology class.

Proposition 5.1 The set of closed 1-forms with a given maximal isotropic Hω is open in the space F (Ω) of

closed 1-forms representing a class Ω ∈ H1(M,R) .

Proof Suppose that a form ω ∈ F (Ω) defines a foliation with Hω being maximal isotropic. By Proposition 2.9,

there exists a neighborhood U = U(ω) ⊂ F (Ω) such that for any ω′ ∈ U it holds that Hω ⊆ Hω′ . Since Hω is

maximal isotropic, Hω′ = Hω and thus is also maximal isotropic. 2

Proposition 5.2 Let ω be a closed 1-form such that some compact leaves of Fω generate a maximal isotropic

subgroup H ⊆ Hn−1(M) . Then:
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(i) H = Hω , the subgroup generated by all compact leaves;

(ii) H‡
ω ⊆ ker[ω] .

Proof (i) is obvious since Hω is isotropic. (ii) By Propositions 5.1 and 2.10, in the cohomology class of ω

there exists a Morse form ω′ with Hω′ = Hω . By Proposition 2.6, its foliation Fω′ is compactifiable, and thus,

by Proposition 2.7, H‡
ω′ ⊆ ker[ω′] , i.e.

H‡
ω = H‡

ω′ ⊆ ker[ω′] = ker[ω].

2

We obtain an important particular case of Theorem 4.2:

Theorem 5.3 Let ω be a closed 1-form on M such that the subgroup generated by the homology classes of

some compact leaves of its foliation Fω is maximal isotropic. Then:

(i) Fω is compactifiable;

(ii) rkω ≤ c(ω) and, if c(ω) ≥ 1 , for any k = 1, . . . , c(ω) in any neighborhood of ω there exists a closed

1-form ω′ defining the same foliation, Fω′ = Fω , with rkω′ = k .

Whether Fω can be defined by an exact form is, again, not discussed here.

Recall that h(M) = maxH(M) is the maximum rank of an isotropic subgroup of Hn−1(M).

Corollary 5.4 If Fω has h(M) homologically independent compact leaves, then it is compactifiable.

In this case, statement (ii) above about the form ranks holds, too.

Example 5.5 If on a torus Tn there exists a homologically nontrivial compact leaf, then the foliation Fω is

compactifiable and rkω ≤ 1 . Indeed, h(Tn) = 1 .

Example 5.6 If on M2
g there exist g homologically independent compact leaves, then the foliation Fω is

compactifiable. Indeed, h(M2
g ) = g . This has also been shown as Corollary 4.3.

Note that Theorem 4.2 is stronger than Theorem 5.3; in particular, the converse to Theorem 5.3 (i) is not

true. The following counterexample gives a compactifiable foliation that satisfies the conditions of Theorem 4.2

(H‡
ω ⊆ ker[ω]) but not Theorem 5.3 (Hω is not maximal isotropic):

Counterexample 5.7 Consider a foliation on M = T 2 with two centers and two saddles, defined by an exact

Morse form as shown in Figure 3. Since the form is exact, H‡
ω ⊆ ker[ω] = H1(M) ; in particular, Fω is

compactifiable. However, since all its compact leaves are homologically trivial, Hω = 0 (and H‡
ω = H1(M)).

Thus, Hω is not maximal isotropic, since any 1-generated subgroup in Hn−1(M) is isotropic.
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Figure 3. Compactifiable Morse form foliation on T 2 with H‡
ω ⊆ ker[ω] but not maximal isotropic Hω . The sides of

the square are identified to form a torus. The foliation of the height function on a suitably tilted torus has two centers

shown on the sides, two saddles shown in the middle and on the corners, and four noncompact compactifiable leaves

shown as a cross; the rest of the the torus is covered by homologically trivial compact leaves. Figure borrowed from [10].
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